当前位置:文档之家› 异氰酸酯行业

异氰酸酯行业

异氰酸酯行业
异氰酸酯行业

2012年TDI、MDI等投资市场研究观点

异氰酸酯是异氰酸的各种酯的总称。若以-NCO基团的数量分类,包括单异氰酸酯

R-N=C=O和二异氰酸酯O=C=N-R-N=C=O及多异氰酸酯等。随着聚氨酯工业的高速发展,异氰酸酯成为聚氨酯树脂合成的重要原料。单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。目前应用最广、产量最大的是有:甲苯二异氰酸酯(TDI);二苯基甲烷二异氰酸酯(MDI)。主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。

中国行业研究网发布的《2012-2016年中国混合型聚异氰酸酯固化剂行业投资策略及深度研究咨询报告》显示:“十二五”期间,异氰酸酯行业发展方向是按照大型化和循环一体化、基地化和产业集群发展的原则优化产业布局;按照低碳、安全、环保绿色的原则组织生产和技术进步;按照精细化、高性能化、高附加值化的原则来开发新型异氰酸酯产品。鼓励有能力的国内企业做大做强,参与国际化竞争;根据市场调研需求控制行业规模;缔造资源节约型和环境友好型的异氰酸酯行业。2015年,预计我国异氰酸酯总需求量达250万~300万吨,总产能达到398。5万吨。其中MDI产能290万吨,TDI产能99万吨,特种异氰酸酯9。5万吨,除满足国内需求外,25%以上出口到国际市场,供需相对平衡。在“十二五”期间异氰酸酯行业整体发展向好的情况下,混合型聚异氰酸酯固化剂行业同样具有广阔的前景。

混合型聚异氰酸酯固化剂行业产量集中度市场研究

目前应用最广、产量最大的是有:甲苯二异氰酸酯(TDI);二苯基甲烷二异氰酸酯(MDI)。

甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1。22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。

二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。

2011年我国TDI产能过剩市场研究

2011年上半年TDI国际走势外盘市场表现良好,发展中国家,尤其是中东及非洲地区成为下半年TDI市场强力增长点。随着经济的发展和生活水平的提高,下游市场需求增涨,进一步带动了TDI产品的消费量,2011年上半年部分地区出现了现货供应偏紧的现象。有卖方透露,目前中东和非洲地区的TDI产品涨幅已经超过了原本增长情况良好的亚洲地区,使得原本主供国际市场的欧洲及日韩货源专项之意明显。

由于下2011下半年TDI产能出现大肆扩张,中国这个全球最大的TDI消耗国也面临着产能过剩的问题。目前,国内市场竞争激烈,现在国产TDI价格已经处于低位运行状态。而国外TDI装置在华的大幅投产,使得国内市场供应增加,竞争进一步加剧。目前我国华东地区TDI上海产巴斯夫、拜耳货源主流价格在22800元/吨左右高端23000元/吨左右;国产货主流价格在22000元/吨左右。

2011年中有不少TDI投资项目启动或重新开车,巴斯夫在韩国丽水的16万吨TDI 装置经过短暂停车后已于4月5日上午重新开车,恢复正常生产;日本三井年产12万吨的TDI项目在6月下旬经过检修后重新开车;沧州大化和韩国KPX也分别在4、5月份时检修完毕后重新开车,另外,沧州大化10万吨TDI项目和福建东南电化装置年产10万吨项目于2011年建成,还有,韩国和中国的扩能项目也在2011年下半年完成。

由此可见,随着TDI项目的新建和扩能装置的陆续开车,2011年亚洲TDI供应过剩局面加剧。虽然中国下游市场的需求增加10%,印度市场增长10%~20%,但亚洲TDI 供货量增加近10%,从而使供应过剩压力进一步加大。

MDI未来市场趋势预测需求强劲

MDI的初级品广泛用于聚氨酯涂料。近年来,随着全球变暖,能源成本高涨,越来越多的国家出台各项法规提高能源效能,提高房屋建筑环保、节能指标,随着各国政策上的支持以及MDI在技术性能上的不断提高,未来MDI或将成为全球建筑领域重要型材。

2010年全球MDI总需求约460万吨,中国需求130万吨,需求增速超20%,超出市场预期,业内人士预计随着欧美经济的复苏,全球MDI将保持15%-20%的年均复合需

求增速。在国内,几大供应商开工情况相比2009年表现更好,国内产量约在32万吨左右,进口从海关统计数据分析来看2010年进口国外的纯MDI在13万吨左右,而出口方面由于国内企业将其作为重点推广方向,增长速度较快达到4。5万吨。因此我国2010年纯MDI总消费量在40-41万吨左右,相比2009年有25%的增幅。

从未来2-3年看,我国MDI需求量每年增长15-20万吨,欧美地区的需求也将逐渐恢复,全球每年需求增量将达到30万吨。下游需求稳健增长、新增产能投放有限、苯胺原料价格下跌三大因素将共同将MDI行业推入景气周期。目前,MDI生产技术仍掌握在少数企业手中。包括国内最大的生产商烟台万华在内,全球6大巨头控制了近90%的产能。

随着各领域涂料、粘合剂、合成革等下游市场的发展,异氰酸酯需求还将一步加强,但是国内外企业的不断扩产也为异氰酸酯增添了更多市场竞争压力。目前国内聚合MDI市场大涨,一路飙升为近年来最高点,主流价格升至19500-20000元/吨左右,供货非常紧张,场内正上演一货难求的局面。

混合型聚异氰酸酯固化剂行业产值集中度市场调研

异氰酸酯是生产聚氨酯的重要原料,主要有MDI(二苯基甲烷二异氰酸酯)和TDI(甲苯二异氰酸酯)两大品种。聚氨酯具有许多独特的优异性能,如耐磨、抗冲击、耐油、耐寒、耐酸碱、耐老化等,与金属、陶瓷、木材等材料有很强的粘着力,其制品广泛应用于轻工、建筑、汽车、机电等行业,对国民经济的发展起着无可替代的重要作用。因此,随着国内经济的持续快速增长和居民消费结构的升级,国内对聚氨酯的需求迅速上升,进而带动异氰酸酯产业快速发展。

世界MDI和TDI生产企业数据分析

异氰酸酯是高技术含量行业,生产高度集中,目前世界上仅美国、德国、日本、中国等少数国家掌握生产技术,生产企业主要有拜耳、巴斯夫、陶氏、亨斯迈、三井、万华等。这几大公司占全球MDI和TDI产能的比重分别达93%和64%,其中拜耳所占比例超过

1/4。2007年,全球MDI消费量约397万吨,较2000年增长了62。7%,年均递增7。2%,TDI消费量168万吨,比2000年增长22。6%,年均递增3%。而在此期间,中国市场消费量高速增长,MDI和TDI平均增幅分别达21。9%和5。5%,远高于世界平均水平,成为国际异氰酸酯市场强有力的增长点。国际异氰酸酯巨头纷纷进入中国投资设厂,占据国内大部分市场份额。

中国MDI和TDI生产企业数据分析

我国从20世纪60年代开始就对异氰酸酯产品进行开发和研究,并在大连、太原、重庆、常州建立了小型的异氰酸酯生产装置,但一直未形成规模。20世纪80年代中期及90年代初,随着国内对MDI、TDI消费量的急剧增长,我国分别从国外引进了一套MDI生产线,四套TDI生产线,分别是烟台万华的MDI生产线;甘肃银光聚银化工有限公司、上海吴淞化工厂、山西太原化工厂和沧州大化集团TDI有限责任公司的TDI生产线。后来由于太原项目和吴淞项目一直无法达产,先后被蓝星和莱阳巨力收购。经过多年的消化吸收,目前烟台万华已经掌握了具有自主知识产权的MDI制造技术,整体生产能力达到50万吨/年,并计划建设新的30万吨/年的生产线。2006年,BASF和HUNTSMAN联合在上海建成24万吨/年的MDI生产线,同年BASF在上海建成16万吨/年的TDI生产线。拜耳在上海也分别投资建设了35万吨/年MDI和30万吨/年TDI投资项目。(数据来源:中研普华数据库)

目前,我国有异氰酸酯生产企业9家,MDI和TDI生产能力分别为114万吨和61万吨,主要分布于上海、浙江、山东、甘肃等地。

混合型聚异氰酸酯固化剂等相关固化剂主要的用途是油漆、泡沫塑料、涂料等。其中封闭型水可分散聚异氰酸酯固化剂也可以与三聚氰胺同化剂配用,用三聚氰胺固化剂来降低成本,封闭型水可分散聚异氰酸酯固化剂来提高性能。代聚异氰酸酯被用于双组分聚氨酯涂料,双组分聚氨酯涂料已经成为许多应用领域的主流技术,例如汽车修补漆、大型交通工具漆、工业漆、木器漆、塑料漆等。中研普华行业研究机构认为,而随着社会对环境保护的关注,能够降低有机挥发物排放的高性能固化剂,比如水可分散固化剂和低黏度固化剂,将是未来发展的重点。混合型聚异氰酸酯固化剂基于其广泛的用途,未来发展前景乐观。

异氰酸酯与氨基反应

异氰酸酯与氨基反应 异氰酸酯跟活泼氢反应,一般来说可以是羟基,氨基等,羟基可以是醇羟基、酚羟基,活泼氢的反应里氨基反应的活性很高水的反应性也很高,通常来讲在较低的温度下就可以发生异氰酸酯和氨基的反应了,当然和水的反应在合成时候我们是不愿意看到的,而在潮气固化的时候我们就需要它,我做合成的时候尝试过在室温下用乙二胺的扩链,这个也是可以实现的,当然反应时间比在40多度时候要稍稍长一些,而羟基相对来讲活性低一些所以需要的温度比较高,文献上60度出现的比较多,但是个人实践表明在温度可控性较好的情况下在90度下反应也是可行的,我一般控制在75-80度,脂肪族的异氰酸酯我会在反应之初就在较高温度反应且加入催化剂,否则反应的转化率太低,而芳香族的我一般在60度左右不加催化剂反应一段时间再升高温度加入催化剂,另外就是氨基甲酸酯与异氰酸酯的反应,这个反应需要在较高的温度下发生(100多度具体多少我忘了),这个也就是为什么我们需要控制反应温度的原因,避免温度过高发生副反应而凝胶。 胺基与异氰酸酯的反应是聚氨酯制备中较为重要的反应之一。凡是伯胺基及仲胺基的化合物,除具有较大位阻的外,基本都能与异氰酸酯反应。异氰酸酯与胺反应生成取代脲。总的来说,胺基与异氰酸酯的反应较其它活性氢化合物为高。异氰酸酯与胺伯化合物的反应活性除了受异氰酸酯结构影响外,还受胺类化合物结构的影响。强碱性的胺活性大。脂肪族伯胺与异氰酸酯的活性相当大。在0~25度就能和异氰酸酯快速反应,生成脲类化合物。脂肪族伯胺与芳香族异氰酸酯的反应太快,来不及控制,很少使用。在聚氨酯制备中,因伯胺活性太大,一般应在室温下反应。 脂肪族仲胺和芳香族伯胺与异氰酸酯反应就比脂肪脂肪族伯胺慢。对于芳香族胺,若苯环的邻位上有取代基,由于存在空间位阻效应,反应活性要比无邻位取代基的小;其中存在吸电子取代基者使胺基的活性大大降低。而对位存在吸电子取代基的芳胺的活性比无取代基的活性高,这是因为它通过苯环使得胺基的碱性增强,容易失去质子。 常用的二胺化合物是活性较缓和的芳香族二胺,如3,3ˊ-二氯-4,4ˊ二氨基二苯甲烷等,二氨基二苯甲烷氨基的邻位Cl原子的空间位阻基电子诱导效应使得NH2的活性较低。下表为几种芳香族二胺与端基NCO聚氨酯预聚体反应的凝胶时间。 胺类名称凝胶时间∕min温度 对苯二胺1室温 3,3ˊ-二甲基-4,4'-联苯二胺3室温(在溶剂中) 多亚甲基多苯胺0.5128度(熔融状态) 4,4ˊ二氨基二苯甲烷3室温(在溶剂中) 联苯二胺5室温 15~20 3,3ˊ-二氯-4,4ˊ二氨基二苯 甲烷 3,3'-二甲氧基-4,4'-二氨基 5室温 苯甲烷 3,3ˊ-二氯-4,4ˊ-联苯二胺〉15~20

聚氨酯发展史

聚氨酯的发展史 1、聚氨酯(PU)材料简介 聚氨酯是一种由多异氰酸酯(OCN-R-NCO)和多元醇(HO-R1-OH)反应并具有多个氨基甲酸酯(R-NH-C--OR1)链段的有机高分子材料。因聚氨酯分子结构中含有多个氨基甲酸酯(简称氨酯)基团,故称之为聚氨酯。在制造聚氨酯材料时常采用扩链剂,即小分子二元醇和二元胺,前者形成氨基甲酸酯基团,后者形成氨基甲酸酯——脲基团,这两种基团在PU结构中称之为硬段,而由多元醇构成的链段称之为软段。因此聚氨酯是由多个软段和多个硬段以嵌段形式相结合而构成。聚氨酯的塑料性质和强度等性能主要由其硬段性质决定,聚氨酯的橡胶性质和弹性等性能主要由其软段性质决定。PU材料可通过改变不同原料化学结构、规格指标、品种、配方比例制造出具有各种性能和用途的变化多端的制品。PU 材料是在目前所有高分子材料中唯一一种在塑料、橡胶、泡沫、纤维、涂料、胶粘剂和功能高分子七大领域均有应有价值的合成高分子材料。由此也决定了PU材料是高分子材料中品种最多、用途最广、发展最快的一种特种有机合成材料。可广泛应用于轻工、建筑、汽车、纺织、机电、船舶、石化、冶金、能源、军工等国民经济各个领域。PU材料的优越性越来越得到凸现、也越来越被人们所接受,因此世界各国竞相加快发展PU工业。 2、世界PU发展简史 PU树脂首先由德国拜耳(Bayer)(PU工业奠基人)教授于1937年发明,至今已有七十年历史。到第二次世界大战结束后,美国、英国从德国获得了PU制造技术。美国在五十年代初率先合成了由环氧丙烷与环氧乙烷共聚醚与TDI构成的PU软泡塑料,这是PU工业发展中一个重大里程碑。即由德国拜尔公司原先采用的多元醇原料来源由煤炭路线转变成低成本的石油路线,从而为PU实现工业化和高速发展奠定了物质基础。 1951年美国用干性油及其衍生物制得了TDI型PU涂料。1953年美国从德国引进了PU胶粘剂制造技术,开发成了以蓖麻油和聚醚多元醇为原料的PU胶粘剂。1953年德国研制成功由聚酯多元醇与NDI构成的液体PU浇注橡胶(CPU)。1957年英国ICI公司开发成了MDI为原料的聚酯型硬质PU泡沫塑料技术。1959年美国杜邦公司成功地开发成PU 弹性纤维(Lycra)莱卡。六十年代中期各国相继研制成功PU铺面材料和PU灌浆防水材料。六十年代后期德国Bayer公司和美国相继开发成功RIM(反应注射成型技术)在汽车上的应用。七十年代初热塑性PU弹性体(TPU)研究成功。80年代初PU工程塑料问世,PU工业从此以一个堑新的面貌展现了出来。至八十年代中期,全世界PU消费量已达到400万t/a。到90年代后期消费量快速增加到800万t/a。2005年全球PU消费量猛增到1375万t/a。其中PU主要原料MDI产能达到333万t/a,TDI产能达到198万t/a,聚醚产能达到590万t/a。 全球PU产品主要发达地区为北美、西欧,亚太(日本、韩国)和中国。产品种类主要包括软泡、硬泡、弹性体、纤维、合成革、胶粘剂、密封剂和涂料等,其中软泡和硬泡比例最大。以北美为例,2004年全年生产PU产量为354万t,其中软泡占36%、硬泡占30%、弹性体占9%,胶粘剂(含密封剂)占13%、涂料占9%。软泡中以家俱、床垫、汽车、地毯为主;硬泡以建筑保温和工业绝热为主。 3、我国PU发展简史 1.PU工业初始开创期(1958年-1978年) 我国PU工业始创于20世纪50年代未,至今已有五十多年历史。1958年大连染料厂研制成异氰酸酯(TDI),1968年建成年产500T生产装置,为我国PU工业开创了条件。六十年代初,江苏省化工研究所等单位研制成了聚醚型PU软质泡沫塑料。同期,我国从国外引进了三条PU软泡生产线,分别装置在上海、北京和山西3个塑料厂。七十年代初江苏

多异氰酸酯

异氰酸酯 中文名称:异氰酸酯[1] 中文别名:异氰酸 英文名称:isocyanicacid 英文别名:Isocyanicacid;Hydrogenisocyanide;Polyisocyanates; CAS号:75-13-8 分子式:CHNO 分子量:43.0247 密度:1.04g/cm3 沸点:39.1℃ 闪点:<-15℃(闭杯) 自燃点:534℃ 蒸汽压:6750mmHgat25°C 外观:无色清亮液体,有强刺激性。 溶解性:15℃时水中溶解度:1%;20℃时6.7%。 用途:用于家电、汽车、建筑、鞋业、家具、胶粘剂等行业。 危险性:除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 化学反应:容易与包含有活泼氢原子的化合物:胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳;在过量水存在时,甲胺再与MIC反应生成1,3-二甲基脲,在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下,发生自聚反应并放出热能。 遇热、明火、氧化剂易燃。燃烧时释出MIC蒸气、氮氧化物、一氧化碳和氰化氢。 高温(350~540℃)下裂解可形成氰化氢。

遇热分解放出氮氧化物烟气。 制备方法:工业上主要采用伯胺光气法生产异氰酸酯,其反应如下:由二胺光气法可制得二异氰酸酯:随着科技的进步和合成理论的不断深入,硝基化合物直接与一氧化碳高温高压催化合成异氰酸酯的工艺越来越来成熟。 由于异氰酸酯结构中含有不饱和键,因此具有高活性,容易与一些带活性基团的有机或无机物反应,生成聚氨酯弹性体。 (1)与羟基化合物的反应:如与多元醇、聚醚、聚酯酰胺、蓖麻油等含活性羟基化合物反应生成氨甲基酸酯。 (2)与含氨基化合物的反应:与胺类化合物反应通常生成取代脲,如果进一步发生反应则最终生成缩二脲。 (3)与水反应:与水反应生成胺和二氧化碳,胺进一步与异氰酸酯反应生成取代脲。 (4)与含羧基化合物的反应:与有机羧酸、末端为羧基的聚酯等化合物反应,先生成混合酸酐,最后分解放出二氧化碳而生成酰胺。 (5)与氨基甲酸酯的反应:反应生成脲基甲酸酯。 此外,异氰酸酯在适当的条件下还可以发生自聚反应,形成二聚体或高分子量的聚合物,因此,异氰酸酯一般要求在低温、无光照条件下储存。 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(TolueneDiisocyanate,简称TDI);二苯基甲烷二异氰酸酯(MethylenediphenylDiisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的1,6-己二异氰酸酯(HDI)。

聚氨酯概况综述

聚氨酯概况 一、聚氨酯定义 聚氨酯:凡是在大分子主链中含有氨基甲酸酯基的聚合物称为聚氨基甲酸酯,简称聚氨酯。 分类:聚酯型聚氨酯; 聚醚型聚氨酯。 聚酯型聚氨酯:以异氰酸酯和端羟基聚酯为原料制备的聚酯称为聚酯型聚氨酯。 聚醚型聚氨酯:以异氰酸酯和端羟基聚醚为原料制备的聚氨酯。 二、聚氨酯生产常用原料简介 己二酸(AA) 1、物理性质: 白色晶体或结晶粉末,略有酸味,微溶于水、环己烷,溶于丙酮、乙醇、乙醚。不溶于苯、石油醚。熔点152℃,沸点330.5℃(760mmHg),比重1.360(20/4℃),闪点196℃。 2、用途: AA主要用于生产尼龙(纤维和树脂),约占总生量的70%以上,聚氨酯行业中AA 的用量只约 20%,余下的用于增塑剂、造纸、药物等方面生产。 在PU行业中,AA用于生产PU革用树脂、鞋底原液、弹性体、胶粘剂和油漆等方面。 二苯基甲烷-4,4’-二异氰酸酯(MDI) 1、物理性质: 白色到微黄色结晶体(或粉末)。溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.197(70℃),凝固点38-39℃,沸点190℃(5mmHg)。 2、用途: MDI只用于聚氨酯行业中,其应用范围是:弹性体、纤维、革用树脂、鞋底原液、胶粘剂和油漆等方面。 多亚甲基多苯基多异氰酸酯(PAPI) 1、物理性质: 棕色粘稠液体,溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.23(25℃)。 2、用途: 在PU行业中,PAPI主要用于生产硬泡,此外还可用于胶粘剂、铺装材料等。

甲苯二异氰酸酯(TDI) 1、物理性质 无色至淡黄色液体,有强烈刺激性气味。可溶于醚、丙酮、苯、四氯化碳、氯等。与水、醇及胺等反应,比重 1.2244(20/4℃),熔点19.5-21.5℃,沸点251℃(760mmHg)。 2、用途: TDI的主要用途是生产PU泡沫,约占TDI总量的80%以上。此外还用于胶粘剂、弹性体、油漆、固化剂等方面。 N,N-二甲基甲酰胺(DMF) 1、物理性质: 无色透明液体,有氨气味,溶于水、乙醇、乙醚、氯仿等大多数有机溶剂,微溶于苯。溶解能力强,被称为万能有机溶剂。比重0.9445g/cm3(25/4℃),熔点-61℃,沸点153℃,折射率为1.4269。 2、用途: DMF主要用于革用树脂的合成和PU皮革生产加工方面,约占总量的90%以上,余下的用于医药和分析方面。 1,4—丁二醇(BDO) 1、物理性质: 无色粘稠油状液体,味苦,有吸湿性,无气味。可溶于水、甲醇、乙醇和丙酮,微溶于乙醚,不易挥发。比重为1.016g/cm3(20/4℃),凝固点为20.9℃,沸点为228℃,折射率为1.4446(25℃)。 2、用途: 用于制造聚酯多元醇、不饱和树脂、药物、染料、化妆品及油漆等。 多元醇 一):聚酯多元醇 1、分类: 聚酯多元醇的种类繁多,根据其结构来分可分为三大类:聚酯多元醇类(主要是己二酸系列),聚ε—己内酯类,聚碳酸酯类。 聚酯多元醇是由二元酸与二元醇或三元醇经酯化、缩聚成一定分子量的端羟基高聚物。 聚ε—己内酯类是ε—己内酯在催化剂(有机钛类、辛酸亚锡)存在下,由起始剂(二醇或二胺)开环聚合成线性的端羟基或端胺基高聚物。 聚碳酸酯类是1,6—己二醇与二苯基碳酸酯经酯交换、缩聚而成的聚碳酸己二醇酯二醇。 2

刨花板用异氰酸酯胶粘剂研究的发展动态

来稿日期:1998-03-20责任编校:潘启英 刨花板用异氰酸酯胶粘剂研究的发展动态 王 戈 王子奇 (黑龙江省林产工业研究所) 1 前 言 在国内外的刨花板工业中,虽然使用的胶粘剂大多数仍以甲醛系列为主,如酚醛树脂胶、脲醛树脂胶、三聚氰胺胶等,但异氰酸酯胶粘剂(M DI)近年得到很大发展和应用。由于其具有很高的胶合强度、良好的耐水性、对原料的适应面广、无甲醛等有毒气体的释放等许多优点,对该胶种的研究越来越受到许多国家的重视,并研制开发了许多种类的异氰酸酯胶粘剂,广泛应用于刨花板生产中,主要使用国家有德国、美国、日本、加拿大等。我国使用此胶种生产刨花板的工厂还很少,大多处于试验阶段。 2 刨花板用异氰酸酯胶粘剂的 研究发展概况 2.1 异氰酸酯胶的初期研究 1849年,由德国学者Wurtz 首先合成得到异氰酸酯化合物;1884年,Hentschel 等人用胺盐与光气反应合成了异氰酸酯,成为工业上合成异氰酸酯的方法。通过研究第二次世界大战结束时德国塑料和橡胶工业情况的同盟国访问小组的报告了解到,德国最早于1940年,其研究人员在研究硫化橡胶的过程中发现了异氰酸酯的胶粘性能,随后美国等 国也对异氰酸酯的胶粘性进行了研究。 异氰酸酯真正用于刨花板生产还是在70 年代。1951年用二异氰酸酯生产刨花板试验成功,1975年西德No vopan 公司开始采用异氰酸酯作为刨花板芯层的胶粘剂,开始了商业性生产二异氰酸酯刨花板。美国、日本等国在70年代中期也引进德国技术,将异氰酸酯胶粘剂用于工业生产中。1981年美国El-coloard 用该胶作为结构刨花板的胶粘剂,且用量逐年增大。德国刨花板产量的10%是以异氰酸酯作为胶粘剂来生产的。日本及西欧一些国家已由异氰酸酯胶部分取代甲醛系列胶来生产轻质刨花板、结构刨花板及MDF 。2.2 异氰酸酯胶的反应机理及种类 异氰酸酯是一种化学性很强的物质,它含有R-N=C=0基团,能与含有活性氢的物质如水、胺、醇及酸反应。当一个单体含有一个以上异氰酸酯基团与含有多个活性氢基团的物质反应时,就制成了强度高、耐水、耐化学性好的固体聚合物。 异氰酸酯能作为刨花板的胶粘剂,主要是活性基团R-N =C=0与木质刨花的木纤维素及木素的羟基反应,通过上述作用,使二异氰酸酯和木材胶接在一起,从而产生了强度好、对酸、碱、水有较好稳定性的接合键。 另外,异氰酸酯还与刨花板中木质刨花里的水分反应生成聚脲,同样把刨花粘接在一起。 异氰酸酯种类很多,最常用的两类分别为甲苯二异氰酸酯(T DI)和4.4-二苯基甲烷二异氰酸酯(M DI)。目前,用于刨花板生 第23卷 第3期1998年5月 林 业 科 技FORESTRY SCIENCE &TECHNO LOG Y Vol.23No.3M ay .1998

异氰酸根的反应

异氰酸酯的各种常见反应 一、异氰酸酯与醇的反应 带有端羟基的聚醇(如聚酯、聚醚及其他多元醇)与多异氰酸酯反应,生成聚氨酯类聚合物,这是合成聚氨酯最基本的反应。 根据研究得知:氨基甲酸酯基团是内聚能较大的特性基团,空间体积较大,在聚台物中具有硬链段特征,而由碳碳链作为主链的聚醇,具有较强的挠曲作用,成为聚合物的软链段?聚氨酯实际上就是由刚性基团(链段)和软链段构成的嵌段共聚物,显然,使用分子量较大的聚醇,将会使聚合物刚链段比例下降、刚性基团间隔增加。在实际合成中,应根据产品不同性能要求和应用场合,选择不同分子量的聚醇品种。不同分子量的聚醇对PUR性能的影响及不同分子量的聚醚品种对与MDI反应的速度都是不一样。 在使用聚醇与异氰酸酯反应时,除原料品种和分子量等因素外,更重要的影响因素是彼此反应基团数的比例,即-NCO/-OH比例,它决定了生成聚合物的分子量太小,这对于二步法合成聚氨酯的反应是极其重要的技术参数。跟据-NCO/-OH比不同,基本有以下情况, 1) -NCO/-OH>1 即- NCO过量,这样生成的聚合物端基为异氰酸基,在聚氨酯合成中.大多数预聚体法(二步法)是采用一NCO/_一OH>1,如PU弹性体、粘合剂,涂料以及二步法合成PU泡沫塑料等。 2) -NCO/-OH)=1 在一NCO基团和-OH基团都是双官能度时,据聚合物化学理论,生成的聚合物分子应该是无穷大 在泡沫塑料和热塑性聚氨酯材料制备中,常将-NCO/-OH控制在-NCO/-OH =1左右 3)-NCO/-OH<1 即-OH过量,生成的聚合物的两端应是羟基 此种情况的使用较少,主要用于便于贮存的生胶、粘合剂和某些中间体的制备。 二、异氰酸酯与苯酚的反应 异氰酸酯和酚的反应情况与醇相似,但由于苯环的吸电作用,使酚的羟基中的氧原子电子云密度下降、致使它与异氰酸酯的反应活性下降,该类反应主要作为异氰酸酯封闭反应 三、异氰酸酯与水的反应 该反应是制备聚氨酯泡沫塑料的重要反应。在反应中生成二氧化碳,使得水成为制备聚氨酯泡沫最廉价的化学发泡剂.但该反应放热量大,用量过大,会产生泡沫体烧芯同时,水用量过多,使得生成聚合物中脲基含量高,将会使PU软质泡沫体的手感变差,因此,在制备PU软质泡沫体时,严格控制水的音量低于4%。 对于希望出现泡沫气穴的其他聚氢酯产品,如橡胶、涂料、纤维等产品.对水的限制都非常严格,不希望因原料、溶剂,甚至潮湿空气中的水分与异氰酸酯接触而产生上述反应。 四、异氰酸酯与羟酸的反应 见第二节. 五、异氰酸酯与胺的反应 含有端氨基的化含物与异氰酸酯的反应,在聚氯酯合成中占有重要地位,由于氨基活跃,且具有一定碱性,故异氰酸酯能与任何含氨基的化合物反应,生成取代脲。 在聚氨酯材料的合成中,低分子胺类化合物常被用作链扩张剂使用.它们与异氰酸酯反应生成脲基团,与大分子中的氨基甲酸酯基团等内聚能高的基团构成了聚合物中的刚性琏段,同时,在在异氰酸酯过量的情况下,这些基团还能进一步反应,形成缩二脲等交联结构,从而使聚合物在力学性能等方面有较大的提高,使用普通聚酯进行氨化反应,可以使传统聚醚的端羟基转化为端氨基,从而开发出高活性的聚醚新品种,井由此开发出“冷热化”型聚氨酯泡沫等新品种;同时,以这类高活性的聚胺醚为基础,还开发出反应速度更快、生产效率

(无醛)异氰酸酯胶粘剂研究现状及发展趋势

前言 胶粘剂用量的多少,已成为衡量一个国家、一个地区木材工业技术发展水平的重要标志。根据联合国粮农组织报道,2000年世界人造板的产量达到1.54亿立方米,耗用370万吨胶粘剂(以固体含量100%计)。据《中国林业统计资料》和已发表的有关数据推算,我国1997年木材胶粘剂用量为92万吨,预测2005年和2010年人造板用胶量将分别增至141万吨(干)和169万吨。 人造板使用胶粘剂主要有脲醛树脂(UF)、酚醛树脂(PF)、三聚氰胺-甲醛树脂(MF),其中尤以UF用量大。人造板工业的这三大胶种都使用甲醛作为原料之一。随着人们对安全意识和环保意识的增强,甲醛的释放越来越受到关注,同时也影响了人造板的销售。因此,开发环保型的胶粘剂,重点开发无甲醛或低游离甲醛型胶粘剂成为大势所趋。 异氰酸酯胶粘剂是首选胶种。 异氰酸酯胶粘剂自二战开始应用,并很快被人们喻为“可粘接任意物品的胶”。1951年,Dcppc最先用异氰酸酯胶接刨花板,1957年德国生产出第一批异氰酸酯刨花板。50多年来,对异氰酸酯胶粘剂的研究及应用已经有了长足的发展。在北美和欧洲,超过20%的OSB(定向结构板)及常规MDF(中密度纤维板)生产厂家使用MDI胶粘剂。MDI世界年产量超过150万吨。美国的道化学公司及亨斯公司,德国的拜尔公司及巴斯夫公司,日本的聚氨酯公司及三井公司的研究开发及生产应用均处于世界领先地位。 1 异氰酸酯胶粘剂的使用特点 异氰酸酯胶粘剂由于含有高反应活性的异氰酸酯基(-NCO),一方面可与木质及非木质纤维素原料如竹材、秸杆、棉杆等大分子中的羟基(-OH)化学键合,另一方面该胶粘剂还可以与水反应,它是人们寻找的唯一的既可以与人造板原料分子反应又可以与水反应的胶粘剂。反应式如下所示(P表示木质或非木质原料): P—OHOCN—R—NCO→P—OCONH—R—NCO P—OCONH—R—NCOP—OH→P—OCONH—R—NHCOO—P OCN—R—NCOH20→[HOOC—NH—R—NH—COOH]—NH2—R—NH2 CO2 nNH2—R—NH2 nOCN—R—NCO→OCN—[R—NHCONH]n—NCO n>1 —NH—COO—(氨基甲酸酯)将碎料分子有机地“桥接”起来,—NH—CO—NH—(脲键)与—NH—COO—,在加热条件(大于100℃)下可进一步与游离的—NCO发生三维交联固化反应,使粘接强度进一步提高。并且—NH—COO—和—NH—CO—NH—都可与原料中纤维素等大分子形成氢键,使得原料大分子间相互缔合、缠绕更加牢固。它显示出传统三大胶种难以比拟的特点;高的粘接强度,短的热压时间,优异的耐水性、防潮性和耐侯性,低的用量,并彻底消除了甲醛排放的污染。但该胶并未获得广泛的商业接受,主要原因: (1)价格问题假设人造板异氰酸酯用胶量为4%,产品耗胶量为30kg/m3,单位价格以12元/kg计算,则产品胶成本为360元/m3;若用UF胶粘剂,用胶量为10%,产品耗胶量为150kg/m3,单位价格以1.5元/kg计,产品胶成本为225元/m3,二者相差甚远。 (2)对压板粘附问题甲醛基胶粘剂通常不用脱膜剂,而异氰酸酯胶粘剂由于优良的粘接性能,热压时造成胶合板与台板粘合,因此,必须通过内或外脱膜剂的使用来解决这一问题,这也增加了产品的成本。 2人造板用异氰酸酯胶粘剂的研究进展 为解决上述问题,国内外科技工作者进行了卓有成效的研究,其方法主要有: 2.1 水乳化异氰酸酯法

异氰酸酯的其它反应

异氰酸酯的其它反应 2.1.9.1 异氰酸酯与羧酸的反应 异氰酸酯与羧酸反应,先生成热稳定性差的羧酸酐,然后分解,生成酰胺和二氧化碳(如下式)。COOH与NCO的反应活性比OH低得多。 这类反应比较少见,不过在含-COOH的聚酯体系或含侧羧基的离聚体体系,过量的异氰酸酯可与羧基反应。 芳香族异氰酸酯与羧酸反应,主要生成酸酐、脲和二氧化碳: 2ArNCO+2R-COOH→ArNHCONHAr+RCOOCOR+CO2 2.1.9.2 异氰酸酯与环氧树脂的反应 异氰酸酯与环氧基团在胺类催化剂的存在下生成含噁唑烷酮(oxazolidone)环的化合物(见下式)。噁唑烷酮环具有较高的耐热性,含噁唑烷酮基的聚合物具有较高的耐热性。 二异氰酸酯与二环氧化合物在催化剂作用下可竹成聚噁唑烷酮;含羟基的环氧树脂。如低环氧值的双酚A环氧树脂与二异氰酸酯(含端NCO预聚体)生成聚氨酯-噁唑烷酮;在过量多异氰酸酯、环氧树脂及三聚催化剂的存在下,可生成聚氨酯-噁唑烷酮-异氰脲酸酯聚合物,这些反应可用于制造耐高温硬质聚氨酯。 2.1.9.3 异氰酸酯与羧酸酐的反应 异氰酸酯基与酸酐反应,生成具有较高耐热性的酰亚胺环,二异氰酸酯能与二羧酐反应生成耐热性高的聚酰亚胺。酰亚胺基的耐热性与异氰脲酸酯相当: 异氰酸酯还可以与许多化合物反应,例如:与氰酸反应可生成亚氨乙内酰脲,继而再与异氰酸酯反应制得聚乙内酰脲:异氰酸酯与氨基酸或与其有关酯反应可合成出乙内酰脲。若再与异氰酸酯反应,可制得聚乙内酰脲;与氨反应生成单取

代脲,并可继续反应;与肼(联氨)反应生成二脲(见下式);还可与硫醇、卤化氢等反应;等等。 RNCO+NH3→RNHCONH2 RNCO+RNHCONH2→RNHCONHCONHR RNCO+NH2-NH2→RNHCONHNHCONHR RNCO+R′SH→RNHCOSR′

水性聚氨酯发展概况

水性聚氨酯发展概况 水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂,有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯。依其外观和粒径,将水性聚氨酯分为三类:聚氨酯水溶液(粒径< 0.001um,外观透明)、聚氨酯分散液(粒径0.001-0.1 um,外观半透明)、聚氨酯乳液(粒径>0. 1 ,外观白浊)。但习惯上后两类在有关文献资料中又统称为聚氨酯乳液或聚氨酯分散液,区分并不严格。实际应用中,水性聚氨酯以聚氨酯乳液或分散液居多,水溶液少。由于聚氨酯类胶粘剂具有软硬度等性能可调节性好以及耐低温、柔韧性好、粘接强度大等优点,用途越来越广。目前聚氨酯胶粘剂以溶剂型为主。有机溶剂易燃易爆、易挥发、气味大、使用时造成空气污染,具有或多或少的毒性。近10多年来,保护地球环境舆论压力与日俱增,一些发达国家制订了消防法规及溶剂法规,这些因素促使世界各国聚氨酯材料研究人员花费相当大的精力进行水性聚氨酯胶粘剂的开发。水性聚氨酯以水为基本介质,具有不燃、气味小、不污染环境、节能、操作加工方便等优点,已受到人们的重视。聚氨酯从30年代开始发展,而在50年代就有少量水性聚氨酯的研究,如1953年Du Pont公司的研究人员将端异氰酸酯基团聚氨酯预聚体的甲苯溶液分散于水,用二元胺扩链,合成了聚氨酯乳液。当时,聚氨酯材料科学刚刚起步,水性聚氨酯还未受到重视,到了六、七十年代,对水性聚氨酯的研究开发才开始迅速发展,1967年首次出现于美国市场,1972年已能大批量生产。7 0-80年代,美、德、日等国的一些水性聚氨酯产品已从试制阶段发展为实际生产和应用,一些公司有多种牌号的水性聚氨酯产品供应,如德国Bayer公司的磺酸型阴离子聚氨酯乳液ImPranil和Dispercoll KA等系列、Hoechst公司的Acrym系列、美国Wyandotte化学公司的X及E等系列,日本大日本油墨公司的Hydran HW及AP系列、日本公司的聚氨酯乳液C VC36及水性乙烯基聚氨酯胶粘剂CU系列、日本光洋产业公司的水性乙烯基聚氨酯胶粘剂KR系列等等。在水性类胶粘剂中,我国目前仍以聚丙烯酸酯类乳液胶、聚乙烯醋酸乙烯类乳液胶、水性三醛树脂等胶粘剂为主。有柔韧性好等特点,有较大的发展前途。水性聚氨酯的分类由于聚氨酯原料和配方的多样性,水性聚氨酯开发40年左右的时间,人们已研究出许多种制备方法和制备配方。水性聚氨酯品种繁多,可以按多种方法分类。1.以外观分水性聚氨酯可分为聚氨酯乳液、聚氨酯分散液、聚氨酯水溶液。实际应用最多的是聚氨酯乳液及分散液,本书中统称为水性聚氨酯或聚氨酯乳液,其外观分类如表5所示。表5 水性聚氨酯形态分类 -----------------------------------------------------名称水溶液分散液乳液状态溶解—胶体分散分散外观透 明半透明乳白白浊粒径,um <0.001 100-1000 0.001-0.1分子量数千-20万>0.1 >5000------------------------------------------------------ 2.按使用形式分水性聚氨酯胶粘剂按使用形式可分为单组分及双组分两类。可直接使用,或无需交

异氰酸酯的特征

异氰酸酯的特征 一 异氰酸酯的结构特征 异氰酸酯:分子中含有异氰酸酯基(-NCO ,即-N==C==O )的化合物,其化学活性适中。其化学活性主要表现在其特征基团-NCO 上,该基团具有重叠双健排列的高度不饱和健结构(-N=C=O),它能和各种含活泼氢的化合物进行反应,化学性质极其活泼。 共振理论:Baker 提出异氰酸酯基团的共振理论,由于异氰酸酯基的共振作用,使其电荷分布不均匀,产生亲核中心及亲电中心,共振结构电荷分布如下 在该特征基团中:根据异氰酸酯基团中N 、C 、O 元素的电负性排序:O(3.5)>N(3.0)>C(2.5),三者获得电子的能力是:O >N >C 。另外:—C=O 键键能为733kJ/mol,-C=N-键键能为553kJ/mol,所以碳氧键比碳氮键稳定。N ,C ,O 原子的电负性顺序为O>N>C 。 因此,由于诱导效应在-N=C=O 基团中氧原子电子云密度最高,氮原子次之,碳原子最低。 氧原子(O )电负性最大,是亲核中心,可吸引含活性氢化合物分子上的氢原子而生成羟基,但不饱和碳原子上的羟基不稳定,重排成为氨基甲酸酯(若反应物为醇)成脲(若反应物为胺)。 碳原子(C )电子云密度最低,呈较强的正电性,为亲电中心,易受到亲核试剂的进攻。 当异氰酸酯与醇、酚、胺等含活性氢的亲核试剂反应时,-N=C=O 基团中的氧原子接受氢原子形成羟基,但不饱和碳原子上的羟基不稳定,经过分子内重排生成氨基甲酸酯基。 异氰酸酯与活泼氢化合物的反应,就是由于活泼氢化合物分子中的亲核中心。进攻NCO 基的碳原子而引起的。反应机理如下: R N R C 1[R R 1 H O H R 1 d d d

聚氨酯油漆性能及发展前景

聚氨酯油漆性能及发展前景 聚氨酯油漆即聚氨基甲酸酯漆。它漆膜强韧、光泽丰满、附着力强、耐水耐磨、具有耐腐蚀性。被广泛用于高级木器家具,也可用于金属表面。其缺点主要有遇潮起泡,漆膜粉化等问题,与聚脂漆一样,它同样存在着变黄的问题。 聚氨酯油漆是目前较常见的一类涂料,可以分为双组分聚氨酯涂料和单组分聚氨酯涂料。双组分聚氨酯涂料一般是由异氰酸酯预聚物(也叫低分子氨基甲酸酯聚合物)和含羟基树脂两部分组成,通常称为固化剂组分和主剂组分。 这一类涂料的品种很多,应用范围也很广,根据含羟基组分的不同可分为丙烯酸聚氨酯、醇酸聚氨酯、聚酯聚氨酯、聚醚聚氨酯、环氧聚氨酯等品种。 一般都具有良好的机械性能,较高的固体含量,各方面的性能都比较好。是目前很有发展前途的一类涂料品种。主要应用方向有木器涂料、汽车修补涂料、防腐涂料、地坪涂料、电子涂料、特种涂料等。缺点是施工工序复杂,对施工环境要求很高,漆膜容易产生弊病。单组分聚氨酯涂料主要有氨酯油涂料、潮气固化聚氨酯涂料、封闭型聚氨酯涂料等品种。应用面不如双组分涂料广,主要用于地板涂料、防腐涂料、预卷材涂料等,其总体性能不如双组分涂料全面。 性质:以聚氨酯树脂为主要成膜物质的涂料。常按其组成和成膜机理而将其分为五大类:聚氨酯改性油涂料、潮气固化聚氨酯涂料、封闭型聚氨酯涂料、催化固化型聚氨酯涂料和羟基固化型聚氨酯涂料。此类漆漆膜光亮丰满、坚硬耐磨、耐油、耐酸、耐化学品和工业废气,电性能好,能和多种树脂混溶,可在广泛范围内调整配方,以满足不同需要。广泛应用于木器、汽车、飞机、机械、电器、仪器仪表、塑料、皮革、纸张、织物、石油化工等各个方面。 聚氨酯涂料是目前较常见的一类涂料,大致可以分为双组分聚氨酯涂料和单组分聚氨酯涂料。双组分聚氨酯涂料一般是由异氰酸酯预聚物(也叫低分子氨基甲酸酯聚合物)和含羟基树脂两部分组成,通常称为固化剂组分和主剂组分。全球涂料网了解到这一类涂料的品种很多,应用范围也很广,根据含羟基组分的不同可分为丙烯酸聚氨酯、醇酸聚氨酯、聚酯聚氨酯、聚醚聚氨酯、环氧聚氨酯等品种,是目前很有发展前途的一类涂料品种。 我国在聚氨酯油漆方面的研究与开发工作是从1956年开始的,但是到1965年才有小批量的商品涂料生产。1971年首次制成1,6-己二异氰酸酯缩二脲,开辟了脂肪族聚氨酯油漆的研究和应用。20世纪80年代实行改革开放后,引进异氰酸酯及聚醚多元醇的生产线,才解决了原料供应的问题。 应用领域和市场前景 聚氨酯涂料主要应用方向有木器涂料、汽车修补涂料、防腐涂料、地坪漆、电子涂料、特种涂料、聚氨酯防水涂料等。缺点是施工工序复杂,对施工环境要求很高,漆膜容易产生弊病。单组分聚氨酯涂料主要有氨酯油涂料、潮气固化聚氨酯涂料、封闭型聚氨酯涂料等品种。主要用于地板涂料、防腐涂料、预卷材涂料等,其总体性能不如双组分涂料全面。聚氨酯涂料应用广泛,除上述用途外,丙烯酸聚氨酯可用作磁记录涂料,聚酯聚氨酯作电绝缘涂料,透明弹性聚氨酯作防雾涂料等,用于汽车行业、航空、海洋、建筑、塑料、机电、石化等各个领域。 聚氨酯油漆的清漆品种称为聚氨酯清漆。 中国新型涂料网

PU橡胶的发展及其应用

PU橡胶的发展及其应用 PU橡胶简称PU橡胶,是一种分子链中含有较多氨基甲酸酯(-NHCOO- )特性基团的弹性聚合物,它是以平均相对分子质量600~4000的长链多元醇、扩链剂和多异氰酸酯为原料制得的。由于共聚物分子结构中存在硬、软两种嵌段结构,同时它在化学结构上没有或很少有化学交联,分子链基本上是线性的,但存在一定量的物理交联,所以PU橡胶是一种既有橡胶弹性又有塑料热塑性的高分子材料。PU 橡胶最大特点是在硬度范围内保持较高的弹性,伸长率可达400%~1000%,耐磨性约为天然橡胶的3~10倍,具有良好的机械强度、耐油性和耐臭氧性,低温性能也很出色。其应用面很广,因此一经问世便迅速发展。 一,PU橡胶的出现 1849年德国化学家沃尔茨用烷基硫酸盐与氰酸钾进行复分解反应合成了烷基异氰酸酯。接着化学家霍夫曼在1850年成功合成了苯异氰酸酯,后来,亨切尔等人在1884年合成了异氰酸酯。 在当时异氰酸酯并没有找到什么利用价值,也没有运用于高分子化学合成。德国化学家拜耳和实验室的同事进行了反复研究,发现异氰酸酯可以合成聚氨酯和聚脲化合物,可是实用性依然不大。1933年,美国杜邦公司的卡罗瑟斯发明了”尼龙”,刺激了德国。当时德国想尽快发明一种能与其抗衡的产品。这也加速了那时的拜耳对聚氨酯的研发工作,他们发现链状的聚氨酯具有热塑性、可纺性,能制成塑料和纤维。当时,商品名为Agamid U 和 Perl on U。

二,PU橡胶的发展及前景 根据加工方式的不同,PU橡胶可分为浇注型、混炼型和热塑型三种,我国PU橡胶研发始于20世纪60年代初。70年代中期,混炼型PU橡胶实现了工业化生产,浇注型和热塑型PU橡胶也相继开发成功。80年代后,随着较先进的反应注射成型生产线和双螺杆塑胶生产线陆续引进,国内PU橡胶生产迅速发展,制品品种、生产能力及产量都成倍增长,技术水平明显提高。 三种加工方式之中,热塑性聚氨酯(TPU)发展最快,占聚氨酯总量的24%左右;浇注型聚氨酯(CPU)品种最多,产量最大,是一种应用范围很广的液体橡胶,约占65%,其物理机械性能十分优良,加工工艺简便,制品硬度可通过配方调整在较宽的范围内任意改变;混炼型聚氨酯(MPU)的产量最小,仅占总量的10%左右,其最大优点是能采用通用橡胶机械加工成型,添加炭黑等填充剂也很容易,但从总体上看,其物理机械性能不如 CPU和TPU,硬度调节范围也较窄。 由于PU橡胶具有非常良好的综合性能,因此应用领域十分广泛,几乎遍及工业、农业、医疗、国防等各个方面:在矿山、冶金等行业的应用,如筛板、摇床等;在机械工业方面的应用,如胶辊、胶带、密封件等;在汽车工业方面的应用,如轮胎、密封圈等;在轻工业方面的应用如聚氨酯鞋底料、聚氨酯合成革、聚氨酯纤维;在建筑工业方面的应用,如防水材、铺装材、灌封材等。 三、PU橡胶的应用

多异氰酸酯胶粘剂概述

多异氰酸酯胶粘剂概述 多异氰酸酯胶粘剂是由多异氰酸酯单体或其低分子衍生物组成的胶粘剂,它是聚氨酯胶粘剂中的早期产品。第二次世界大战期间,德国人用三苯基甲烷三异氰酸酯(Bayer公司产品牌号:DesmodurR)作胶粘剂,成功地将橡胶与金属粘接起来,并应用于坦克车的履带、救生筏、充气防护衣等,从而开始了多异氰酸酯胶粘剂的生产与应用。 多异氰酸酯胶粘剂属于反应型胶粘剂,粘接强度高,特别适合于金属与橡胶、纤维等的粘接,这种胶粘剂主要有下述几点特性。 (1) 具有较高的反应活性,能与许多表面含有活泼氢原子的被粘材料,如金属、橡胶、纤维、木材、皮革、塑料等产生共价键,且固化后含氨基甲酸酯、脲键以及极性较强的键和基团,易和基材之间产生次价键,这些化学粘合力和物理粘合力共同作用的结果是使被粘基材之间产生较高的粘接强度。 (2) 通常的多异氰酸酯化合物分子量小,能够溶于大多数有机溶剂,因此易于扩散到基材表面,还易渗入一些多孔性的被粘基材中,从而进一步提高胶粘性能。 (3) 该类胶粘剂可常温固化,也可加热固化,易于产生交联结构,耐热、耐溶剂性能好。 (4) 含有较多的游离异氰酸酯基团,对潮气敏感,有毒性,通常含有机溶剂,贮存时要注意防水防潮,操作时须注意通风。 (5) 由于多异氰酸酯化合物分子量小,NCO基团含量高,固化后的胶层硬度高,有脆性。因此常用橡胶溶液、聚醚、聚酯等低聚物进行改性或用作多种胶粘剂的交联固化剂。 工业上生产的二异氰酸酯,如MDI、TDI、XDI、二甲氧基联苯二异氰酸酯(DADI)、己酸甲酯-2,6-二异氰酸酯(LDI)等都可以直接作胶粘剂使用,用于金属与橡胶的粘接。目前应用最多的多异氰酸酯胶粘剂品种是三苯基甲烷三异氰酸酯、硫代磷酸三(4-异氰酸酯基苯酯)、三羟甲基丙烷-TDI的加成物。 四异氰酸酯胶粘剂 最常用的四异氰酸酯胶粘剂是二甲基三苯基甲烷四异氰酸酯,它是由甲苯二胺甲醛结合,生成二甲基三苯基甲烷四胺,经光气化、活性炭脱色处理、抽滤浓缩或用溶剂配制而成。 二甲基三苯基甲烷四异氰酸酯胶粘剂产品牌号为“7900”胶,有固体粉末型和氯苯溶液型,其胶粘剂产品技术指标参见表。 二甲基三苯基甲烷四异氰酸酯胶粘剂是一种性能优良的多异氰酸酯胶粘剂,广泛适用于橡胶、皮革、塑料,金属、织物的粘接,其主要用途是作氯丁胶粘剂和聚氨酯胶粘剂的交联剂,用于制鞋等行业。“7900”胶粘剂粘接强度比列呵纳高,而且胶层颜色浅,不会产生变色现象,性能可与Desmodur RF媲美。 项目\型号粉末型液体型外观 固体含量,% NCO含量,%(最小) 细度(通过150目,最小) 储存期,月浅黄或棕黄色 90 34.6 95 6 浅棕至棕色 20±1 7.7 - 18

催化剂对异氰酸酯反应活性的影响

催化剂对异氰酸酯反应活性的影响 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有... 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有机金属化合物。 聚氨酯合成中所采用的催化剂,都是既能催化与羟基的反应,也能催化与水的反应,但所有催化剂对这二个反应的催化活性各不相同。一般,叔胺类催化剂对异氰酸酯与水的反应(即通常所说的“发泡反应”)的催化效率大于对异氰酸酯与羟基反应(即所谓所的“凝胶反应”)的催化效率,有机金属类催化剂对凝胶反应的催化效率更显著,即各催化剂都有其选择性。 2.2.1.1 异氰酸酯反应的催化机理 一般认为,异氰酸酯与羟基化合物反应的催化机理是,异氰酸酯或羟基化合物先与催化剂生成不稳定的络合物,然后发生反应,生成聚氨酯。但这种络合催化反应理论也有几种说法,至今还不是十分清楚。 一种公认的催化机理是基于异氰酸酯受亲核的催化剂进攻,生成中间络合物,再与羟基化合物反应。如二异氰酸酯与二元醇的反应机理如下:

另外,有人认为金属有机化合物的催化机理与叔胺类不同,是形成一种三元活化络合物。有人提出羟基化合物与催化剂形成四节环活化络合物,再与异氰酸酯反应生成氨基甲酸酯。 2.2.1.2 叔胺催化剂酸碱性对反应活性的影响 在聚氨酯制备反应中,一般很少用酸类催化剂,酸性催化剂(如苯甲酰氯、无机及有机酸)对氨基甲酸酯及脲基甲酸酯生成反应有较低的催化作用,但重要的是它们能抑制缩二脲的生成反应,因而抑制交联反应。若聚醚中尚有微量碱(开环聚合用的KOH)未被除去,则与二异氰酸酯反应时,碱金属化合物会催化交联副反应,发生凝胶。因而可加入酸中和,并且若酸稍过量,则抑制交联反应,可使预体能长期储存。 叔胺类催化剂对异氰酸酯与羟基化合物反应的影响,除了其碱性程度外,还有位阻效应等因素。一般来说,碱性大、位阻小,则催化能力强。叔胺对水与异氰酸酯反应的催化活性的影响比羟基与异氰酸酯反应的催化活性大(见图2-2),故叔胺催化剂一般用于聚氨酯泡沫制备。在所有叔胺类催化剂中,三亚乙基二胺是一种结构特殊的催化剂,由于它是杂环化合物,叔胺N原子上没有位阻,所以它对发泡反应及凝胶反应都具有较强的催化性能,是聚氨酯泡沫塑料常用的催化剂之一,也可用于聚氨酯胶粘剂、弹性体等的制备。据估计,在水/醇混合体系中,它对羟基催化能力占80%,对水占20%,对羟基与异氰酸酯反应的催化活性比水大,具有类似有机金属化合物的催化性能,不仅广泛用于泡沫,而且也用于聚氨酯弹性体、胶粘剂、涂料。 不同的异氰酸酯对各种反应有不同的催化活性。有人研究了两种催化剂对异氰酸酯-端伯羟基聚醚、异氰酸酯-端仲羟基聚醚及异氰酸酯-水反应速率常数及活化能进行了比较,实验结果见表2-7。表中K1、K2及K3分别为TDI与普通PPG聚醚(端基为仲羟基)、EO封端聚醚(伯羟基)和水的反应速率常数[单位L/(g·mol·h)]。 表2-7 氨基甲酸酯及脲生成反应的速率常数K及活化能E

聚氨酯化学反应

异氰酸酯的化学反应 异氰酸酯与OH的反应 RNCO + R′OH →RNHCOOR′ 这个反应属于二级反应,反应速度随着羟基含量而变化,不随异氰酸酯浓度而改变。 异氰酸酯与羟基的摩尔比,一般称异氰酸酯指数,R值。 R值>1,端NCO封端的聚氨酯预聚体。对二异氰酸酯和二元醇而言,R 值大于2,体系中含有未反应的游离异氰酸酯,此时称之为半预聚体或改性异氰酸酯。 例:各类弹性体预聚体、跑道铺地胶、聚氨酯密封胶等 R值<1,端OH封端的预聚体。大多聚氨酯胶黏剂的主剂及聚氨酯弹性体生胶。 例:软包装复合胶、聚氨酯油墨连结料、PU革的浆料、磁带胶、鞋胶等 R值=1,理论上生成分子量无穷大的高聚物,实际上由于水分、杂质等影响不可能。R值越靠近1,分子量越大,体系粘度越大。 异氰酸酯与水的反应 2RNCO + H2O →RNHCONHR + CO2↑ 1个水分子与2个NCO基团反应得到取代脲,水可以看做一种扩链剂或固化剂。这点对聚氨酯的生产及储存具有重要的指导意义。原材料和产品都需要严格控制水分含量。 反应放出二氧化碳气体,可用在聚氨酯泡沫的生产中,还有湿固化的聚氨酯胶黏剂和涂料。 异氰酸酯与胺基的反应 RNCO + R′NH2→RNHCONHR′ RNCO + R′NHR〞→RNHCONR′R〞 脂肪族伯胺反应速度太快,一般很少用。脂肪族仲胺和芳香族伯胺反应速度稍慢,常用来固化NCO封端的预聚体。 MOCA、E-300、unilink4200等 不同活性氢与异氰酸酯的反应活性

理论上,异氰酸酯可以和所有可以提供活性氢的化合物反应,属亲核反应。在含活性氢的化合物中,亲核中心的电子云密度越大,其电负性越强,它与异氰酸酯反应活性越高,反应速度越快。

相关主题
文本预览
相关文档 最新文档