当前位置:文档之家› 常数项级数

常数项级数

常数项级数
常数项级数

常数项级数敛散性判别法总结

常数项级数敛散性判别法总结 摘要:本文简要阐述了常数项级数敛散性判别法。由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。 关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点 无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。 1 级数收敛的概念 给定一个数列{un},称 u1+u2+...+un+ (1) 为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。若部分和数列{Sn}有极限S,即,则称级数(1)收敛。若部分和数列{Sn}没有极限,则称级数(1)发散。 注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。 借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。例如,由性质(1)和当|q|0时,01,则发散。 当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。 例2:判别级数的敛散性。 解:因为 由比值判别法知级数收敛。 2.3 根植判别法

常数项级数

常数项级数 所谓无穷级数即表示无穷项相加,他是一种研究函数以及数值计算的工具。 一、 常数项级数的概念和性质 ① 引例y ǐn l ì :求圆的周长,可以内接正多边形,当正多边形边数无穷 增加时的极限值近似可以得到圆的周长: 123n A a a a a =++?????++???????? 一般地 ,如果给定一个数列: 123,,,,n u u u u ,?????????? 则由这个数列所构成的和的表达式: 123,n u u u u +++?????+????? 叫做(常数项)无穷级数,简称(常数)级数,记为: 1231,n n n u u u u u ∞==+++?????+?????∑ 其中第n 项称为级数的一般项。 n u 下面从有限项的和出发,观察它的变化趋势,来理解无穷多个数量相加的意义: 作(常数项)级数的前n 项的和,记作: 123n n S u u u u =+++?????+ n S 称为级数的部分和,当n 依次取得1,2,3,……时,他们构成了一个新的数列: 11S u =,21S u u 2=+,312S u u u 3=++ 123n n S u u u u =+++?????+

② 常数项级数的和函数定义:如果级数 1231 ,n n n u u u u u ∞ ==+++?????+?????∑的部分和数列 {}n S 有极限s ,即:lim n n S s →∞ = 称无穷级数收敛,这时极限s 叫做这个级数的和,并写成: 1n n u ∞=∑123n s u u u u =+++?????++????? 如果极限不存在,则称无穷级数 1n n u ∞=∑发散。

7.1 常数项级数的概念和性质

1.写出下列级数的一般项: ⑴ 1357 2468 ++++ ; 【解】分析级数各项的表达规律: 分子为奇数数列21n -,分母为偶数数列2n , 于是得级数的一般项为21 2n n u n -= ,1,2,3,....n =。 ⑵ 1111112349827 ++++++ ; 【解法一】分析级数各项的表达规律: 分子不变恒为1, 分母的变化中,奇数项为2的乘幂,幂指数为项数+1的一半,即12 2 n +,偶数项为3 的乘幂,幂指数为项数的一半,即2 3n , 于是有12 22, 21 3, 2n n n n k u n k +?=-?=??=? ,k J ∈,1,2,3,....n =。 也可为1 221(1)1(1)2322 n n n n n u +--+-=?+?,1,2,3,....n =。 【解法二】分析级数各项的表达规律: 分子不变恒为1,但分母的变化按奇数项和偶数项有不同的变化规律,可以视为两个 级数的和,也可以视为级数的一个项由两个分数的和构成, 若将级数的一个项看成由两个分数的和构成,则有 111 23 u = +, 21149u =+221123=+, 311827u =+ 3311 23 =+, ...... 于是得11 23 n n n u = +,1,2,3,....n =。 ⑶3456 22345 -+-+- 。 【解】分析数列各项的表达规律:

各项顺次正负相间,有符号函数,注意到第一项是正的,应为1 (1)n +-, 从第二项起,各项分式都是分子比分母大1,而分母恰为序数n 于是得1 1 (1) n n n u n ++=-,2,3,....n =, 检验当1n =时,11111(1)21 u ++=-=,说明第一项也符合上面一般项的规律, 从而得 11(1)n n n u n ++=-,1,2,3,....n =。 2.根据级数收敛与发散的定义判断下列级数的敛散性: ⑴ 1 1 (21)(21)n n n ∞ =-+∑; 【解】级数前n 项和为 11(21)(21)n n i S i i ==-+∑1111()221 21n n i i ==--+∑1111 ()22121n n i i ==--+∑ 11[(1)()(1152)]22113113n n =-+-+-+-+ 11 (1)221 n =-+, 由于lim n n S →∞11lim (1)221n n →∞=-+12 =,知级数收敛,收敛于1 2。 ⑵ 1 1 1n n n ∞ =++∑ ; 【解】级数前n 项和为 1 1 1n n i S i i ==++∑ 2211(1)()n i i i i i =+-=+-∑1 (1)n i i i ==+-∑ (1)()(123)2n n =-+-+++- 11n =+-, 由于lim n n S →∞ lim(11)n n →∞ =+-=∞,知级数发散。 ⑶ 1 1 ln n n n ∞ =+∑; 【解】级数前n 项和为 11ln n n i i S i =+=∑1 [ln(1)ln ]n i i i ==+-∑ ln 2ln 2ln3ln (ln1)()[ln(1)]n n =-+-+++- ln(1)ln1n =+-ln(1)n =+,

常数项级数判别方法

常数项级数的审敛法 定义 形如:级数 其中 即: 正、负项相间的级 数称为交错级数。 列如 莱布尼茨判别法 莱 布 尼 茨 定理:如果交错级数满足条件 则级数收敛,其其和 其余项 的绝对 值 注意:只有当级数是交错级数时,才能用此判别法,否则将导致错误 注意:莱布尼兹判别法只是充分条件,非必要条件. 使用本判别法时,关键是第一个条件的验证 是否收敛时, 要考察 与 大小 1 1 1() n n n u ∞ -=-∑n u >0 111,2,3,); n n u u n +≥=L ()(lim 0, n x u →∞ =(2)1, s u ≤n r 1. n n r u +≤0n u ≥() n u 1n u +n n u u +≥>10.()1 11111111(1) =1(1)234n n n n n ∞ --=--+-++-+∑L L ().1 1 12(1) 1234(1) n n n n n ∞--=-=-+-++-+∑L L ().

这是一个交错级数 又因为n n u u n n +=>=+1111, 且 显然收敛速度较慢. 收敛。 使用本判别法时,关键是第一个条件的验证 是否收敛时, 要考察 与 大小 比较 与 大小的方法有: 比值法 差值法 1 1 1 11111 (1) =1(1) 234 n n n n n ∞ --=--+-++-+∑1 n u n =1lim lim 0n n n u n →∞→∞==n r n ≤+1 ||.10n u ≥() n u 1n u +n n u u +≥>10.()n u 1n u +1 1n n u u +<10 n n u u +->1 1n n u u +≥()lim 0 n x u →∞=(2)则交错级数 1 1 1() n n n u ∞ -=-∑

1常数项级数的概念和性质

§1 常数项级数的概念和性质 【目的要求】 1、能区分无穷项相加与有限项相加的区别; 2、了解无穷级数部分和与级数收敛及发散的关系、和的定义; 3、掌握用部分和的极限、收敛级数的必要条件来判别级数的敛散性. 【重点难点】 数项级数的概念与性质. 【教学内容】 一、常数项级数的概念 定义1.1 给定一个无穷实数列{}n u : 12,, ,, n u u u 则由这数列构成的表达式 12n u u u ++ ++ 叫做常数项无穷级数, 简称常数项级数, 记为∑∞ =1 n n u , 即 1231 n n n u u u u u ∞ ==+++++ ∑, 其中第n 项n u 叫做级数的一般项(或通项). 级数∑∞ =1n n u 的前n 项和 1231 n n i n i s u u u u u ===+++ +∑ 称为级数∑∞ =1 n n u 的前n 项部分和. 部分和构成的数列 12{}:,,, n n s s s s 称为部分和数列.

定义 1.2 如果级数∑∞ =1 n n u 的部分和数列}{n s 收敛, 即 s s n n =∞ →lim , (s 为一实数) 则称无穷级数∑∞ =1 n n u 收敛, 并称s 为级数∑∞ =1 n n u 的和, 并写成 1231 n n n s u u u u u ∞ ===+++ ++∑; 如果}{n s 发散, 则称无穷级数∑∞ =1 n n u 发散. 级数的收敛和发散统称为敛散性. 当级数∑∞ =1 n n u 收敛时, 其部分和n s 是级数∑∞ =1 n n u 的和s 的近似值, 它们之间的差 n n r s s =- 称为级数∑∞ =1 n n u 的余项. n s 和s 之间的误差可由||n r 去衡量, 由于s s n n =∞ →lim , 所以lim ||0n n r →∞ = 例1 讨论等比级数(几何级数) 20 n n n aq a aq aq aq ∞ ==+++++ ∑, (0a ≠) 的敛散性. 解 如果1q ≠, 则部分和 2 1 111n n n n a aq a aq s a aq aq aq q q q --=+++ +==----. 当||1q <时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞ =0 收敛, 其和为q a -1. 当||1q >时, 因为lim n n s →∞ 不存在, 所以此时级数n n aq ∑∞ =0 发散. 如果||1q =, 则当1q =时, 因为lim n n s →∞ 不存在, 因此此时级数n n aq ∑∞ =0 发散;

(完整版)级数的概念与性质

第十一章无穷级数 教学内容目录: §1—§8 本章主要内容: 常数项级数:无穷级数及其收敛与发散的定义,无穷级数的基本性质,级数收敛的必要条件,几何级数,调和级数,P级数,正项级数的比较审敛法和比值审敛法,交错级数,莱布尼兹定理,绝对收敛和条件收敛。 幂级数:幂级数概念,阿贝尔(Abel)定理,幂级数的收敛半径与收敛区间,幂级数的四则运算,和的连续性、逐项积分与逐项微分。泰勒级数,函数展开为幂级数的唯一性,函数(、 e x cos sin ln(1+x)、(1+x)m等)的幂级数展开式,幂级数在近 、x x 、 似计算中的应用举例,“欧拉(Euler)公式。 函数项级数:函数项级数的一般概念,收效域及和函数。 教学目的与要求: 1、理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。 2、掌握几何级数和P—级数的收敛性。 3、掌握正项级数的比较审敛法,掌握正项级数的比值审敛法。 4、理解交错级数的审敛法(莱布尼兹定理)。 5、了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。 6、了解函数项级数的收敛域及和函数的概念。 7、掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。 8、了解幂级数在其收敛区间内的一些基本性质。 9、了解函数展开为泰勒级数的充分必要条件。 10、掌握应用e x,sinx,cox,en(1+x)和(1+x)u的马克劳林(Maclaurin)展开式将一些简单的的函数间接展开成幂级数的方法。 11、了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirchet)条件,会将定义在(-π,π)上的函数展开为傅里叶级数,并会将定义在(-π,π)上的函数展开为正弦或余弦级数。

相关主题
文本预览
相关文档 最新文档