当前位置:文档之家› 生物膜离子通道

生物膜离子通道

生物膜离子通道
生物膜离子通道

生物膜离子通道

生物膜离子通道示意图

生物膜离子通道(ion channels of biomembrane)是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道,主动运输的离子载体称为离子泵。生物膜对离子的通透性与多种生命活动过程密切相关。例如,感受器电位的发生,神经兴奋与传导和中枢神经系统的调控功能,心脏搏动,平滑肌蠕动,骨骼肌收缩,激素分泌,光合作用和氧化磷酸化过程中跨膜质子梯度的形成等。

细胞膜离子通道

细胞膜上离子通道的功能,除了可以调节细胞内外的渗透压,也是维持细胞膜电位的重要分子,而神经细胞要进行讯号传导,便是靠离子的进出以造成膜电位的变化。虽然科学家对于细胞膜上离子通道已有相当程度的了解,对于离子通道所具有的特殊选择性,也从能蛋白质的结构大略获得解释,但是一直缺乏一套完整详细的分子作用机制。原因是,要做出膜蛋白三维结构的高解析度影像,非常不容易。1998年,麦金农做出了链霉菌的离子通道蛋白质KcsA的高解析三维结构影像,并首度从原子层次去了解离子通道的作用方式。KcsA离子通道中有一种“滤嘴”,能让钾离子(K+)通过,却不允许同族元素中体积更小的钠离子(Na+)通过,这令科学家百思不得其解。但是麦金农根据KcsA的立体结构,发现离子通道中“滤嘴”边上的四个氧原子的位置,恰好跟钾离子在水溶液中的情况一样,亦即滤嘴边上的氧与水分子的氧距离相同,所以钾离子能够安然通过通道,一如在水中一样;但钠离子尺寸较小,无法顺利接上滤嘴边上的四个氧原子,因此只能留在水溶液,而无法轻易穿过通道。而离子通道的开关会受到细胞的控制,麦金农发现,离子通道的底部有个闸门,当离子通道接收到特定的讯号,离子通道蛋白质结构便会发生改变,因此造成闸门的开关。麦金农对于钾离子通道的结构与作用机制的研究,是生物化学、生物物理等领域的一大突破,也为神经疾病、肌肉与心脏疾病的新药物开发,指引了新的方向。

离子通道蛋白和载体蛋白的异同

相同点:化学本质均为蛋白质、分布均在细胞的膜结构中、都有控制特定物质跨膜运输的功能

不同点:

1.通道蛋白参与的只是被动运输,在运输过程中并不与被运输的分子结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。

2.载体蛋白参与的有主动运输和协助扩散,在运输过程中与相应的分子结合,并且会移动。在主动运输过程中由低浓度侧向高浓度运动,且消耗代谢能量;在协助扩散过程中,由高浓度侧向低浓度侧运动,不消耗代谢能。(注;协助扩散也属于被动运输)

被动运输

科技名词定义

中文名称:被动运输

英文名称:passive transport

其他名称:被动转运

定义:离子或小分子在浓度差或电位差的驱动下顺电化学梯度穿膜的运输方式。

所属学科:细胞生物学(一级学科);细胞生理(二级学科)

本内容由全国科学技术名词审定委员会审定公布

目录

1被动运输一、简单扩散

1二、协助扩散

1体蛋白主要有离子载体和通道蛋白两种类型(一)离子载体

1(二)通道蛋白

门通道可以分为四类(图5-4):

1图5-4 各类离子通道1、配体门通道

12、电位门通道

13、环核苷酸门通道

14、机械门通道

15、水通道

分类

展开

编辑本段被动运输

一、简单扩散

自由扩散

也叫自由扩散(free diffusing),特点是:①沿浓度梯度(或电化学梯度)扩散;②不需要提供能量;③没有膜蛋白的协助。某种物质对膜的通透性(P)可以根据它在油和水中的分配系数(K)及其扩散系数(D)来计算:P=KD/t,t为膜的厚度。脂溶性越高通透性越大,水溶性越高通透性越小;非极性分子比极性容易透过,小分子比大分子容易透过。具有极性的水分子容易透过是因水分子小,可通过由膜脂运动而产生的间隙。非极性的小分子如O2、CO2、N2可以很快透过脂双层,不带电荷的极性小分子,如水、尿素、甘油等也可以透过人工脂双层,尽管速度较慢,分子量略大一点的葡萄糖、蔗糖则很难透过,而膜对带电荷的物质如:H+、Na+、K+、Cl—、HCO3—是高度不通透的事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。离子、葡萄糖、核苷酸等物质有的是通过质膜上的运输蛋白的协助,按浓度梯度扩散进入质膜的,有的则是通过主动运输的方式进行转运。

主动运输

二、协助扩散

也称促进扩散(faciliatied diffusion),其运输特点是:①比自由扩散转运速率高;

②存在最大转运速率;在一定限度内运输速率同物质浓度成正比。如超过一定限度,浓度再增加,运输也不再增加。因膜上载体蛋白的结合位点已达饱和;③有特异性,即与特定溶质结合。条件:对应所运输物质的蛋白质,顺浓度差。

编辑本段体蛋白主要有离子载体和通道蛋白两种类型

(一)离子载体

离子载体(ionophore),是疏水性的小分子,可溶于双脂层,提高所转运离子的通透率,多为微生物合成,是微生物防御被捕食或与其它物种竞争的武器,离子载体也是以被动的运输方式运输离子,可分成可动离子载体(mobile ion carrier)

和通道离子载体(channel former)两类:可动离子载体:如缬氨霉素(valinomycin)能在膜的一侧结合K+,顺着电化学梯度通过脂双层,在膜的另一侧释放K+,且能往返进行(图5-2)。其作用机理就像虹吸管可以使玻璃杯中的水跨越杯壁屏障,向低处流动一样。此外,2,4-二硝基酚(DNP)、羰基-氰-对-三氟甲氧基苯肼(FCCP)可转运H+,离子霉素(ionomycin)、A23187可转运Ca2+。图5-2 缬氨霉素的分子结构通道离子载体:如短杆菌肽A(granmicidin)是由15个疏水氨基酸构成的短肽,2分子的短杆菌肽形成一个跨膜通道,有选择的使单价阳离子如H+、Na+、K+按化学梯度通过膜,这种通道并不稳定,不断形成和解体,其运输效率远高于可动离子载体(图5-3)。图5-3 短杆菌肽构成的通道

(二)通道蛋白

通道蛋白(channel protein)是衡跨质膜的亲水性通道,允许适当大小的离子顺浓度梯度通过,故又称离子通道。有些通道蛋白形成的通道通常处于开放状态,如钾泄漏通道,允许钾离子不断外流。有些通道蛋白平时处于关闭状态,即“门”不是连续开放的,仅在特定刺激下才打开,而且是瞬时开放瞬时关闭,在几毫秒的时间里,一些离子、代谢物或其他溶质顺着浓度梯度自由扩散通过细胞膜,这类通道蛋白又称为门通道(gated channel)。

编辑本段门通道可以分为四类(图5-4):

配体门通道(ligand gated channel)、电位门通道(voltage gated channel)、环核苷酸门通道(Cyclic Nucleotide-Gated Ion Channels)和机械门通道(mechanosensitive channel)。不同通道对不同离子的通透性不同,即离子选择性(ionic selectivity)。这是由通道的结构所决定的,只允许具有特定离子半径和电荷的离子通过。根据离子选择性的不同,通道可分为钠通道、钙通道、钾通道、氯通道等。但通道的离子选择性只是相对的而不是绝对的,比如,钠通道除主要对Na+通透外,对NH4+也通透,甚至于对K+也稍有通透。

编辑本段图5-4 各类离子通道

1、配体门通道

表面受体与细胞外的特定物质(配体ligand)结合,引起门通道蛋白发生构象变化,结果使“门”打开,又称离子通道型受体。分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道,如甘氨酸和γ-氨基丁酸的受体。N型乙酰胆碱受体[1]是目前了解较多的一类配体门通道。它是由4种不同的亚单位组成的5聚体,总分子量约为290kd。亚单位通过氢键等非共价键,形成一个结构为α2βγδ的梅花状通道样结构,其中的两个α亚单位是同两分子Ach相结合的部位(图5-5)。Ach门通道具有具有三种状态:开启、关闭和失活。当受体的两个α亚单位结合Ach 时,引起通道构象改变,通道瞬间开启,膜外Na+内流,膜内K+外流。使该处膜内

外电位差接近于0值,形成终板电位,然后引起肌细胞动作电位,肌肉收缩。即是在结合Ach时,Ach门通道也处于开启和关闭交替进行的状态,只不过开启的概率大一些(90%)。Ach释放后,瞬间即被乙酰胆碱酯酶水解,通道在约1毫秒内关闭。如果Ach存在的时间过长(约20毫秒后),则通道会处于失活状态。筒箭毒和α银环蛇毒素可与乙酰胆碱受体结合,但不能开启通道,导致肌肉麻痹。图5-5 乙酰胆碱受体

2、电位门通道

电位门通道(voltage gated channel)是对细胞内或细胞外特异离子浓度发生变化时,或对其他刺激引起膜电位变化时,致使其构象变化,“门”打开。如:神经肌肉接点由Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电位门Na+通道和K+通道相继激活(即通道开放),引起肌细胞动作电位;动作电位传至肌质网,Ca2+通道打开引起Ca2+外流,引发肌肉收缩。根据对Na+、K+、Ca2+通道蛋白质的结构分析,发现它们一级结构中的氨基酸排列有相当大的同源性,属于同一蛋白质家族,是由同一个远祖基因演化而来。K+电位门通道由四个α亚单位(I-IV)构成(图5-6),每个亚单位均有6个(S1-S6)跨膜α螺旋节段,N和C 端均位于胞质面。连接S5-S6段的发夹样β折叠(P区或H5区),构成通道的内衬,大小可允许K+通过。K+通道具有三种状态:开启、关闭和失活。目前认为S4段是电压感受器,S4高度保守,属于疏水片段,但每隔两个疏水残基即有一个带正电荷的精氨酸或赖氨酸残基。S4段上的正电荷可能是门控电荷,当膜去极化时(膜外为负,膜内为正),引起带正电荷的氨基酸残基转向细胞外侧面,通道蛋白构象改变,“门”打开,大量K+外流,此时相当于K+的自由扩散。K+电位门它和Ach配体门一样只是瞬间(约几毫秒)开放,然后失活。此时N端的球形结构,堵塞在通道中央,通道失活,稍后球体释放,“门”处于关闭状态。链霉菌(Streptomyces lividans)的钾离子通道KcsA也是由四个亚单位构成的,但每个亚基只有两个跨膜片段,结构较为简单。1998年,Roderick MacKinnon 等用X射线衍射技术获得了高分辨的KcsA 通道图像,发现离子通透过程中离子的选择性主要发生在狭窄的选择性过滤器中。选择性过滤器长1.2nm,孔径约为0.3nm(K+脱水后直径约0.26nm),内部形成一串钾离子特异结合位点,从而只有钾离子能够“排队”通过通道。河豚毒素(Tetrodotoxin,TTX)能阻滞钠通道,毒素带正电荷的胍基伸人钠通道的离子选择性过滤器,和通道内壁上的游离羧基结合,毒素其余部分堵塞通道外侧端,妨碍钠离子进入,导致肌肉麻痹。图5-6 钾电位门通道

3、环核苷酸门通道

与电压门控性通道家族关系密切的是CNG通道,从蛋白质序列来看,它们与电压门钾通道结构相似,也有6个跨膜片段,各为带电荷片段,P区构成孔道内侧,整个通道为四聚体结构。在CNG通道中,细胞内的C末端较长,上面含有环核苷酸的结合位点。环核苷酸门通道分布于化学感受器和光感受器中,与膜外信号的转

换有关。如气味分子与化学感受器中的G蛋白偶联型受体结合,可激活腺苷酸环化酶,产生cAMP,开启cAMP门控阳离子通道(cAMP-gated cation channel),引起钠离子内流,膜去极化,产生神经冲动,最终形成嗅觉或味觉。

4、机械门通道

细胞可以接受各种各样的机械力刺激,如摩擦力、压力、牵拉力、重力、剪切力等。细胞将机械刺激的信号转化为电化学信号最终引起细胞反应的过程称为机械信号转导(mechanotransduction)。目前比较明确的有两类机械门通道,其一是牵拉活化或失活的离子通道,另一类是剪切力敏感的离子通道,前者几乎存在于所有的细胞膜,研究较多的有血管内皮细胞、心肌细胞以及内耳中的毛细胞等,后者仅发现于内皮细胞和心肌细胞。牵拉敏感的离子通道是指能直接被细胞膜牵拉所开放或关闭的离子通道。其特点为对离子的无选择性、无方向性、非线性以及无潜伏期。这种通道为2价或1价的阳离子通道,有Na+、K+、Ca2+,以Ca2+为主。研究表明,当内皮细胞被牵拉时,由于通道开放引起Ca2+内流,使以Ca2+介导的血管活性物质分泌增多,Ca2+还可作为胞内信使,导致进一步的反应。内耳毛细胞顶部的听毛也是对牵拉力敏感的感受装置,听毛弯曲时,毛细胞会出现暂短的感受器电位。从听毛受力而致听毛根部所在膜的变形,到该处膜出现跨膜离子移动之间,只有极短的潜伏期,

5、水通道

长期以来, 普遍认为细胞内外的水分子是以简单扩散的方式透过脂双层膜。后来发现某些细胞在低渗溶液中对水的通透性很高, 很难以简单扩散来解释。如将红细胞移入低渗溶液后,很快吸水膨胀而溶血,而水生动物的卵母细胞在低渗溶液不膨胀。因此,人们推测水的跨膜转运除了简单扩散外, 还存在某种特殊的机制, 并提出了水通道的概念。1988年Agre在分离纯化红细胞膜上的Rh血型抗原时,发现了一个28 KD 的疏水性跨膜蛋白,称为CHIP28 (Channel-Forming integral membrane protein),1991年得到CHIP28的cDNA 序列,Agre将CHIP28的mRNA注入非洲爪蟾的卵母细胞中,在低渗溶液中,卵母细胞迅速膨胀,并于5 分钟内破裂,纯化的CHIP28置入脂质体,也会得到同样的结果。细胞的这种吸水膨胀现象会被Hg2+抑制,而这是已知的抑制水通透的处理措施。这一发现揭示了细胞膜上确实存在水通道,Agre因此而与离子通道的研究者Roderick MacKinnon共享2003年的诺贝尔化学奖。目前在人类细胞中已发现的此类蛋白至少有11种,被命名为水通道蛋白(Aquaporin,AQP),均具有选择性的让水分子通过的特性。在实验植物拟南芥(Arabidopsis thaliana)中已发现35个这类水通道。水通道的活性调节可能具有以下途径:通过磷酸化使AQP的活性增强;通过膜跑运输改变膜上AQP的含量,如血管加压素(抗利尿激素) 对肾脏远曲小管和集合小管上皮细胞水通透性调节;通过调节基因表达,促进AQP的合成。

生理学第二章细胞基本功能习题及答案

第一章细胞的基本功能 【习题】 一、名词解释 1.易化扩散 2.阈强度 3.阈电位 4.局部反应 二、填空题 1.物质跨越细胞膜被动转运的主要方式有_______和_______。 2.一些无机盐离子在细胞膜上_______的帮助下,顺电化学梯度进行跨膜转动。 3.单纯扩散时,随浓度差增加,扩散速度_______。 4.通过单纯扩散方式进行转动的物质可溶于_______。 5.影响离子通过细胞膜进行被动转运的因素有_______,_______和_______。 6.协同转运的特点是伴随_______的转运而转运其他物质,两者共同用同一个_______。 7.易化扩散必须依靠一个中间物即_______的帮助,它与主动转运的不同在于它只能浓度梯度扩散。 8.蛋白质、脂肪等大分子物质进出细胞的转动方式是_______和_______。 9.O2和CO2通过红细胞膜的方式是_______;神经末梢释放递质的过程属于。 10.正常状态下细胞内K+浓度_______细胞外,细胞外Na+浓度_______细胞内。 11.刺激作用可兴奋细胞,如神经纤维,使之细胞膜去极化达_______水平,继而出现细胞膜上_______的爆发性开放,形成动作电位的_______。 12.人为减少可兴奋细胞外液中_______的浓度,将导致动作电位上升幅度减少。 13.可兴奋细胞安静时细胞膜对_______的通透性较大,此时细胞膜上相关的_______处于开放状态。 14.单一细胞上动作电位的特点表现为_______和_______。 15.衡量组织兴奋性常用的指标是阈值,阈值越高则表示兴奋性_______。 16.细胞膜上的钠离子通道蛋白具有三种功能状态,即_______,_______和_______。 17.神经纤维上动作电位扩布的机制是通过_______实现的。 18.骨骼肌进行收缩和舒张的基本功能单位是_______。当骨骼肌细胞收缩时,暗带长度,明带长度_______,H带_______。 19.横桥与_______结合是引起肌丝滑行的必要条件。 20.骨骼肌肌管系统包括_______和_______,其中_______具有摄取、贮存、释放钙离子 的作用。 21.有时开放,有时关闭是细胞膜物质转动方式中_______的功能特征。 22.阈下刺激引_______扩布。 三、判断题 1.钠泵的作用是逆电化学梯度将Na+运出细胞,并将K+运入细胞。 ( ) 2.抑制细胞膜上钠-钾依赖式ATP酶的活性,对可兴奋细胞的静息电位无任何影响。 ( ) 3.载体介导的易化扩散与通道介导的易化扩散都属被动转运,因而转运速率随细胞内外被转运物质的电化学梯度的增大而增大。 ( ) 4.用电刺激可兴奋组织时,一般所用的刺激越强,则引起组织兴奋所需的时间越短,因此当刺激强度无限增大,无论刺激时间多么短,这种刺激都是有效的。 ( ) 5.只要是阈下刺激就不能引起兴奋细胞的任何变化。 ( ) 6.有髓神经纤维与无髓神经纤维都是通过局部电流的机制传导动作电位的,因此二者兴奋的传导速度相同。 ( ) 7.阈下刺激可引起可兴奋细胞生产局部反应,局部反应具有“全或无”的特性。 ( ) 8.局部反应就是细胞膜上出现的较局限的动作电位。 ( ) 9.局部去极化电紧张电位可以叠加而增大,一旦达到阈电位水平则产生扩布性兴奋。( ) 10.单一神经纤维动作电位的幅度,在一定范围内随刺激强度的增大而增大。 ( ) 11.骨骼肌的收缩过程需要消耗ATP,而舒张过程是一种弹性复原,无需消耗ATP。 ( ) 12.在骨骼肌兴奋收缩过程中,横桥与Ca2+结合,牵动细肌丝向M线滑行。 ( ) 13.肌肉不完全强直收缩的特点是,每次新收缩的收缩期都出现在前一次收缩的舒张过程中。( )

糖脂病与细胞膜通道

以下为陆江新编著的书稿《延命水》笫三章的1.2节 三:细胞膜水通道、糖脂病与微循环的奥秘 1、膜通道的科学发现对祛除糖脂病的重大意义 各种生物包括人类在内都是由细胞组成的。一个人体上的细胞数目至少一千亿个,不同的细胞联合运作形成一个精密的系统。细胞通过膜通道将有用的物质不断被运进来,废物被不断运出去。早在一百多年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允许特定的分子或离子出入。生物的主要组成成分是水溶液,水占人体重量约70%。生物体内的水溶液主要由水分子和各种离子组成。它们在细胞膜通道中的进进出出可以实现细胞的很多生物性功能。生物的细胞以双层脂质膜与外界隔离。此双层脂质膜通常阻断水、离子与其它极性分子之间的通透,这些分子需要迅速且选择性地通过细胞膜上水通道、糖通道、脂通道和离子通道。这些通道与人体患糖脂病有什么关系呢? 什么是糖脂病?糖脂病是世界卫生组织对三高四病的统称。三高即高血脂、高血黏、高血糖,四病是高血压病、冠心病、脑中风、糖尿病。据世界卫生组织统计,全世界约十亿人患糖脂病,中老年人约50%死于糖脂病。而我国60%以上的中老年人死于糖脂病。糖脂病危害巨大,病因是长期较多地摄入主食肉食,超过了自身的需要,患者可能数病并发。糖脂病患者首先病在细胞内糖类脂类过多,不能正常地代谢,所以医学上也称代谢紊乱征。 美国科学家彼得·阿格雷和罗德里克·麦金农经过研究证明,代谢紊乱的患

者是由于细胞的糖脂通道和闸门受到损伤,糖类脂类物质不能正常地进出细胞,才使糖脂代谢发生紊乱,从而形成糖脂病。这两位科学家荣获2003年诺贝尔化学奖。糖脂病引起血液和血管病变,动脉中易沉积脂质,形成动脉粥样硬化,动脉内腔逐渐狭窄,血难流通,使器官供血不足。 美国科学家彼得·阿格雷罗德里克·麦金农 细胞糖脂通道的发现,揭示了糖脂病的致病根源,破译了根治糖脂病的关键密码,开辟了防治糖脂病的新纪元。人们可能为科学防治糖脂病找到新方法,开辟新途径,使糖脂病的根治成为可能。这个重大发现开启了细菌与植物和哺乳动物水通道的生物化学、生理学和遗传学研究之门。据最新消息,目前有的国家正在研究开发药物,以求打开细胞的糖脂通道,从根源上防治糖脂病,让人类免受心脑血管病之害。对细胞膜的研究不仅有助于理解基本的生命进程,而且对我们了解许多疾病具有重要意义。[注9] [注10]

最新-膜离子通道总复习汇总

2010-膜离子通道总 复习汇总

2010总复习 一.基本定义和概念: 欧姆定律:I=G×(E-E rev);膜电势=膜内-膜外;电流方向规定从胞内流向胞外为正;膜等效电路;离子选择性. E rev=RT/zF*ln(P A[A]o/P B[B]i) E rev=RT/F*ln((P K[K]o+P Na[Na]o+P Cl[Cl]i)/ (P K[K]i+P Na[Na]i+P Cl[Cl]o)) 动作电位产生原因:Na/Ca的内流, K的外流产生动作电位 1.动作电位产生于Na通透性的增加: 电击后,膜电位首先从V rest增加并超过0 mV达到最大值(叫去极化)之后开始下降至V rest或更低时叫复极化或超极化。 AP:All-or-none;有阈值(去极化10-15 mV); 动作电位是一种脉冲式的电信号(常见于CNS中)。见图。 有关动作电位的名词:去极化: 极性程度的减弱;复极化;超极化;

动力学名词: 激活activation:电导在一个短时间延时后急剧增加(去极化过程); 失活:电导在一个短时延时后急剧增加后掉到低值(去极化过程中通道关闭); 去激活deactivation:电导回到通道关闭的水平; 尾电流:驱动力、通道开放; 门电流/门电荷:位移电流,通道上电荷在电场力的策动下运动所致。一般在10ms内消失,电流很小,可以通过阻断所有通道电流测得。

计算门电荷数/有效电荷:利用GV曲线的Slope得到门电荷或用方差法从电流中得到通道数或从门电流中得到总电荷数; O/C=exp(-(w-z g q e E)/k B T) O/(O+C)=1/(1+exp((w-z g q e E)/k B T))) 这里z g是等效电荷数。 ,k为gv曲线中参数b Q10定义:会利用已知的Q10,计算速率常数随温度的变化; 生物学中定义:Q10= k(T+10o C)/k(T),这里κ代表速率常数。 Eyring 速率定律:k(T) =k(0)exp(-?G/RT). 用近似T=273>>10. 任意温度间隔?T??π Q?T=(Q10)?T/10. 其它术语: Rundown:全细胞模式下,由于胞内的小分子能量物质可以通过电极流失而导致通道电流在很短时间内减小或消失,且不可恢复,可以在电极中加入ATP, Mg,cAMP等物质消除Rundown现象;

离子通道研究进展

离子通道研究进展 陆亚宇(江苏教育学院生物系) 指导老师:戴谷(江苏教育学院生物系) 摘要:随着对离子通道研究的逐步深入, 各种研究方法都暴露出一定的局限性. 目前, 对于离子通道的研究工作进入了一个新阶段,即对不同方法的综合应用阶段,这不仅有助于人们在分子水平上认识离子通道的结构和功能的关系,也为不同领域的科学家提供了更多的合作机会.首先介绍了离子通道理论及实验研究方法, 并分析了各种研究方法综合应用的必要性,展望了这一领域的发展前景及其所面临的挑战性问题.并介绍最新的全自动膜片钳技术及其最新进展,它具有直接性、高信息量及高精确性的特点。近来在多个方面作出新的突破,如高的实验通量表现,较高的自动化程度、良好的封接质量、微量加样等。目前,该技术在以离子通道为靶标的药物研发,药物毒理测试以及虚拟药筛等方面有广阔的应用前景。全文对全自动膜片钳仪器的原理和技术细节作简单介绍。并简单介绍最新的关于K+通道在烟草中的发现,并对利用现代生物技术手段提高烟叶含钾量进行了展望。 关键字:离子通道; 实验方法; 全自动膜片钳;钾离子通道 前言: 细胞是通过细胞膜与外界隔离的,在细胞膜上 有很多种离子通道(如右图),细胞通过这些 通道与外界进行离子交换。离子通道在许多细 胞活动中都起关键作用,它是生物电活动的基 础,在细胞内和细胞间信号传递中起着重要作 用。随着基因组测序工作的完成,更多的离子 通道基因被鉴定出来,离子通道基因约占 1 . 5% ,至少有400个基因编码离子通道。相应的 由于离子通道功能改变所引起的中枢及外周疾 病也越来越受到重视。 离子通道的实验研究最初主要来源于生理学实 验。1949~1952年, Hodgkin等发展的“电压钳 技术” 为离子通透性的研究提供技术条件。60 年代中期,一些特异性通道抑制剂的发现为离 子通道的研究提供有力武器。1976年Neher和 Sakmann发展的膜片钳技术直接记录离子单通 道电流,为从分子水平上研究离子通道提供直 接手段。80年代中期,生化技术的进步,分子生物学以及基因重组技术的发展,使人们能够分离纯化许多不同的通道蛋白,直接研究离子通道的结构与功能关系。 通道结构和功能的研究日益成为电生理学、分子生物学、生物化学、物理学等多学科交叉的热点问题.对离子通道进行研究,传统的实验方法是电压钳技术、膜片钳技术等电生理学研究方法[; 传统的理论方法主要包括PNP模型和布朗动力学模型, 伴随计算机技术的迅猛发展和X 射线晶体衍射图谱技术在离子通道研究中的应用, 以及Mackinnon 等用X 射线晶体衍射技术成功解析出多个高分辨率离子通道三维空间结构,使得人们得以使用分子动力学模拟和量子化学计算等模拟在分子水平认识离子通道结构和功能的关系;随着分子生物学快速发展,又出现了定点突变技术、人工膜离子通道重建技术等实验技术手段本文中,笔者将

生物膜离子通道

生物膜离子通道 生物膜离子通道示意图 生物膜离子通道(ion channels of biomembrane)是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道,主动运输的离子载体称为离子泵。生物膜对离子的通透性与多种生命活动过程密切相关。例如,感受器电位的发生,神经兴奋与传导和中枢神经系统的调控功能,心脏搏动,平滑肌蠕动,骨骼肌收缩,激素分泌,光合作用和氧化磷酸化过程中跨膜质子梯度的形成等。

细胞膜离子通道 细胞膜上离子通道的功能,除了可以调节细胞内外的渗透压,也是维持细胞膜电位的重要分子,而神经细胞要进行讯号传导,便是靠离子的进出以造成膜电位的变化。虽然科学家对于细胞膜上离子通道已有相当程度的了解,对于离子通道所具有的特殊选择性,也从能蛋白质的结构大略获得解释,但是一直缺乏一套完整详细的分子作用机制。原因是,要做出膜蛋白三维结构的高解析度影像,非常不容易。1998年,麦金农做出了链霉菌的离子通道蛋白质KcsA的高解析三维结构影像,并首度从原子层次去了解离子通道的作用方式。KcsA离子通道中有一种“滤嘴”,能让钾离子(K+)通过,却不允许同族元素中体积更小的钠离子(Na+)通过,这令科学家百思不得其解。但是麦金农根据KcsA的立体结构,发现离子通道中“滤嘴”边上的四个氧原子的位置,恰好跟钾离子在水溶液中的情况一样,亦即滤嘴边上的氧与水分子的氧距离相同,所以钾离子能够安然通过通道,一如在水中一样;但钠离子尺寸较小,无法顺利接上滤嘴边上的四个氧原子,因此只能留在水溶液,而无法轻易穿过通道。而离子通道的开关会受到细胞的控制,麦金农发现,离子通道的底部有个闸门,当离子通道接收到特定的讯号,离子通道蛋白质结构便会发生改变,因此造成闸门的开关。麦金农对于钾离子通道的结构与作用机制的研究,是生物化学、生物物理等领域的一大突破,也为神经疾病、肌肉与心脏疾病的新药物开发,指引了新的方向。 离子通道蛋白和载体蛋白的异同 相同点:化学本质均为蛋白质、分布均在细胞的膜结构中、都有控制特定物质跨膜运输的功能 不同点: 1.通道蛋白参与的只是被动运输,在运输过程中并不与被运输的分子结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。 2.载体蛋白参与的有主动运输和协助扩散,在运输过程中与相应的分子结合,并且会移动。在主动运输过程中由低浓度侧向高浓度运动,且消耗代谢能量;在协助扩散过程中,由高浓度侧向低浓度侧运动,不消耗代谢能。(注;协助扩散也属于被动运输)

中山大学生化真题专项整理(含答案)2脂类和生物膜3.doc

第二章脂类、生物膜、跨膜运输和信号转导

20.(")血浆脂蛋白中,低密度脂蛋白负责把胆固醇运送到肝外组织。(04年)

31.为什么说低密度脂蛋白(LDL)中的胆固醇是“bad cholesterol",而高密度脂蛋白(HDD 中的胆固醇是“good cholesterol" ? (07 年)

Microvilli Epithelial cell Glucose Bloo d Basal surface \ Apical surface Intestinal lumen - ?? 2IC 如?? C ATPase Glucose O —M 二.-. Glucose uniporter Na'gluE ^^ElUT2 symporter 到静息状态。 35. 根据下图说明葡萄糖在小肠被吸收进入血液循环的机制。(12年) 答:小肠肠壁细胞有两个面,其中一面作为肠内毛细血管的外壁,上有Na/K 泵及葡萄糖自由扩散 通道,而另一面面向小肠空间,上面有大量绒毛状的突起,在突起处有Na/葡萄糖协同转运载体。 首先,小肠肠壁细胞通过Na/K 泵,每运转一次将3个Na 离子泵出细胞,两个K 离子泵入细胞,建立起 细胞外正内负的膜电位,使得细胞内带负电荷,细胞外带正电荷且具有很高的Na 离子浓度。而处于 小肠空间…面上的Na/葡萄糖协同转运载体,结合小肠中的2个Na 离了及1个葡萄糖分子利用小肠 中与小肠肠壁细胞内的Na 离子浓度差,将Na 离子及葡萄糖分子转运进入小肠肠壁细胞,进入细胞中 的2离子很快又被血管壁面的Na/K 泵泵至血液中,而进入的葡萄糖亦很快由葡萄糖扩散通道进入血 液,细胞内回复到初始状态,开始下一轮循环。在这种机制下,葡萄糖由小肠进入血液循环。 36. 简述第二信使的主要类别及其作用机制。(12年) 答:细胞内有5种最重要的第二信使:cAMP 、cGMP 、DAG 、IP3及Ca2+。cAMP 由腺昔酸环化酶水解 细胞质中的ATP 产生,cAMP 通过蛋白激酶A 进行信号放大,蛋白激酶A 将ATP 上的磷酸基团转移到特定 蛋白质的丝氨酸或苏氨酸残基上进行磷酸化,调节靶蛋白的活性。鸟甘酸环化酶受体,受体本身就 是鸟昔酸环化酶,催化GTP 生成cGMP, cGMP 激活PKG,被激活的蛋白激酶G 可使特定蛋白质的幺幺.氨酸 或苏氨酸残基磷酸化,从而引起细胞反应。磷脂酶CB 水解质膜上的PIP2,产生IP3和DAG, IP3同质 膜上特异的IP3受体结合,使Ca 离了从内质网中释放出来,?方面协同DAG 激活蛋白激酶C,另?方 面与钙调蛋白结合引起其他反应。

细胞膜上的水通道蛋白

细胞膜上的水通道蛋白 作者:Marokko 摘要: 物质的跨膜运输是细胞维持正常生命活动的基础之一。主要分为被动运输,主动运输,胞吞作用及胞吐作用。但是事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。离子、葡萄糖、核苷酸等物质有的是通过质膜上的运输蛋白的协助,按浓度梯度扩散进入质膜的,有的则是通过主动运输的方式进行转运。而维持细胞之间的跨膜运输的膜转运蛋白则主要分为载体蛋白与通道蛋白。其中通道蛋白(channel protein)是跨膜的亲水性通道,允许适当大小的离子顺浓度梯度通过,故又称离子通道。有些通道蛋白长期开放,如钾泄漏通道;有些通道蛋白平时处于关闭状态,仅在特定刺激下才打开,又称为门通道(gated channel).而水扩散通过人工膜的速率很低,所以人们推测膜上有水通道.1991年Agre发现第一个水通道蛋白CHIP28 (28 KD ),目前在人类细胞中已发现的此类蛋白至少有11种,被命名为水通道蛋白(Aquaporin,AQP)。水通道蛋白广泛存在于生物体中的各组织部位,影响着生物机体水代谢的过程。随着分子生物学技术的进步,对水通道蛋白的基础研究已经比较深入和成熟。目的可以利用水通道蛋白研究的基础成果,阐释临床水代谢障碍类疾病的发病机理提供可能的解决思路。 关键词: 跨膜运输,通道蛋白,水通道蛋白 正文: 包括人类在内的大多数生物都是由细胞组成的。单个细胞就像一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。早在100多年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允许特

生物膜离子通道

生物膜离子通道 百科名片 生物膜离子通道示意图 生物膜离子通道(ion channels of biomembrane)是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道,主动运输的离子载体称为离子泵。生物膜对离子的通透性与多种生命活动过程密切相关。例如,感受器电位的发生,神经兴奋与传导和中枢神经系统的调控功能,心脏搏动,平滑肌蠕动,骨骼肌收缩,激素分泌,光合作用和氧化磷酸化过程中跨膜质子梯度的形成等。 目录 1 1 1 1 1 1 1 1 1 1 展开 生物膜离子通道 简介 活体细胞不停地进行新陈代谢活动,就必须不断地与周围环境进

行物质交换,而细胞膜上的离子通道就是这种物质交换的重要途径.人们已经知道,大多数对生命具有重要意义的物质都是水溶性的,如各种离子,糖类等,它们需要进入细胞,而生命活动中产生的水溶性废物也要离开细胞,它们出入的通道就是细胞膜上的离子通道. 离子通道由细胞产生的特殊蛋白质构成,它们聚集起来并镶嵌在细胞膜上,中间形成水分子占据的孔隙,这些孔隙就是水溶性物质快速进出细胞的通道.离子通道的活性,就是细胞通过离子通道的开放和关闭调节相应物质进出细胞速度的能力,对实现细胞各种功能具有重要意义.两名德国科学家埃尔温·内尔和贝尔特·扎克曼即因发现细胞内离子通道并开创膜片钳技术而获得1991年的诺贝尔生理学奖. 研究简史 在生物电产生机制的研究中发现了对离子通透性的变化。1902年J.伯恩斯坦在他的膜学说中提出神经细胞膜对钾离子有选择通透性。1939年A.L.霍奇金与A.F.赫胥黎用微电极插入枪乌贼巨神经纤维中,直接测量到膜内外电位差。1949年A.L.霍奇金和B.卡茨在一系列工作基础上提出膜电位离子假说,认为细胞膜动作电位的发生是膜对纳离子通透性快速而特异性地增加,称为“钠学说”。尤其重要的是,1952年 A.L.霍奇金和 A.F.赫胥黎用电压钳技术在巨神经轴突上对细胞膜的离子电流和电导进行了细致地定量研究,结果表明Na+和K+的电流和电导是膜电位和时间的函数,并首次提出了离子通道的概念。他们的模型 (H-H模型)认为,细胞膜的K+通道受膜上4个带电粒子的控制,当4个粒子在膜电场作用下同时移到某一位置时,K+才能穿过膜。

2003年诺贝尔化学奖细胞膜通道之谜

有趣的生物文章 2003年諾貝爾化學獎:細胞膜通道之謎 (1) 識癌症 (6) 抗病毒的戰爭 (10) 以毒攻毒!科學家從牛痘找到靈感,來對付要命的西尼羅病毒了! (15) 睡眠的迷人世界 (17) 2003年諾貝爾化學獎:細胞膜通道之謎 獲獎者: 阿格雷(Peter Agre),美國約翰霍普金斯大學醫學院,美國人 麥金農(Roderick MacKinnon),美國洛克斐勒大學霍華休斯醫學研究中心,美國人 報導/張孟媛 2003年的諾貝爾化學獎,頒給了兩位美國科學家:約翰霍普金斯大學醫學院的阿格雷(Peter Agre)與洛克斐勒大學霍華休斯醫學研究中心的麥金農(Roderick MacKinnon)。他們獲獎的研究都與細胞膜上的通道有關,瑞典皇家科學院在10月8日發佈的新聞稿中指出,阿格雷是因為「發現水通道」與麥金農「在離子通

道的結構與機制上的研究」,而共享今年的諾貝爾化學獎。 神秘水通道終於現身 生命現象與水脫不了關係。與生命有關的一切生理、生化反應,都是在水中發生的。當細胞以雙層磷脂質組成的細胞膜隔出內外,阻絕了水與離子的通透,如何維持細胞膜內外滲透壓的平衡,就變得非常重要了。因為如果細胞裡的水太多(或離子濃度太低),細胞會被撐破,如果細胞裡的水太少(或離子濃度太高),細胞會變得乾癟,生化反應無法順暢進行。 長久以來,科學家便知道細胞膜上有一些蛋白質,負責細胞內外物質的通透,這些蛋白質可以說是細胞膜上的密道,能夠選擇性地讓細胞內外的物質進行交換。有些通道只是進行單純的流量管制,而有些物質的進出,因為要對抗濃度上的差異(滲透壓),則需要消耗能量(例如鈉離子與鉀離子的通交換通道,便會消耗ATP)。然而,水分子如何進出細胞,則一直是個謎。 1988年,阿格雷成功從紅血球分離出一種膜蛋白,在經過多種分析、蛋白質定序與該蛋白質cDNA的定序後,他確定這就是大家尋覓已久的水通道。阿格雷將之命名為“aquaporin”,意即「水孔」。到了2000年,阿格雷與其他的研究團隊合作,做出了aquaporin蛋白質三維結構的高解析度影像,使他們得以進一步

离子通道病

离子通道病 定义:离子通道结构的缺陷所引起的疾病.又称离子通道缺陷性疾病。 与信号传导相关的离子通道获得性或遗传性的结构和功能改变,均可能导致响应的信号传导异常,引起某种疾病或参与疾病的发病过程。如;肌肉型nAch受体自身免疫性损害-----重症肌无力;CI-通道CIC1基因缺陷-----先天性肌强直:Ryarodine受体缺陷------恶性高热易感性。 细胞膜上电压调控性钠、钙、钾和氯离子通道功能改变与先天性和后天性疾病发生之间的关系,对于离子通道基因缺陷、功能改变与某些疾病关系的研究,将可更新在离子通道生理学、病理学和分子遗传学等方面的知识,有助于开辟离子通道病治疗新途径。 90年代以来发现的主要离子通道病: 第一节钠通道病 钠通道基因突变所引起的心律失常,其原因可分为:基于通道活动的失活异常(不完全失活);基于通道激活异常(Ina降低);基于细胞膜上通道的数量减少(合成、运输及表达障碍)。钠通道分子结构上的有关部门位点发生突变时,就会严重影响钠通道的正常活动,而出现致命性心律失常。 所有钠通道基因突变所引起的疾病主要与α-亚单位的基因改变有关。在心肌细胞,位于染色体3p21-24上的SCN5A基因与钠通道(hH1)的组成有关。该基因突变是造成人类第3型长Q-T综合症(LQT3)的根本原因。先天性长Q-T综合症是一种罕见且致死的心脏电复极化过程异常延长性心律失常,心电图上QT间期延长,出现室性心律失常、晕厥和瘁死的一种综合症。与正常结构相比,在由突变SCN5A形成的钠通道α亚单位上,位于Ⅲ和Ⅳ结构域之间的4和5号片段有脯氨酸、赖氨酸和谷氨酰胺缺失现象。破坏了通到连接攀与通道的相互作用,使部分通道变为非失活的形式,通道失活的延迟导致持续的Na+内流,延长心肌复极时间,导致QT间期延长。 LQT与一些基因的突变或缺失有关,这些基因分别命名为LQT1---LQT4。 LQT1,LQT2是主要的心脏钾通道病。

生理学第二章细胞基本功能习题及答案

iFFF-r-F-FFF F-=. FXF —…八扌彳-FFFFF-* - F.-F- - - = *XFXF* " ~ ' 第一章细胞的基本功能 【习题】 一、名词解释 1. 易化扩散2?阈强度3?阈电位4.局部反应 二、填空题 1. 物质跨越细胞膜被动转运的主要方式有__________ 和________ 。 2. 一些无机盐离子在细胞膜上________ 的帮助下,顺电化学梯度进行跨膜转动。 3. 单纯扩散时,随浓度差增加,扩散速度__________ 。 4. 通过单纯扩散方式进行转动的物质可溶于___________ 。 5. 影响离子通过细胞膜进行被动转运的因素有__________ ,______ 和________ 。 6. 协同转运的特点是伴随 _______ 的转运而转运其他物质,两者共同用同一个___________ 。 7. 易化扩散必须依靠一个中间物即_________ 的帮助,它与主动转运的不同在于它只能浓度梯 度扩散。 8. 蛋白质、脂肪等大分子物质进出细胞的转动方式是___________ 和 _______ 。 9.02和CQ通过红细胞膜的方式是__________ ;神经末梢释放递质的过程属于。 10. 正常状态下细胞内K*浓度_________ 细胞外,细胞外Na*浓度________ 细胞内。 11. 刺激作用可兴奋细胞,如神经纤维,使之细胞膜去极化达_________ 水平,继而出现细胞膜 上______ 的爆发性开放,形成动作电位的_________ 。 12. 人为减少可兴奋细胞外液中________ 的浓度,将导致动作电位上升幅度减少。 13. 可兴奋细胞安静时细胞膜对________ 的通透性较大,此时细胞膜上相关的___________ 处于开放状态。 14. 单一细胞上动作电位的特点表现为_________ 和________ 。 15. 衡量组织兴奋性常用的指标是阈值,阈值越高则表示兴奋性____________ 。 16. 细胞膜上的钠离子通道蛋白具有三种功能状态,即___________ , ______ 和________ 。 17. 神经纤维上动作电位扩布的机制是通过_________ 实现的。 18. 骨骼肌进行收缩和舒张的基本功能单位是__________ 。当骨骼肌细胞收缩时,暗带长度,明带长度_______ , H带_______ 。 19. 横桥与 ______ 结合是引起肌丝滑行的必要条件。 20. 骨骼肌肌管系统包括 ______ 和________ ,其中 _______ 具有摄取、贮存、释放钙离子 的作用。 21. 有时开放,有时关闭是细胞膜物质转动方式中__________ 的功能特征。 22. ________________ 阈下刺激引扩布。 三、判断题 1. 钠泵的作用是逆电化学梯度将Na*运出细胞,并将K*运入细胞。() 2. 抑制细胞膜上钠-钾依赖式ATP酶的活性,对可兴奋细胞的静息电位无任何影响。() 3. 载体介导的易化扩散与通道介导的易化扩散都属被动转运,因而转运速率随细胞内外被转 运物质的电化学梯度的增大而增大。() 4. 用电刺激可兴奋组织时,一般所用的刺激越强,则引起组织兴奋所需的时间越短,因此当刺激强度无限增大,无论刺激时间多么短,这种刺激都是有效的。() 5. 只要是阈下刺激就不能引起兴奋细胞的任何变化。() 6. 有髓神经纤维与无髓神经纤维都是通过局部电流的机制传导动作电位的,因此二者兴奋的传导速度相同。() 7. 阈下刺激可引起可兴奋细胞生产局部反应,局部反应具有“全或无”的特性。() 8. 局部反应就是细胞膜上出现的较局限的动作电位。() 9. 局部去极化电紧张电位可以叠加而增大,一旦达到阈电位水平则产生扩布性兴奋。() 10. 单一神经纤维动作电位的幅度,在一定范围内随刺激强度的增大而增大。()

细胞膜通道与同步辐射

第27卷 第1期 核 技 术 V ol. 27, No.1 2004年1月 NUCLEAR TECHNIQUES January 2004 —————————————— 第一作者:闫晓辉,女,1978年1月出生,复旦大学在读硕士研究生,凝聚态物理专业 通讯作者:张新夷 收稿日期:2003-12-22 细胞膜通道与同步辐射 闫晓辉1,2 田 亮1,2 张新夷1,2,3 1(复旦大学物理系 上海200433) 2(复旦大学同步辐射研究中心 上海200433) 3(复旦大学表面物理国家重点实验室 上海200433) 摘要 长期以来很多科学家致力于研究物质,如水和离子是如何穿过细胞膜从而完成细胞内外物质交换的。1988年Peter Agre 第一次发现并描述了细胞膜水通道蛋白质的特性,Roderic MacKinnon 则在1998年阐明了离子通道的结构和机理,使我们可以从原子水平了解这些精美的蛋白质结构和运行机理。由于这两位科学家在细胞膜通道研究方面的卓越贡献,他们分享了2003年诺贝尔化学奖。在他们的研究中,基于同步辐射的蛋白质结构测定发挥了很关键的作用。 关键词 同步辐射,K +通道,水通道,三维结构,细胞膜 中图分类号 Q71, O434.19 世界上每一个生物体都是由细胞组成,人体就有成千上万多如星汉的细胞。但这些细胞不是简单的堆积,它们彼此之间存在着信息的交流,而成为复杂的有机整体,相互配合,完成一系列生理功能。例如肌肉的伸缩、大脑信号的传递都是由细胞间的信号交换和细胞内外物质和能量交换来协调完成的,它们的实现是一个复杂的过程,所以一直是科学家们探索的热点。 人们早就已经认识到水和其他物质,如K +、Na +、Ca 2+、Cl ?等离子能够经过一些孔道通过细胞壁,但是它们的结构和功能如何实现却一直不为人所知。1988年Peter Agre 第一次成功地分离出一 种膜蛋白CHIP28[1], 分子量为28kDa (千道尔顿),大约一年多以后,他意识到这就是人们长期以来人们一直在寻找的水分子通道(Water channel ,以下简称水通道),他把这种水通道蛋白质命名为aquaporin ,后来人们就用AQPs 来命名水通道家族中的每一个成员,CHIP28即被叫做AQP1,从此打开了对水通道生物化学、生理和基因方面的全面研究。 2000年Agre 公布了他和他的同事应用场发射电子源的电子衍射方法得到AQP1水通道电子衍射图,为了减少辐射损伤和收集大量的数据,他们同时应用了He 冷却的电镜来协助提高分辨率,最后 他们得到了分辨率3.8?的电子密度图[2], 就在同时另一位科学家Robert M. Stroud 和他的同事在 Lawrence Berkeley 国家实验室的Advanced Light Source (简称ALS ),用同步辐射X 衍射的方法得到了一种和水通道具有相似结构的甘油通道GlpF 分辨率为2.2?的电子密度图[3]。 关于膜蛋白离子通道的结构,是 Roderic MacKinnon 第一次得到的,他在美国Cornell 大学高能同步光源(Cornell High Energy Synchrotron Source ,简称CHESS )通过X 射线衍射解出了一种称为KcsA 的K +通道(Potassium ion channel )的原子结构,分辨率为3.2?[4]。他的这一研究成果震惊了整个科技界。水通道和K +通道的结构是理解这些通道功能如何实现的基础,证实并在原子水平解释了这些通道的特性,如选择性、开关性等。 Peter Agre 和Roderic MacKinnon 关于膜蛋白分子和离子通道的研究成果开创了化学、生物化学和生理学的一个崭新的研究领域。2003年的诺贝尔化学奖授予Peter Agre 和Roderic MacKinnon ,以表彰他们在探索细胞膜通道上做出的创造性贡献。图1是瑞典皇家科学院公布该奖时用的一张示意图[5]。这是1997年获得诺贝尔化学奖的ATP 合酶[6]三维结构后又一次和同步辐射有关而获得诺贝尔奖的重大成果,再一次显现了同步辐射在研究膜蛋白、病毒、核糖体等大分子结构上的优势。同步辐射光源的高通量,高准直以及波长连续可调的优点可以解决其它X 射线源在生物大分子结构研究上无法解决的问题[6]。 万方数据

植物生理学名词解释

名词解释 水分临界期:是指植物在生命周期中,对水分最敏感、最易受害的时期。 渗透势:亦称溶质势,是由于溶质颗粒的纯在,降低了水的自由能,因而其水势低于纯水的水势,以负值表示。 质外体:由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。 小孔律:气体分子通过小孔表面扩散的速率,不是与小孔的面积成正比而是与小孔的周长成正比。 蒸腾系数:又称需水量(water requirement),指植物合成1克干物质所蒸腾消耗的水分克数。蒸腾系数是一个无量纲数,值越大说明植物需水量越多,水分利用率越低。 田间持水量(field moisture capacity):指在地下水较深和排水良好的土地上充分灌水或降水后,允许水分充分下渗,并防止其水分蒸发,经过一定时间,土壤剖面所能维持的较稳定的土壤水含量(土水势或土壤水吸力达到一定数值),是大多数植物可利用的土壤水上限。衬质势:生长点分生区的细胞、风干种子细胞的中心液泡未形成,其水分组分即衬质势。束缚水:)被细胞内胶体颗粒或大分子吸附或存在于大分子结构空间,不能自由移动,具有较低的蒸汽压,在远离0℃以下的温度下结冰,不起溶剂作用,并似乎对生理过程是无效的水。 蒸腾速率:是指植物在一定时间内单位叶面积蒸腾的水量。一般用每小时每平方米叶面积蒸腾水量的克数表示(g· m-2·h-1)。 内聚力学说:解释水分沿导管向上运输的内聚力学说的主要内容。 灰分元素:亦称矿质元素。当干燥的植物体经过充分燃烧后,会留下一些呈灰白色的残渣,

这就是所谓的灰分。矿质元素以氧化物的形式存在于灰分中,将灰分进行化学分析,就会发现其中含有磷、钾、钙、镁、铁、钴等多种元素,通常将这些元素称为灰分元素。 离子拮抗:若在单盐溶液中加入少量其它盐类(不同族金属盐类),单盐毒害现象就会消除,这种离子间能够互相消除毒害的现象,称离子拮抗。 单盐毒害:由于溶液中只含有一种金属离子而对植物起毒害作用的现象称为单盐毒害。 生理酸性盐:如(NH4)2SO4等肥料,由于植物的选择吸收,吸收较多的NH4+,而吸收较少的SO42—结果导致土壤酸化,故称为生理酸性盐。 生理碱性盐:植物培养在含硝酸钠的溶液中时,植物对硝酸根离子的吸收要比对钠离子的吸收多。由于在吸收环境中NO3-的同时,根细胞必定有相同电荷的与之交换,所以环境溶液中浓度增加,并形成了碳酸氢钠,溶液pH上升,呈碱性。植物生理学者把这一类能使土壤碱化的盐称为生理碱性盐。 生理平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生长发育,该溶液即为平衡溶液。 离子通道:即生物膜离子通道。是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。有益元素:除了目前普遍公认的17种必需元素之外,有些元素对某些植物的生长发育能产生有利的影响,这些元素被称为有益元素。 同向转运体:载体与质膜外侧的H离子结合的同时,又与另一分子或离子结合,同一方向运输。 次级主动运输:又称为继发性主动转运、联合转运。某种物质能够逆浓度差进行跨膜运输,但是其能量不是来自于ATP分解,而是由主动转运其他物质时造成的高势能提供,这种转运方式称为继发性主动转运。

心肌细胞膜钾离子通道研究进展

中国医药报/2005年/7月/16日/第006版 医疗卫生 心肌细胞膜钾离子通道研究进展 聂松义 细胞膜在维持细胞稳态方面起着主要作用。心肌细胞膜中含有各种离子转运蛋白,包括多种钾离子通道。这些钾离子通道依靠和其他蛋白质的相互作用发挥正常功能和生理作用。Kv4.2钾离子通道(编码瞬时外向钾通道)和蛋白质KCHiP2具有相互作用。由加拿大McGill大学A.Shrier 教授第一次发现的KCHiP2增强Kv4.2表达需要和Kv4.2的羧基端直接作用的机制,引起与会专家的高度关注。Shrier教授介绍了他在心肌细胞膜钾离子通道方面的研究成果。 Shrier教授等研究人员采用膜片钳技术,免疫共沉淀、免疫组化和GST折叠式分析发现Kv4.2电流增加可能是Kv4.2表达加强及Kv4.2和KCHiP2相互作用增加通道稳定的结果。他们还发现一个新的心肌细胞膜蛋白组学特性和另一钾离子通道HERG通道(编码Ikr钾电流)。 心肌细胞膜富含蛋白质和离子通道,他们通过亚细胞分段分离技术,包括差异和密度梯度离心法及免疫分离法,纯化介于中层的成分,并采用十二烷基硫酸钠聚丙烯酰胺凝胶电泳和凝胶胰岛素消化液分离;使用串连的MS-MS光谱测定法鉴定多肽。在有或没有免疫提纯的情况下,他们发现600多种蛋白质有40%与细胞膜和伴随的细胞支架有关;大约65%和细胞信号,运输和细胞之间粘附相关。此外,他们还发现30种蛋白质尚无确定的功能。 据介绍,他们研究的第一阶段是进一步分析心肌细胞膜在病理情况下蛋白质的改变,包括局部缺血,心衰和糖尿病。在最近的研究中,他们用蛋白组学方法研究Kv4.2和HERG通道相互作用的配偶体。其方法是转染HA标记的HERG和Kv4.2到HL-1心肌细胞系。随后,他们用HA 抗体通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳,胰岛素消化和MS-MS光谱测定法使离子通道和伴随的蛋白质免疫沉淀。 如今他们在HERG分析方面获得了很大成功,已确定了50多种有可能的HERG相互作用的蛋白质,并发现是这种相互作用在通道运输、定位和调节中具有重要作用。这项研究最有启迪意义的是发现新的配偶体HERG通道,它可提供有关通道生成和调节方式的信息。 第1页共1页

水通道的发现

水通道的发现 ——Peter Agre 2003年的诺贝尔化学奖授予了美国的Peter Agre和罗德里克·麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。 彼得·阿格雷1949年生于美国明尼苏达州小城诺斯菲尔德,其父Courtland Agre毕业于University of Minnesota 获得了化学学士和博士学位。二战期间曾是3M company 即明尼苏达矿务及制造业公司的化学专家,负责实验室合成多聚物。二战后先后成为St. Olaf College 和Augsburg College化学系的一位老师。Courtland Agre假期喜欢把孩子们带到他的实验室,做些奇妙的“魔术”(如向加入可变色的酸碱指示剂的水中加入酸或碱以改变水的颜色),激发孩子们探求科学奥秘的情趣。Agre教授选择科学研究这条路和童年时父亲的影响不无关系。童年时另一位对Agre教授影响很大的人是其父之友莱纳斯?鲍林(Linus Pauling)。Linus Pauling教授是美国著名的化学家。这位大师曾在Agre教授家小住几日。1954年Pauling教授因阐明了化学键的本质和分子结构的基本原理获诺贝尔化学奖。二战后他又因不遗余力地反对核试验,坚决反对“以任何形式的战争作为解决国际冲突的手段”获得1962年诺贝尔和平奖。他也是迄今仅有的两度单独获得诺贝尔奖桂冠的人。 从Agre的童年中,我发现长辈们对孩子的熏陶是很重要的,而Agre证实因为在科学研究的环境下生长,才在小的时候便培养出了对科学的爱好,才能从小确定科学研究的方向,拥有一个远大的梦想。 虽然是细胞生物学的教授,Peter Agre教授不是一个科班出身的分子生物学研究者。1967年至1970年,他就读于Minneapolis ,Augsburg College 的化学专业,并获得学士学位。1970年至1974年,进入Johns Hopkins University School of Medicine 获医学博士学位,并在1981年获得医师执照。Peter是徒步长途旅行爱好者。能从临床医学转而从事基础方面的研究,最开始是因为在John Hopkins读书时Peter对由一种大肠杆菌某个特定株分泌类似于霍乱毒素可以引起许多旅行者腹泻的蛋白质产生了兴趣,于是他就在John Hopkins 感染疾病组Brad Sack 的实验室里开始纯化这一大肠杆菌毒素。1974年至1975年期间Peter在Johns Hopkins 药理学系Pedro Cuatrecasas的实验室进行博士后的研究。Pedro Cuatrecases 的实验室成员来自世界各地。Peter 被这一充满活力,配合默契的团队吸引。最终Peter 成功的纯化了整个毒素,更重要的是Peter 决定以将生化技术研究医学问题作为自己一生的追求。 我认为对科学研究的热爱仅仅来自于童年的梦想是不够的,就像我们在中学和大学里也曾经接触到很多神奇的科学现象,也经历过很多绚烂的化学反应,但是若没有投身于科学的毅力,没有承担重重艰难险阻的决心,做科学研究是不现实的。但是,从Agre的研究历程来说,我相信不仅童年时有一个美好的愿望,Agre更加拥有了准备好科学研究的毅力和决心。 1984年,Peter 在Johns Hopkins Hospital的the old Blalock Building 里建立了第一个自己的实验室。当时作为血液学系的一位老师,Peter 和助手Andy Asimos 开始研究spherocytosis (球形红细胞增多症),并在Nature 和New England Journal of Medicine 上发表了相关文章,

生理学各章节练习题及答案..

生理学各章节练习题及答案 第一章细胞的基本功能 A、型题 1、细胞膜脂质双分子层中,镶嵌蛋白的形式: A、仅在内表面 B、仅在外表面 C、仅在两层之间 D、仅在外表面与内面 E、靠近膜的内侧面,外侧面,贯穿整个脂质双层三 种形式均有 2、细胞膜脂质双分子层中,脂质分子的亲水端: A、均朝向细胞膜的内表面 B、均朝向细胞的外表面 C、外层的朝向细胞膜的外表面,内层的朝向双子层 中央 D、都在细胞膜的内外表面 E、面对面地朝向双分子 层的中央 3、人体O2、CO2进出细胞膜是通过: A、单纯扩散 B、易化扩散 C、主动转运 D、入胞作用 E、出胞作用 4、葡萄糖进入红细胞膜是属于: A、主动转运 B、单纯扩散 C、易化扩散 D、入胞作用 E、吞饮 5、安静时细胞膜内K+向膜外移动是由于: A、单纯扩散 B单纯扩散、 C、易化扩散 D、出胞人用 E、细胞外物入胞作用 6、以下关于细胞膜离子通道的叙述,正确的是: A、在静息状态下,Na+,K+通道都处于关闭状态 B、细胞受刺激刚开始去极化时,就有Na+通 道大量开放 C、在动作电位去极相,K+通道也被激活,但出现 较慢 D、Na+通道关闭,出现动作电位的复极相 E、Na+ ,K+通道被称为学依从通道 7.在一般生理情况下,每分解一分子ATP,钠泵运转可使: A.2个Na+移出膜外 B、2个K+移人膜内 C、2个Na+移出膜外,同时有2个K+移人膜内 n D、3个Na+移出膜外,同时有2个K+移人膜内 E、2个Na+移出膜外,同时有3个K+移人膜内 8.细胞膜内外正常的Na+和K+浓度差的形成和维 持是由于; A.膜在安静时对K+通透性大 B.膜在兴奋时对Na+通透性增加 C Na+,K+易化扩散的结果 D.膜上Na+—K+泵的作用 E.膜上ATP的作用 9.神经细胞在接受一次阈上刺激而出现兴奋的同 时和以后的一个短的时间内,兴奋性周期性变化 是: A.相对不应期—绝对不应期—超常期—低常期 B.绝对不应期—相对不应期—超常期 c、绝对不应期—低常期—相对不应期—超常期 D.绝对不应期—相对不应期—超低常期 E.绝对不应期—超常期—低常期—相对不应期 10.以下关于钠泵生理作用的叙述,哪项是错误的: A、逆浓度差将进入细胞内的Na+移出膜外 B.顺浓度差使细胞膜外的K+转入膜内 C、阻止水分进入细胞 D.建立离子势能储备已是神经、肌肉等组织具有 兴性的基础 11.以下关于动作电位的描述,正确的是: A.动作电位是细胞受刺激时出现的快速而不可逆 的电位变化 B.膜电位由内正外负变为内负外正 C、一般表现为锋电位 D.刺激强度越大,动作电位幅度也越高 E.受刺激后,细胞膜电位的变化也可称为复极化 12.静息电位的实测值同K+平衡电位的理论值相 比: A、前者大 B、前者小 C、两者相等 D、前者约大10% E、前者约大20% 13.细胞膜在静息情况下,对下列哪种离子通透性 最大: A. K+ B.Na+ C. Cl 1

相关主题
文本预览
相关文档 最新文档