当前位置:文档之家› 细胞凋亡的信号通路

细胞凋亡的信号通路

细胞凋亡的信号通路
细胞凋亡的信号通路

山东农业大学学报(自然科学版),2015,46(4):514-518VOL.46N0.42015 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2015.04.007

细胞凋亡的信号通路

谢昆,李兴权

红河学院生命科学与技术学院,云南蒙自661199

摘要:细胞凋亡是细胞程序性死亡的一种方式,与自噬和坏死有明显的区别。细胞凋亡的信号途径比较复杂,在凋亡诱导因子的刺激下经历不同的信号途径。本文就细胞凋亡的三条信号通路——线粒体途径、内质网途径和死亡受体途径做一综述,以便为人们进一步了解细胞凋亡发生的机制,从而对癌症及其他一些相关疾病的治疗奠定基础。关键词:细胞凋亡;信号通路;线粒体途径;内质网途径;死亡受体途径

中图法分类号:R329.2+8文献标识码:A文章编号:1000-2324(2015)04-0514-05

The Signal Pathway of Apoptosis

XIE Kun,LI Xing-quan

Department of Life Science and Technology/Honghe University,Mengzi661199,China

Abstract:Apoptosis is a process of programmed cell death which distinguishes from autophagy and necrosis.The signal pathways of apoptosis are complex and different under apoptosis induced factor stimulating.Three kinds of signal pathways of apoptosis including Mitochondrial pathway,Endoplasmic Reticulum pathway and Death Receptor pathway were summarized in this review in order to make people further comprehend the mechanism of apoptosis,so that it should make a basis for us all to treat cancer and other related diseases.

Keywords:Apoptosis;signal pathway;Mitochondrial pathway;Endoplasmic Reticulum pathway;Death Receptor pathway

细胞凋亡是细胞程序性死亡(Program cell death,PCD)中特有的一种细胞死亡方式,是细胞在一系列内源性基因调控下发生的自然或生理性死亡过程。Kerr等1972年最早提出了凋亡(apoptosis)和坏死(necrosis)的概念[1],随后Paweletz等对其进行了详细的描述[2,3]。在形态学上,凋亡表现为核浓缩、细胞质密度增高、染色质凝聚、核膜破裂、核内DNA断裂、细胞集聚成团、形成凋亡小体(Apoptosome)等特征,这些凋亡小体最终被巨噬细胞清除,但不会引起周围细胞的炎症反应,另外,凋亡发生在单个细胞之间[4,5]。坏死,通常是由相邻的多个细胞之间发生细胞肿胀,细胞核溶解,细胞膜破裂,细胞质流入到细胞间质中,并伴发一系列的炎症反应,从而与凋亡表现为本质性区别[6,7]。

目前认为,凋亡发生的途径分为三种。第一种是线粒体途径,也称为内源性途径,该途径包括两类,第一类需要通过激活Caspase通路促进凋亡,在一序列凋亡诱导因素刺激下,线粒体中的Cyt C(细胞色素C)释放至细胞质中,从而与Apaf-1(Apoptosis protease activating factor1,凋亡蛋白酶活化因子1)结合形成多聚体,形成的多聚体再进一步与凋亡起始分子Caspase-9结合形成凋亡小体,凋亡小体激活Caspase-9,从而激活下游的凋亡执行分子Caspase-3,Caspase-6和Caspase-7等诱导细胞凋亡的级联反应;第二类是不依赖于Caspase途径的,通过线粒体释放AIF(Apoptosis induce factor,凋亡诱导因子)直接诱导凋亡的发生。但是在细胞内,直接检测AIF比较困难,而且AIF的变化不一定能代表凋亡发生的程度,因为引起凋亡发生的途径不一。第二种是死亡受体途径(也称为外源性途径),经由死亡受体(如TNF,Fas等)与FADD的结合而激活Caspase-8和caspase-10,进一步激活凋亡执行者caspase-3,6,7,从而促进凋亡的发生;第三条途径是内质网途径,内质网应激(蛋白质错误折叠或未折叠、内质网胁迫)会导致细胞内钙超载或钙离子稳态失衡一方面激活caspase-12,caspase-12进一步激活caspase-9而促进凋亡的发生,另一方面诱导Bcl-2(B细胞淋巴瘤蛋白)家族中促凋亡蛋白Bax和Bak的激活诱导凋亡[8]。

1凋亡的线粒体途径

在哺乳动物中,由于凋亡的激活需要线粒体中细胞色素C(CytC)的释放,因此CytC由线粒体膜间隙释放到细胞质中的多少可以作为判断凋亡发生强弱的指标之一。有研究认为,CytC的释放是通过Bcl-2家族调控线粒体膜透化(Mitochondrial outer membrane permeabilization,MOMP),科学

收稿日期:2013-03-07修回日期:2014-09-11

基金项目:云南省科技厅应用基础研究面上项目(2010ZC151)

作者简介:谢昆(1975-),男,云南富民人,博士研究生,研究方向为动物生物化学与分子生物学.E-mail:xk_biology2@https://www.doczj.com/doc/232152056.html,

数字优先出版:2015-06-03https://www.doczj.com/doc/232152056.html,

第4期谢昆等:细胞凋亡的信号通路·515·

家们提出了两个主要的模型来揭示Bcl-2蛋白对MOMP的调控[9],第一种模型认为Bcl-2蛋白通过调节线粒体膜上线粒体渗透性转换孔(Permeability Transition Pore,PTP)的开闭来调控MOMP,从而调节CytC由线粒体膜间隙到细胞质的释放;另外一种模型认为在Bcl-2家族成员中,一些促凋亡蛋白如Bax、Bad等能促进线粒体外膜通道的打开,从而引起线粒体中CytC的释放。最近科学家又提出了第三种模型,认为在凋亡发生过程中,一些相关蛋白会引起线粒体形状和活性发生改变,从而引起CytC 的释放。但是无论是哪一种模型,对Bcl-2家族成员中一些抗凋亡蛋白如Bcl-X L,Bcl-w如何抑制凋亡的发生还未研究清楚[10-12]。在细胞受到损伤或者胁迫情况下,将诱导线粒体介导的凋亡,线粒体在凋亡中的作用包括:释放半胱氨酸天冬氨酸蛋白酶(cysteinylasparate specific proteinase,Caspase)激活因子(如CytC)、Bcl-2家族成员中促凋亡蛋白的激活和抗凋亡蛋白的抑制、膜电位的改变等等[13-15]。MOMP除了可以释放CytC之外,还可以诱导Smac(the second mitochondrial derived activator of caspase)的释放,也称为低等电点(PI)的凋亡结合蛋白的直接抑制剂[16],Smac/Diablo在细胞凋亡时随CytC一起释放到胞浆,通过与IAPs(inhibitor of apoptosis proteins)、XIAP(X连锁凋亡抑制蛋白,X-linked inhibitor of apoptosis protein)等相互作用,直接抑制下游caspase并可多途径调节细胞凋亡,从而成为线粒体途径的一部分[17]。因此它本身并不能诱发凋亡,只是解除凋亡抑制的一种方式。研究发现Smac/Diablo比细胞色素C大,并且只有成熟的Smac/Diablo才具有生物活性,因此在其释放前必须有个加工过程。

在线粒体途径中,Bcl-2家族蛋白对凋亡的调控异常重要。在哺乳动物中,Bcl-2家族包括促凋亡蛋白和抗凋亡蛋白两类。促凋亡蛋白包括Bax、Bak、Bok、Bad、Bid、Bim、Bmf、Bik、Hrk、Noxa、Puma等,抗凋亡蛋白包括Bcl-2、Bcl-X L、Bcl-w、Mcl-1、Bcl-B等,所有的Bcl-2蛋白都包括1~4个BH区(Bcl-2homology,Bcl-2同源区),正常情况下抗凋亡蛋白发挥作用可抑制凋亡的发生,当细胞受到损伤或胁迫时,抗凋亡蛋白功能受到抑制,而促凋亡蛋白发挥作用,从而引起细胞凋亡[18]。2死亡受体途径

死亡受体途径即为诱导凋亡的外源性途径,死亡受体家族包括8种,分别是肿瘤坏死因子受体1(Tumor necrosis factor receptor1,TNFR1),CD95(也称为APO-1或Fas)、死亡受体3(Death receptor 3,DR3)、死亡受体4(Death receptor4,DR4也叫TRAILR1)、死亡受体5(Death receptor5,DR5,也叫TRAILR2)、死亡受体6(Death receptor6,DR6)、外异蛋白A受体(Ectodysplasin A receptor,EDAR)和神经生长因子受体(Nerve growth factor receptor,NGFR)[19,20],它们共同的特征是都具有相似的、富含半胱氨酸的细胞外结构域,并且都具备一个80KDa大小的胞内死亡区域(Death domain,DD),DD一般使死亡受体与胞内凋亡机制相连。我们以Fas为例介绍其信号传导通路,FasL(凋亡相关因子配体)和Fas结合后三聚化,激活的受体与FADD(具有死亡功能区的Fas相关蛋白)结合,形成死亡诱导信号复合体(Death inducing signalling complex,DISC),然后募集凋亡起始分子Caspase-8或Caspase-10,从而级联激活下游Caspase-3,6,7,进而诱导凋亡的发生[21]。在此途径中,FLIP(FLICE 抑制蛋白)会抑制Caspase-8的激活[22]。另外,Caspase-8可催化Bid的切割(Bcl-2家族的促凋亡分子),正常情况下Bid存在于胞液中会诱导自噬,而在Fas或TNFR1诱导情况下,激活的Caspase-8和Caspase -10可切割Bid,使Bid抑制凋亡部位断裂(N-端1-60位),暴露出来的C端Bid(tBid),tBid可激活其自身的凋亡活性定位至线粒体外膜,在相关的其他Bcl-2家族成员的参与下可诱导线粒体外膜透化(MOMP),从而促进CytC的释放[8,22,23]。

3内质网途径

内质网是细胞内重要的细胞器,参与蛋白质翻译后的修饰、折叠和寡聚化,还参与脂质代谢、类固醇激素的合成和钙的储存、信号转导,未折叠或错误折叠蛋白的增多、胞内钙的失衡引起的内质网的应激反应,以及由过强的内质网应激反应诱导的细胞凋亡,这是与死亡受体和线粒体介导的细胞凋亡不同的一条途径[24]。内质网与细胞凋亡相联系表现在两个方面:一是内质网对Ca2+的调控,二是内质网上Caspase的激活。Ca2+是细胞内重要的信号转导因子,对维持细胞内环境稳定、电子传递、信号传递起重要作用。正常情况下细胞内保持稳定的Ca2+浓度,当凋亡发生时细胞内Ca2+浓度升高,一方面Ca2+激活一系列的钙依赖性蛋白酶(如钙蛋白酶Calpains),钙蛋白酶在细胞内能切割一系

·516·山东农业大学学报(自然科学版)第46卷

列自噬相关蛋白(ATG)引发凋亡,如Atg5,Beclin-1等[25,26];另一方面Ca2+可以作用于线粒体,使线粒体膜孔道PTP通透性发生改变,从而促进凋亡。内质网上的Bcl-2家族蛋白能调节内质网中Ca2+浓度,使内质网和细胞质中的Ca2+浓度维持平衡,从而抑制凋亡的发生。

当内质网受到胁迫(如内质网中Ca2+稳态受破坏或内质网内错误折叠的蛋白质积累)作用时,Bcl-2家族蛋白对凋亡的抑制减弱,可激活Caspase-12而参与由内质网途径引起的凋亡,而在线粒体途径或死亡受体途径中起作用的刺激因子则不能够引起Caspase-12的激活。随后新的实验证据表明Ca2+依赖性的钙蛋白酶(Calpain)以及胞质中的Caspase-7能够激活内质网上的caspase-12前体,激活后的Caspase-12可以转运到细胞质中与caspase-9介导的凋亡过程相结合,活化Caspase-3,完成凋亡反应[24]。而Ca2+的释放可参与线粒体途径,是连接内质网途径和线粒体途径在细胞凋亡中的桥梁,内质网通过其表面的IP3R或RyP释放的Ca2+的进入细胞质,细胞质中高浓度的Ca2+促使线粒体膜上Bax激活[27]。Bax是一种促凋亡蛋白,属于Bcl-2家族,常以二聚体或多聚体的形式存在,长期以来人们都认为Bax蛋白激活是导致凋亡的一个重要事件,但直到现在人们还不清楚这一激活过程发生的机制。线粒体内蛋白通过PTP穿孔是凋亡的一个关键步骤。一旦发生这种情况,凋亡就会发生,细胞就会死亡,Bax是导致线粒体膜穿孔的原因,Czabotar等2013年最新发现了Bax在Ca2+刺激下从非活性形式向活性形式的转变过程,他们利用加速器生成的强大X射线光束获得了Bax 的晶体结构,当Ca2+浓度升高时,利用与Bcl-2家族BH3区相同的BH3短肽与Bax结合,从而激活了Bax,就像钥匙开启挂锁一样,这些短肽打开了Bax分子,这种开启的Bax可以与其他的Bax分子结合,随后形成较大的Bax复合物,破坏细胞中的线粒体膜,形成PTP孔,当PTP孔打开以后,线粒体中的CytC释放至细胞质中引起凋亡[28]。

4昆虫细胞中凋亡信号通路的研究进展

在昆虫中对凋亡的信号通路研究较少,大多以果蝇作为模式生物来进行凋亡研究,而在鳞翅目昆虫中,人们对凋亡的研究仅仅集中在凋亡家族成员如昆虫Caspase家族或者是一些凋亡抑制蛋白的研究当中。Wei等证实,经氨基酸饥饿处理的斜纹夜蛾Sl-HP细胞,经杆状病毒处理能诱导凋亡,他们发现,经过上述处理细胞中Caspase-3活性升高,Cyt C由线粒体向细胞质释放[29]。Juliette等对鳞翅目昆虫的EST文库进行了分析,鉴定出了27个种类中共66个编码Caspase样蛋白的序列,进化树分析显示鳞翅目昆虫至少包括5种类型的Caspase,根据与果蝇的同源性分析,他们推断Lep-Caspase-5和Lep-Caspase-6是凋亡的起始分子,而Lep-Caspase-1,Lep-Caspase-2和Lep-Caspase-3为凋亡的执行分子并且它们的序列之间具有部分重叠,Lep-Caspase-4的功能未知。在家蚕(Bombyx mori.)中缺少Lep-Caspase-2蛋白,故Lep-Caspase-2可能是夜蛾科(Noctuidae)特有蛋白[30],它们与哺乳动物Caspase-3功能一致,都具有切割含DEVD序列底物的功能。在昆虫细胞的凋亡途径中,影响凋亡发生的蛋白主要包括两类:天冬氨酸特异性半胱氨酸蛋白酶Caspase类和与哺乳动物相似的Bcl-2家族类蛋白(图1)。在哺乳动物中,凋亡的起始分子是Caspase-2、Caspase-8、Caspase-9、Caspase-10,果蝇中与之对应的是Dredd、Dronc和Strica三种蛋白分子,在其它昆虫如家蚕、埃及伊蚊(Aedes egypti)中也有这些蛋白,他们同哺乳动物一样能激活下游的Caspase凋亡执行分子,在果蝇中Caspase凋亡执行分子是Drice、Dcp-1、Decay和Damm,他们与哺乳动物中Caspase-3、Caspase-6、Caspase-7同源,目前认为果蝇的Drice与哺乳动物中caspase-3同源性较高,Drice能被Dronc激活引发细胞凋亡[31]。在鳞翅目昆虫中,如草地夜蛾中Sf-Caspase-1和斜纹夜蛾中Sl-Caspase-1与哺乳动物Caspase-3和果蝇Drice同源,它们在N端都包括一段很短的prodomain,能切割含DEVD序列的底物,它们的活性能被P35(泛胱天肽酶抑制蛋白)和IAP(凋亡抑制剂)抑制,在家蚕中同样存在Bm-Caspase-1分子,但目前还没有关于其生物信息学方面的分析[30]。

在果蝇中Buffy和Debcl蛋白与哺乳动物Bcl-2家族成员中Bok蛋白高度同源,研究证实Debcl具有促凋亡功能,而Buffy既有促凋亡也有抗凋亡功能。正常情况下Buffy抑制Debcl蛋白的活性,从而抑制凋亡,但当细胞受到损伤或者胁迫时,Buffy解除对Debcl的抑制,启动Dronc的活性。Dronc与哺乳动物Caspase-9同源,在果蝇中Dronc作为启动凋亡的初级应答原件与凋亡蛋白酶活化因子1(Apoptosis protease activating factor1,Apaf-1)结合后进一步激活下游的Caspase凋亡执行分子

第4期

谢昆等:细胞凋亡的信号通路·517·(Effector caspases ),从而诱导凋亡[32-34]。在果蝇中还有一类叫RHG 蛋白的分子,包括Reaper 、Hid 和Grim 三种,研究证明在缺失了这三种蛋白的果蝇突变体在胚胎发育期就会出现死亡[35]。在正常细胞中,RHG 抑制凋亡抑制蛋白(Caspase inhibitor proteins ,DIAP1)活性,在凋亡因子刺激情况下,RHG 通过泛素化途径降解DIAP1,解除其对凋亡的抑制作用,从而触发凋亡的发生[36-40](图2)。5结语

细胞信号通路是一个异常复杂的网络,目前认为凋亡通路主要有死亡受体途径、线粒体途径和内质网途径三条,三条途径中除了线粒体途径中的AIF 途径,其它途径都可经过Caspase 的激活实现凋亡。另外,根据激活路径不同,凋亡途径又可分为外源性途径和内源性途径,外源性途径即死亡受体途径,内源性途径包括线粒体途径和内质网途径。在外源性途径中,当死亡受体和配体结合后

可以通过Caspase-8的活化进一步激活下游的Caspase-3或其他的Caspase 来诱导细胞凋亡,

也可以通过活化的Caspase-8激活Bcl-2家族中的Bid 进而通过线粒体途径诱导凋亡。

而在内源性途径中,Caspase-8的下游包含了Bcl-2家族的调节分子,如果抑制凋亡的分子作用增强,即使存在Caspase-8的活化,也不能继续激活下游的分子,Caspase-3当然不会有变化。在凋亡的三条通路中,细胞可能走其中一条通路,也可能两条,甚至三条,而这些通路的启动时间各不相同,各个通路间相互交叉又相互联系,例如在线粒体信号途径和死亡受体信号途径中,死亡受体途径中的Caspase-8可以作用于Bid ,切割Bid 后产生15KDa 的C 末端片段tBid ,tBid 可以从胞质中转移到线粒体上,促进细胞色素C 的释放[41]。

在昆虫凋亡通路的研究中,很少有证据表明昆虫也具有这三条通路,而且对这些凋亡通路中参与的蛋白也研究甚少,是否具有像哺乳动物一样的Caspase 家族和Bcl-2家族蛋白还值得进一步研究和证实。人们以果蝇为模式生物研究了在凋亡通路中起重要作用的一些蛋白如Dronc 、Drice 、Dark 、Buffy 、Debcl 、DIPA 等[5]。这些蛋白与哺乳动物中Caspase 家族和Bcl-2家族蛋白的功能相似,但是许多调控昆虫凋亡途径的蛋白还有待于我们进一步去证实。

总之,三个途径中有许多蛋白是控制凋亡发生的关键蛋白,这些关键蛋白又由许多相关蛋白调

控,还有参与其中的许多蛋白或者是信号传导通路还未研究清楚,

如内质网途径中Caspase-12是如何被激活的?Ca 2+信号是如何调节Bax 和Bak 活性的?是否还有其它蛋白参与到Ca 2+信号调控中等等一些问题需要去研究。因此,研究清楚这些复杂的凋亡调控蛋白和信号转导通路对细胞的生死调控具有重要意义。如果能发现所有的调控凋亡的分子在疾病中的作用,分析其功能,并研究出能发挥或抑制这些分子功能的药物,那么就可加速癌细胞自杀,从而提高免疫细胞的生命力,进而对癌症及其他一些相关疾病的治疗起到非常重要的作用。

参考文献

[1]

Kroemer G,Galluzzi L,Brenner C.Mitochondrial membrane permeabilization in cell death[J].Physiological reviews,1972,87(1):99-163[2]

Kerr JF.History of the events leading to the formulation of the apoptosis concept[J].Toxicology,2002,181:471-474[3]

Paweletz N.Walther Flemming:Pioneer of mitosis research[J].Nature Reviews Molecular Cell Biology,2001,2(1):72-76[4]

Elmore S.Apoptosis:a review of programmed cell death[J].Toxicol Pathol,2007,35(4):495-516[5]Min F,Dong WX.The mitochondrial pathways of apoptosis[J].Journal of Beijing Medical University,2002,1:157-183图1哺乳动物,果蝇,鳞翅目昆虫中凋亡的途径[30]

Fig.1Apoptotic pathway in Mammals ,Drosophila and Lepidoptera [30]图2线虫,果蝇和哺乳动物中调控凋亡的线粒体途径[32]Fig.2Main regulators of the mitochondrial apoptotic pathway in

C.elegans ,Drosophila and Mammals [32]

·518·山东农业大学学报(自然科学版)第46卷

[6]Hirsch T,Marchetti P,Susin SA,et al.The apoptosis-necrosis paradox.Apoptogenic proteases activated after

mitochondrial permeability transition determine the mode of cell death[J].Oncogene,1997,15(13):1573

[7]Zeiss C.The apoptosis-necrosis continuum:insights from genetically altered mice[J].V eterinary Pathology Online,2003,40(5):481-495

[8]Ghavami S,Hashemi M,Ande SR,et al.Apoptosis and cancer:mutations within caspase genes[J].J Med Genet,2009,46(8):497-510

[9]Desagher S,Martinou J-C.Mitochondria as the central control point of apoptosis[J].Trends Cell Biol,2000,10(9):369

[10]Autret A,Martin SJ.Emerging role for members of the Bcl-2family in mitochondrial morphogenesis[J].Mol Cell,2009,36(3):355-363

[11]Jourdain A,Martinou JC.Mitochondrial outer-membrane permeabilization and remodelling in apoptosis[J].Int J

Biochem Cell Biol,2009,41(10):1884-1889

[12]Wasilewski M,Scorrano L.The changing shape of mitochondrial apoptosis.Trends in Endocrinology&Metab

olism,2009,20(6):287-294

[13]Autret A,Martin SJ.Bcl-2family proteins and mitochondrial fission/fusion dynamics[J].Cellular and molecular

life sciences,2010,67(10):1599-1606

[14]Tanner EA,Blute TA,Brachmann CB,et al.Bcl-2proteins and autophagy regulate mitochondrial dynamics

during programmed cell death in the Drosophila ovary[J].Development,2011,138(2):327-338

[15]Wang C,Youle RJ.The role of mitochondria in apoptosis[J].Annu Rev Genet,2009,43:95-118

[16]Waterhouse NJ,Ricci JE,Green DR.And all of a sudden it's over:mitochondrial outer-membrane permeabilization

in apoptosis[J].Biochimie,2002,84(2):113-121

[17]Shi Y.Caspase activation,inhibition,and reactivation:a mechanistic view[J].Protein science,2004,13(8):1979-1987

[18]Zhou F,Yang Y,Xing D.Bcl‐2and Bcl‐xL play important roles in the crosstalk between autophagy and

apoptosis[J].FEBS Journal,2011,278(3):403-413

[19]Ashkenazi A,Dixit VM.Death receptors:signaling and modulation[J].Science,1998,281(5381):1305-1308

[20]French LE,T schopp J.Protein-based therapeutic approaches targeting death receptors[J].Cell Death&Differentiation,2003,10(1):117-123

[21]Lavrik I,Golks A,Krammer PH.Death receptor signaling[J].J Cell Sci,2005,118(2):265-267

[22]Irmler M,Thome M,Hahne M,et al.Mattmann C.Inhibition of death receptor signals by cellular FLIP[J].Nature,1997,388(6638):190-194

[23]Kantari C,Walczak H.Dual philosophy in death receptor signalling[J].Open Cell Signal J,2011,3:27-34

[24]Breckenridge DG,Germain M,Mathai JP,et al.Regulation of apoptosis by endoplasmic reticulum pathways[J].Oncogene,2003,22

(53):8608-8618

[25]Wirawan E,Lippens S,Berghe TV,et al.Beclin1:a role in membrane dynamics and beyond[J].Autophagy,2012,8(1):6-17

[26]Yousefi S,Perozzo R,Schmid I,et al.Calpain-mediated cleavage of Atg5switches autophagy to apoptosis[J].

Nat Cell Biol,2006,8(10):1124-1132

[27]王虎,蔡定芳.Ca2+与内质网途径的细胞凋亡[J].国际病理科学与临床杂志,2006,26(4):2-285

[28]Czabotar PE,Westphal D,Dewson G,et al.Bax Crystal Structures Reveal How BH3Domains Activate Bax

and Nucleate Its Oligomerization to Induce Apoptosis[J].Cell,2013,152(3):519-531

[29]Wei W,Gai Z,Ai H,et al.Baculovirus infection triggers a shift from amino acid starvation-induced autophagy

to apoptosis[J].PLoS One,2012,7(5):e37457

[30]Juliette C,Yannick P,Heiko V,et al.A comprehensive characterization of the caspase gene family in insects

from the order Lepidoptera[J].BMC Genomics,2011:12

[31]Cooper DM,Granville DJ,Lowenberger C.The insect caspases[J].Apoptosis,2009,14(3):247-256

[32]Brachmann CB,Jassim OW,Wachsmuth BD,et al.The Drosophila Bcl-2family member dBorg-1functions in

the apoptotic response to UV-irradiation[J].Current biology,2000,10(9):547-550

[33]Galindo KA,Lu WJ,Park JH,et al.The Bax/Bak ortholog in Drosophila,Debcl,exerts limited control over

programmed cell death[J].Development,2009,136(2):275-283

[34]Sevrioukov EA,Burr J,Huang EW,et al.Drosophila Bcl‐2proteins participate in stress‐induced apoptosis,

but are not required for normal development[J].Genesis,2007,45(4):184-193

[35]White K,Grether ME,Abrams JM,et al.Genetic control of programmed cell death in Drosophila[J].Science,1994,264(5159):677

[36]Bergmann A.The role of ubiquitylation for the control of cell death in Drosophila[J].Cell Death&Differentiation,2009,17(1):61-67

[37]Chai J,Y an N,Huh JR,et al.Molecular mechanism of Reaper-Grim-Hid-mediated suppression of DIAP1-dependent Dronc

ubiquitination[J].Nature structural biology,2003,10(11):892-898

[38]Goyal L,McCall K,Agapite J,et al.Induction of apoptosis by Drosophila reaper,hid and grim through inhibition of IAP

function[J].EMBO J,2000,19(4):589-597

[39]Wilson R,Goyal L,Ditzel M,et al.The DIAP1RING finger mediates ubiquitination of Dronc and is indispensable for

regulating apoptosis[J].Nat Cell Biol,2002,4(6):445-450

[40]Y oo SJ,Huh JR,Muro I,et al.Hid,Rpr and Grim negatively regulate DIAP1levels through distinct mechanisms[J].Nat

Cell Biol,2002,4(6):416-424

[41]Li H,Zhu H,Xu C,et al.Cleavage of BID by caspase8mediates the mitochondrial damage in the Fas pathway of

apoptosis[J].Cell,1998,94(4):491-502

细胞凋亡的信号通路

作者:谢昆, 李兴权, XIE Kun, LI Xing-quan

作者单位:红河学院生命科学与技术学院,云南 蒙自,661199

刊名:

山东农业大学学报(自然科学版)

英文刊名:Journal of Shandong Agricultural University (Natural Science Edition)

年,卷(期):2015(4)

引用本文格式:谢昆.李兴权.XIE Kun.LI Xing-quan细胞凋亡的信号通路[期刊论文]-山东农业大学学报(自然科学版) 2015(4)

p38MAPK信号转导通路与细胞凋亡研究进展.

综述与进展 p38M APK信号转导通路与细胞凋亡研究进展 王誉霖1,张励才2 作者单位:1.安徽省宣城市人民医院麻醉科242000;2江苏徐州医学院作者简介: 王誉霖(1978,女,吉林市人,住院医师,硕士。研究方向:疼痛信号转导及调控。 主题词p38丝裂原活化蛋白激酶类;细胞凋亡;综述 中图分类号R345文献标识码A文章编号1674 8166(201012 1665 03 丝裂原活化蛋白激酶(mitog en2activated pr otein kinase,MA PK级联是细胞内广泛存在的丝/苏氨酸蛋白激酶超家族,是将细胞质的信号传递至细胞核并引起细胞核发生变化的重要物质。目前在人类已鉴定了4条MAPK途径:细胞外信号调节蛋白 激酶(ex tra cellular sig nal regulated protein kinase,ERK途径,C Jun 基末端激酶(c Jun N term inal kinase,JN K/应激活化蛋白(stress activated protein kinase,SAPK途 径,ERK5/大丝裂素活化蛋白激酶1(big MAP MAP kinase,BM K1途径和p38M APK(p38mitogen activated protein kinases,p38MA PK 传导途径[1]。p38 信号途径是 MAPK家族中的重要组成部分,多种炎症因子和生长因子及应激反应可使p38MAPK的酪氨酸和苏氨酸双磷酸化,从而激活p38M APK,使它在炎症、细胞应激、凋亡、细胞周期和生长等多种生理和病理过程中起重要作用。因此,p38MAPK 通路参与了多种刺激引起的信号级联反应,表明它在引起多种细胞反应中起重要作用,并且,p38在细胞凋亡中也有着重要的调节效应。1 p38M APK信号转导通路 丝裂原活化蛋白激酶(m ito gen activated pr otein kinase,MA PK级联是细胞内重 要的信号转导系统之一。在哺乳动物细胞M APK通路主要有:细胞外信号调节激酶(extracellular signal r eg ulated kinase,ERK ffi路、p38MA PK 通路、c jun 氨基末端激酶(c jun N term inal kinase,JNK通路和ERK5 通路[1]。其中,p38MAPK 是M APK 家族中的重要成员。

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

第15章--细胞信号转导习题

第十五章细胞信号转导 复习测试 (一)名词解释 1. 受体 2. 激素 3. 信号分子 4. G蛋白 5. 细胞因子 6. 自分泌信号传递 7. 蛋白激酶 8. 钙调蛋白 9. G蛋白偶联型受体 10. 向上调节 11. 细胞信号转导途径 12. 第二信使 (二)选择题 A型题: 1. 关于激素描述错误的是: A. 由内分泌腺/细胞合成并分泌 B. 经血液循环转运 C. 与相应的受体共价结合 D. 作用的强弱与其浓度相关 E. 可在靶细胞膜表面或细胞内发挥作用 2. 下列哪种激素属于多肽及蛋白质类: A. 糖皮质激素 B. 胰岛素 C. 肾上腺素 D. 前列腺素 E. 甲状腺激素 3. 生长因子的特点不包括: A. 是一类信号分子 B. 由特殊分化的内分泌腺所分泌 C. 作用于特定的靶细胞 D. 主要以旁分泌和自分泌方式发挥作用 E. 其化学本质为蛋白质或多肽 4. 根据经典的定义,细胞因子与激素的主要区别是: A. 是一类信号分子 B. 作用于特定的靶细胞 C. 由普通细胞合成并分泌 D. 可调节靶细胞的生长、分化 E. 以内分泌、旁分泌和自分泌方式发挥作用 5. 神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号:

A. 形成动作电位 B. 使离子通道开放 C. 与受体结合 D. 通过胞饮进入细胞 E. 自由进出细胞 6. 受体的化学本质是: A. 多糖 B. 长链不饱和脂肪酸 C. 生物碱 D. 蛋白质 E. 类固醇 7. 受体的特异性取决于: A. 活性中心的构象 B. 配体结合域的构象 C. 细胞膜的流动性 D. 信号转导功能域的构象 E. G蛋白的构象 8. 关于受体的作用特点,下列哪项是错误的: A. 特异性较高 B. 是可逆的 C. 其解离常数越大,产生的生物效应越大 D. 是可饱和的 E. 结合后受体可发生变构 9. 下列哪项与受体的性质不符: A. 各类激素有其特异性的受体 B. 各类生长因子有其特异性的受体 C. 神经递质有其特异性的受体 D. 受体的本质是蛋白质 E. 受体只存在于细胞膜上 10. 下列哪种受体是催化型受体: A. 胰岛素受体 B. 甲状腺激素受体 C. 糖皮质激素受体 受体 D. 肾上腺素能受体 E. 活性维生素D 3 11. 酪氨酸蛋白激酶的作用是: A. 使蛋白质结合上酪氨酸 B. 使含有酪氨酸的蛋白质激活 C. 使蛋白质中的酪氨酸激活 D. 使效应蛋白中的酪氨酸残基磷酸化 E. 使蛋白质中的酪氨酸分解 12. 下列哪种激素的受体属于胞内转录因子型: A. 肾上腺素 B. 甲状腺激素 C. 胰岛素 D. 促甲状腺素 E. 胰高血糖素

细胞信号转导练习题集

细胞信号转导练习题 选择题:正确答案可能不止一个 1. NO直接作用于(B) A.腺苷酸环化酶 B.鸟苷酸环化酶 C.钙离子门控通道D.PKC 2.以下哪一类细胞可释放NO( B) A.心肌细胞 B.血管内皮细胞 C.血管平滑肌细胞 3.硝酸甘油作为治疗心绞痛的药物是因为它( C) A.具有镇痛作用 B.抗乙酰胆碱 C.能在体内转换为NO 4.胞内受体(A B) A.是一类基因调控蛋白 B.可结合到转录增强子上 C.是一类蛋白激酶 D.是一类第二信使 5.受体酪氨酸激酶RPTK( A B C D) A.为单次跨膜蛋白 B.接受配体后发生二聚化 C.能自磷酸化胞内段 D.可激活Ras 6. Sos属于(B) A.接头蛋白(adaptor protein) B.Ras的鸟苷酸交换因子(GEF) C.Ras的GTP酶活化蛋白(GAP)D:胞内受体 7.以下哪些不属于G蛋白(C)

A.Ras B.微管蛋白β亚基 C.视蛋白 D. Rho 8. PKC以非活性形式分布于细胞溶质中,当细胞之中的哪一种离子浓度升高时,PKC转位到质膜内表面(B) A.镁离子 B.钙离子 C.钾离子 D.钠离子 9.Ca2+载体——离子霉素(ionomycin)能够模拟哪一种第二信使的作用(A) A.IP3 B.IP2 C.DAG D.cAMP 10.在磷脂酰肌醇信号通路中,质膜上的磷脂酶C(PLC-β)水解4,5-二磷酸磷脂酰肌醇(PIP2),产生哪两个两个第二信使(A B) A.1,4,5-三磷酸肌醇(IP3) B.DAG C.4,5-二磷酸肌醇(IP2) 11.在磷脂酰肌醇信号通路中,G蛋白的直接效应酶是(B) A.腺苷酸环化酶 B.磷脂酶C-β C.蛋白激酶C D. 鸟苷酸环化酶 12.蛋白激酶A(Protein Kinase A,PKA)由两个催化亚基和两个调节亚基组成,cAMP能够与酶的哪一部分结合?(B) A.催化亚基 B.调节亚基 13.在cAMP信号途径中,环腺苷酸磷酸二酯酶(PDE)的作用是 (C) A.催化ATP生成cAMP B.催化ADP生成cAMP C.降解cAMP生成5’-AMP 14.在cAMP信号途径中,G蛋白的直接效应酶是(B)

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

细胞凋亡的信号通路

山东农业大学学报(自然科学版),2015,46(4):514-518VOL.46N0.42015 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2015.04.007 细胞凋亡的信号通路 谢昆,李兴权 红河学院生命科学与技术学院,云南蒙自661199 摘要:细胞凋亡是细胞程序性死亡的一种方式,与自噬和坏死有明显的区别。细胞凋亡的信号途径比较复杂,在凋亡诱导因子的刺激下经历不同的信号途径。本文就细胞凋亡的三条信号通路——线粒体途径、内质网途径和死亡受体途径做一综述,以便为人们进一步了解细胞凋亡发生的机制,从而对癌症及其他一些相关疾病的治疗奠定基础。关键词:细胞凋亡;信号通路;线粒体途径;内质网途径;死亡受体途径 中图法分类号:R329.2+8文献标识码:A文章编号:1000-2324(2015)04-0514-05 The Signal Pathway of Apoptosis XIE Kun,LI Xing-quan Department of Life Science and Technology/Honghe University,Mengzi661199,China Abstract:Apoptosis is a process of programmed cell death which distinguishes from autophagy and necrosis.The signal pathways of apoptosis are complex and different under apoptosis induced factor stimulating.Three kinds of signal pathways of apoptosis including Mitochondrial pathway,Endoplasmic Reticulum pathway and Death Receptor pathway were summarized in this review in order to make people further comprehend the mechanism of apoptosis,so that it should make a basis for us all to treat cancer and other related diseases. Keywords:Apoptosis;signal pathway;Mitochondrial pathway;Endoplasmic Reticulum pathway;Death Receptor pathway 细胞凋亡是细胞程序性死亡(Program cell death,PCD)中特有的一种细胞死亡方式,是细胞在一系列内源性基因调控下发生的自然或生理性死亡过程。Kerr等1972年最早提出了凋亡(apoptosis)和坏死(necrosis)的概念[1],随后Paweletz等对其进行了详细的描述[2,3]。在形态学上,凋亡表现为核浓缩、细胞质密度增高、染色质凝聚、核膜破裂、核内DNA断裂、细胞集聚成团、形成凋亡小体(Apoptosome)等特征,这些凋亡小体最终被巨噬细胞清除,但不会引起周围细胞的炎症反应,另外,凋亡发生在单个细胞之间[4,5]。坏死,通常是由相邻的多个细胞之间发生细胞肿胀,细胞核溶解,细胞膜破裂,细胞质流入到细胞间质中,并伴发一系列的炎症反应,从而与凋亡表现为本质性区别[6,7]。 目前认为,凋亡发生的途径分为三种。第一种是线粒体途径,也称为内源性途径,该途径包括两类,第一类需要通过激活Caspase通路促进凋亡,在一序列凋亡诱导因素刺激下,线粒体中的Cyt C(细胞色素C)释放至细胞质中,从而与Apaf-1(Apoptosis protease activating factor1,凋亡蛋白酶活化因子1)结合形成多聚体,形成的多聚体再进一步与凋亡起始分子Caspase-9结合形成凋亡小体,凋亡小体激活Caspase-9,从而激活下游的凋亡执行分子Caspase-3,Caspase-6和Caspase-7等诱导细胞凋亡的级联反应;第二类是不依赖于Caspase途径的,通过线粒体释放AIF(Apoptosis induce factor,凋亡诱导因子)直接诱导凋亡的发生。但是在细胞内,直接检测AIF比较困难,而且AIF的变化不一定能代表凋亡发生的程度,因为引起凋亡发生的途径不一。第二种是死亡受体途径(也称为外源性途径),经由死亡受体(如TNF,Fas等)与FADD的结合而激活Caspase-8和caspase-10,进一步激活凋亡执行者caspase-3,6,7,从而促进凋亡的发生;第三条途径是内质网途径,内质网应激(蛋白质错误折叠或未折叠、内质网胁迫)会导致细胞内钙超载或钙离子稳态失衡一方面激活caspase-12,caspase-12进一步激活caspase-9而促进凋亡的发生,另一方面诱导Bcl-2(B细胞淋巴瘤蛋白)家族中促凋亡蛋白Bax和Bak的激活诱导凋亡[8]。 1凋亡的线粒体途径 在哺乳动物中,由于凋亡的激活需要线粒体中细胞色素C(CytC)的释放,因此CytC由线粒体膜间隙释放到细胞质中的多少可以作为判断凋亡发生强弱的指标之一。有研究认为,CytC的释放是通过Bcl-2家族调控线粒体膜透化(Mitochondrial outer membrane permeabilization,MOMP),科学 收稿日期:2013-03-07修回日期:2014-09-11 基金项目:云南省科技厅应用基础研究面上项目(2010ZC151) 作者简介:谢昆(1975-),男,云南富民人,博士研究生,研究方向为动物生物化学与分子生物学.E-mail:xk_biology2@https://www.doczj.com/doc/232152056.html, 数字优先出版:2015-06-03https://www.doczj.com/doc/232152056.html,

细胞常见信号通路图片合集

目录 actin肌丝 (5) Wnt/LRP6 信号 (7) WNT信号转导 (7) West Nile 西尼罗河病毒 (8) Vitamin C 维生素C在大脑中的作用 (10) 视觉信号转导 (11) VEGF,低氧 (13) TSP-1诱导细胞凋亡 (15) Trka信号转导 (16) dbpb调节mRNA (17) CARM1甲基化 (19) CREB转录因子 (20) TPO信号通路 (21) Toll-Like 受体 (22) TNFR2 信号通路 (24) TNFR1信号通路 (25) IGF-1受体 (26) TNF/Stress相关信号 (27) 共刺激信号 (29) Th1/Th2 细胞分化 (30) TGF beta 信号转导 (32) 端粒、端粒酶与衰老 (33) TACI和BCMA调节B细胞免疫 (35) T辅助细胞的表面受体 (36) T细胞受体信号通路 (37) T细胞受体和CD3复合物 (38) Cardiolipin的合成 (40) Synaptic突触连接中的蛋白 (42) HSP在应激中的调节的作用 (43) Stat3 信号通路 (45) SREBP控制脂质合成 (46) 酪氨酸激酶的调节 (48) Sonic Hedgehog (SHH)受体ptc1调节细胞周期 (51) Sonic Hedgehog (Shh) 信号 (53) SODD/TNFR1信号 (56) AKT/mTOR在骨骼肌肥大中的作用 (58) G蛋白信号转导 (59) IL1受体信号转导 (60) acetyl从线粒体到胞浆过程 (62) 趋化因子chemokine在T细胞极化中的选择性表达 (63) SARS冠状病毒蛋白酶 (65) SARS冠状病毒蛋白酶 (67) Parkin在泛素-蛋白酶体中的作用 (69)

细胞凋亡及周期阻滞基本信号通路

CELL DEATH AND CELL-CYCLE CHECKPOINT DURING DNA DAMAGE 细胞死亡及周期阻滞基本信号通路 有哪些因素可引起DNA损伤?DNA损伤的结局如何? (课件) (一)DNA损伤的原因 环境因素,化学因素,生物因素例如: UV ,离子辐射,基因毒性化学试剂引起ssDNA/dsDNA 损伤,DNA两条链交联或链内交联。正常细胞线粒体的一些代谢物(ROS)活泼氧类过多引起损伤。 (二) DNA损伤结局: 急性效应:干扰核酸代谢,触发细胞周期阻滞或死亡 长期效应:不可逆转突变导致肿瘤 细胞周期阻滞,衰老,肿瘤/癌症,有丝分裂危象 (一)DNA损伤的原因 1.DNA分子的自发性损伤 (1)DNA复制中的错误。 (2)DNA的自发性化学变化 a.碱基的异构互变性损伤 b.碱基的脱氨基作用 c.脱嘌呤与脱嘧啶 d.碱基修饰与链断裂 2.物理因素引起的DNA损伤 (1)紫外线引起的DNA损伤 (2)电离辐射引起的DNA损伤 a.碱基变化 b.脱氧核糖变化 c.DNA链断裂 d.交联 3.化学因素引起的DNA损伤 (1)烷化剂对DNA的损伤 a.碱基烷基化 b.碱基脱落 c.断链 d.交联 (2)碱基类似物、修饰剂对DNA的损伤 DNA损伤的后果 1.点突变(point mutation)指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。 2.缺失(deletion)指DNA链上一个或一段核苷酸的消失。 3.插入(insertion)指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的 氨基酸序列全部混乱,称为移码突变(frame shift mutaion)。 4.倒位或转位(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 5.双链断裂已如前述,对单倍体细胞一个双链断裂就是致死性事件。 (2)THE CONSEQUENCES OF DNA INJURY

(完整word版)细胞凋亡过程

细胞凋亡的过程大致可分为以下几个阶段:接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,比较清楚的通路主要有:1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例:Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子遂由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似2)细胞色素C释放和Caspases激活的生物化学途径线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C 释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征:1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。3)末端具有一个小的或大的原结构域。参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。

细胞受体及重要的细胞信号转导途径

细胞受体类型、特点 及重要的细胞信号转导途径 学院:动物科学技术学院 专业:动物遗传育种与繁殖 姓名:李波

学号:2015050509

目录 1、细胞受体类型及特点 (4) 1.1离子通道型受体 (4) 1.2 G蛋白耦联型受体 (4) 1.3 酶耦联型受体 (5) 2、重要的细胞信号转导途径 (5) 2.1细胞内受体介导的信号传递 (5) 2.2 G蛋白偶联受体介导的信号转导 (6) 2.2.1激活离子通道的G蛋白偶联受体所介导的信号通路 (7) 2.2.2激活或抑制腺苷酸环化酶的G蛋白偶联受体 (7) 2.2.3 激活磷脂酶C、以lP3和DAG作为双信使 G蛋白偶联受体介导的信号通 路 (8) 2.2 酶联受体介导的信号转导 (9) 2.2.1 受体酪氨酸激酶及RTK-Ras蛋白信号通路 (10) 2.2.2 P13K-PKB(Akt)信号通路 (10) 2.2.3 TGF-p—Smad信号通 (11) 2.2.4 JAK—STAT信号通路 (12)

1、细胞受体类型及特点 受体(receptor)是一种能够识别和选择性结合某种配体(信号分子)的大分子物质,多为糖蛋白,一般至少包括两个功能区域,与配体结合的区域和产生效应的区域,当受体与配体结合后,构象改变而产生活性,启动一系列过程,最终表现为生物学效应。受体与配体问的作用具有3个主要特征:①特异性;②饱和性;③高度的亲和力。 根据靶细胞上受体存在的部位,可将受体分为细胞内受体(intracellular receptor)和细胞表面受体(cell surface receptor)。细胞内受体介导亲脂性信号分子的信息传递,如胞内的甾体类激素受体。细胞表面受体介导亲水性信号分子的信息传递,膜表面受体主要有三类:①离子通道型受体(ion—channel—linked receptor);②G蛋白耦联型受体(G—protein —linked receptor);③酶耦联的受体(enzyme—linked recep—tor)。第一类存在于可兴奋细胞。后两类存在于大多数细胞,在信号转导的早期表现为激酶级联事件,即为一系列蛋白质的逐级磷酸化,借此使信号逐级传送和放大。 1.1离子通道型受体 离子通道型受体是一类自身为离子通道的受体,即配体门通道(1igand—gated channel),主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道。 1.2 G蛋白耦联型受体 三聚体GTP结合调节蛋白(trimeric GTP—binding regulatory protein)简称G蛋白,位于质膜胞质侧,由a、p、-/三个亚基组成,a和7亚基通过共价结合的脂肪酸链尾结合在膜上,G蛋白在信号转导过程中起着分子开关的作用,当a亚基与GDP结合时处于关闭状态,与GTP结合时处于开启状态,“亚基具有GTP酶活性,能催化所结合的ATP 水解,恢复无活性的三聚体状态,其GTP酶的活性能被RGS(regulator of G protein signaling)增强。RGS也属于GAP(GTPase activating protein)。 G蛋白耦联型受体为7次跨膜蛋白(图10—6),受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内

KEGG上的信号通路图怎么看

KEGG上的信号通路图怎么看? 提示:请点击标题下方蓝色“实验万事屋”,添加关注后,发“嗯”可以查看我们之前的文章。未经允许,其他公众号不得转载哦! 想要把自己研究的分子扯上明星分子或者明星通路?那是不难,难的是具体到底要怎么去扯,芯片结果啊,生信结果啊,都会给你提示,但真的要具体扯上去,还得看懂那些七七八八的信号通路图。 KEGG Pathway上有着大量的信号通路图,画得一个复杂啊!巨坑爹有没有?曾经有师弟说我之前曾经把Wnt通路描述错了,他师兄告诉他,应该是GSK-3β磷酸化抑制β-Catenin降解,并促进它入核的。在这里,我们只能默默地祝福这位师兄了…… 那我们就用Wnt通路来做例子吧。先上KEGG下载一个Wnt的信号通路图,如下: 绝壁是很高大上的不是么?这要咋看呢?其实这张图上把三个Wnt通路都画上去了,也就是Wnt/β-Catenin(经典Wnt通路),Wnt/PCP(平面的细胞极性途径)和Wnt/Ca2+(Wnt/钙离子)三条信号通路组成,我们就删减一下,就光看经典的Wnt通路,就变成了下面这个模样:

感觉还是很高大上有木有?那就再删减一下,把它变成经典Wnt信号通路的骨架会是什么样呢?就是这样: 简洁明快了吧,但要怎么来看懂这样的图呢?我们来看一下KEGG Pathway的具体图例:

把这些图例用来解释经典Wnt信号通路骨架图,就变成了: 看懂了么?那给你从左到右解释一下: 1)Wnt激活膜上受体,将信号传递到第二信使Dvl,活化的Dvl抑制由Axin、APC 和GSK-3β组成的复合物的活性,使β-catenin不能被GSK-3β磷酸化。 2)磷酸化的β-catenin才可通过泛素化(ubiquitination)而被胞浆内的蛋白酶体所降解,由于非磷酸化的β-catenin不能被蛋白酶体降解,从而导致β-catenin在胞浆内积聚,并移向核内。

细胞凋亡信号转导途径及调控的研究进展

细胞凋亡信号转导途径及其调控的研究 进展 学科:基础兽医学 专业:药理毒理学 姓名:ma cai hui 学号:13203023

细胞凋亡信号转导途径及其调控的研究进展 摘要目的:为了研究抗肿瘤药物促使细胞凋亡的作用机理,探讨细胞凋亡的信号转导途径以及相关基因对其的调控。方法:查阅近年的国内外相关文献,归纳整理细胞凋亡的信号转导途径和相关的调控基因。结果:介绍了细胞凋亡存在三条主要通路:线粒体通路、内质网通路和死亡受体通路,各通路间互相联系,共同调节细胞凋亡。以及调控凋亡的主要基因,Bcl-2、p53、c-myc、P16、Rb。结论:研究抗肿瘤药物的作用机理应从以上三条凋亡途径和相关调控基因出发。 关键词细胞凋亡;信号转导途径;基因调控;caspase Progress study on signal transmission pathways and regulation of cell apoptosis Wang Saiqi School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001 Key words : cell apoptosis; signal transmission pathways; gene regulation; caspase Abstract Aim : To check the mechanism of apoptosis induced by anticarcinogen and research the cell apoptosis signal transmission pathways and related genes on its regulation. Methods: Signal transmission pathways and related genes were concluded by referring to related papers at home and abroad in recent years. Results: Three main signal transmission pathways, death receptor-mediated pathways, mitochondrial pathway, endoplasmic reticulum pathway and several main regulator genes,Bcl-2,p53, c-myc,P16,Rb were introduced. Conclusions: Research on the mechanism of anticarcinogen should start from the said signal transmission pathways and genes. 1 细胞凋亡概述 细胞凋亡,又名细胞程序性死亡,是诱导性的细胞自杀过程,它使生物体可以有序地清除受损伤或无用的细胞。自从1927年John Kerr第一次提出凋亡这一概念后,人们发现它在多细胞生物的基本生命活动中起着十分重要的作用。它对于

细胞凋亡的信号传导调控机制

细胞凋亡的信号传导调控机制 胡传鹏 长春理工大学朝阳区卫星路7089号0205114# 吉林长春(130022) E-mail:huchuanpeng@https://www.doczj.com/doc/232152056.html, 摘要:细胞凋亡(apoptosis),又称编程性细胞死亡(PCD),是多细胞有机体调节发育的一个重要特征,是指细胞在内、外因子的严格控制下一种有步骤有活性的生理性自行消亡的过程。细胞凋亡与细胞生长、分裂和增殖紧密联系,并且在许多疾病的发生过程中起着重要的作用。因此,在分子水平上对细胞凋亡研究,阐明凋亡信号分子的转道途径,对于揭示多细胞有机体的生长、分化、衰老以及重大疾病病因的机理和治疗等方面都有十分重要的意义。近年来,随着遗传学、分子生物学和细胞生物学研究方法的不断改进,使得对于细胞凋亡的分子调控机制的研究有了很大的进展。如Apafs的发现[1],IAPs家族新成员Survivin蛋白[2],Bcl-2家族的Bcl2-L-10等[3]。现已证实细胞内存在二条凋亡信号转导通路,即死亡受体信号通路和死亡受体非依赖的转导通路[4],在两种信号通路中,线粒体起到了枢纽的作用,且两种信号通路在一定的状态下可发生“信号交谈” [5]。本文主要探讨了进几年来细胞凋亡的信号转导领域的进展,重点介绍了联系凋亡蛋白复合体的募集,胞质caspase蛋白家族及其抑制因子,线粒体内Bcl-2家族,细胞核内转录因子等凋亡蛋白因子所构成的细胞凋亡信号分子的网络调控机制。 关键词:细胞凋亡;信号转导;分子调控 细胞凋亡与细胞生长、分裂和增殖一样是维持生物体平衡的重要环节,并且在很多疾病包括癌症,获得性免疫综合症(AIDS),神经退行性病变,自身免疫失调,病毒感染,心肌跟梗塞等过程中都起着重要的作用[6,7],并且贯穿于细胞凋亡过程的始终。因此,对于研究细胞凋亡的分子调控机制,尤其是阐明已知凋亡相关信号分子的具体信号通路和寻找新的基因调控途径近年来引起很多科学家的高度关注,细胞凋亡信号转导的分子调控机制也成为科学家研究的热点之一。 细胞凋亡是多细胞有机体调节发育的一个重要特征,是指细胞在内、外因子的严格控制下一种有步骤有活性的生理性自行消亡的过程。在过去的十几年中,其分子机制的研究揭示:细胞凋亡大致要经历启动、调控、执行和最后死亡四个阶段。其中,细胞核内各种转录因子,细胞器线粒体内Bcl-2家族蛋白,细胞膜上各种功能复合体的募集(如TRADD,FADD,CARD 等),细胞质内系列caspase蛋白家族的级联放大,第二信使,细胞周期蛋白,骨架蛋白,结构蛋白以及内质网和线粒体成分等均参与凋亡形成,而其他与细胞生长,分化,增殖等密切相关的信号转导通路,如涉及对细胞生存发挥重要作用的的蛋白磷酸化酶,c-Jun激酶,P18激酶和cdc-2激酶皆与凋亡的信号转导有联系[8]。现已证实细胞内存在二条凋亡信号转导通路,即死亡受体信号通路和死亡受体非依赖的转导通路[4],在两种信号通路中,线粒体起到 - 1 -

(完整版)mTOR信号通路图

mTOR信号通路图 mTOR可对细胞外包括生长因子、胰岛素、营养素、氨基酸、葡萄糖等多种刺激产生应答。它主要通过PI3K/Akt/mTOR途径来实现对细胞生长、细胞周期等多种生理功能的调控作用。正常情况下,结节性脑硬化复合物-1(TSC-1)和TSC-2形成二聚体复合物,是小GTP 酶Rheb(Ras-homolog enriched in brain)的抑制剂,而Rheb是mTOR活化所必需的刺激蛋白,因此TSC-1/TSC-2在正常情况下抑制mTOR的功能。当Akt活化后,它可磷酸化TSC-2的Ser939和Thr1462,抑制了TSC-1/TSC-2复合物的形成,从而解除了对Rheb 的抑制作用,使得mTOR被激活。活化的mTOR通过磷酸化蛋白翻译过程中的某些因子来参与多项细胞功能,其中最主要的是4EBP1和P70S6K。

在整个PI3K/Akt/mTOR信号通路中,有一条十分重要的负反馈调节剂就是10号染色体上缺失与张力蛋白同源的磷酸酶基因(phosphatase and tensin homology deleted on chromosome 10, PTEN)。PTEN是一个肿瘤抑制基因,位于人染色体10q23。它有一个蛋白酪氨酸磷酸酶结构域,在这条通路中可以将PI-3,4-P2与PI-3,4,5-P3去磷酸化,从而负调节PI3K下游AKt/mTOR信号通路的活性。 本信号转导涉及的信号分子主要包括 IRS-1,PI3K,PIP2,PIP3,PDK1,PTEN,Akt,TSC1,TSC2,Rheb,mTOR,Raptor,DEPTOR,GβL,p70S6K,ATG13,4E-BP1,HIF-1,PGC-1α,PPARγ,Sin1,PRR5,Rictor,PKCα,SGK1,PRAS40,FKBP12,Wnt,LRP,Frizzled,Gαq/o,Dvl,Erk,RSK,GSK-3,REDD1,REDD2,AMPK,LKB1,RagA/B,RagC/D等。

相关主题
文本预览
相关文档 最新文档