当前位置:文档之家› 遥感知识

遥感知识

遥感知识
遥感知识

假彩色(False Color):将多波段单色影像合成为假彩色影像,如landsat 7/ETM+有八个波段,用其中三个合成就是假彩色。

假彩色与真彩色是一致的,都是R、G、B分量组合显示;伪彩色显示调用的是颜色表。

gains和bias,太阳高度角和方位角,成像时间等信息。

如下为打开一个多波段Landsat Fast格式的过程:

选择主菜单>File > Open AS >Landsat >FAST

对于Fast TM 格式数据,选择 header.dat文件。

对于Landsat 7 FAST 全色波段数据,选择 .hpn 头文件。

对于VNIR/SWIR Landsat 7 FAST 数据6个波段,选择 .hrf 头文件。

对于Landsat 7 FAST 热红外波段,选择 .htm 头文件。

对于普通的单波段二进制文件,用Open As 方式找不到对应选项,可以在Toolbox选择/Raster Management/Edit ENVI Header。或者直接选择File > Open打开普通二进制文件。

在Edit Header Input File界面选择Open > New File,打开普通二进制文件,便会弹出"Header Info"对话框,在出现的"Header Info"对话框中填写图像如下信息"Samples"图像文件的列数。

"Lines" 图像文件的行数。

"Bands" 图像文件的波段数。

"Offset" 图像文件从文件开头到实际数据起始处的字节偏移量。"Xstart"和"Ystart" 图像左上角的起始像元坐标。

"Data Type"选择适当的数据类型(字节型、整型、无符号整型、长整型、无符号长整型、浮点型、双精度型、64-bit整型、无符号64-bit整型、复数型或双精度复数型)。"Byte Order" 来选择数据的字节顺序。这个参数在不同的平台有所不同:对于DEC和PC 机,选择"Host(Intel)":for the host least significant first字节顺序;对于其它的所有平台,选择"Network(IEEE)":for the network most significant first字节顺序。

使用"Interleave"下拉菜单,选择下列选项,以确定数据存储顺序(BSQ/BIL/BIP)。

5、ENVI栅格文件系统和储存

5.1栅格文件格式

ENVI栅格文件格式:ENVI使用的是通用栅格数据格式,包含一个简单的二进制文件( a simple flat binary )和一个相同文件名的ASCII(文本)的头文件。

头文件(.hdr后缀)

ENVI头文件包含用于读取图像数据文件的信息,它通常创建于一个数据文件第一次被 ENVI 读取时。单独的ENVI头文本文件提供关于图像尺寸、嵌入的头文件(若存在)、数据格式及其它相关信息。所需信息通过交互式输入,或自动地用"文件吸取"创建,并且以后可以编辑修改。您可以在ENVI之外使用一个文本编辑器生成一个ENVI头文件(不推荐使用)。

5.2编辑栅格头文件

虽然ENVI栅格文件的头文件可以通过记事本等打开修改,但是出错的分险比较高。要编辑文件的头文件,首先需要打开头文件编辑器。可在Toolbox中选择/Raster

Management/Edit ENVI Header,然后选择需要编辑头文件的数据即可。

5.3栅格文件保存

(1)菜单保存功能

File->Save As,可以将影像另存为ENVI、NITF、TIFF等格式文件,保存的为原始数据,没有拉伸。

File -> Chip View To -> File,可以将当前视窗显示的图像保存为NITF、ENVI、TIFF、JPEG、JPEG2000等图像格式,相当于截屏。

File -> Chip View To -> PowerPoint,可以将当前视窗中的图像导入新建的PowerPoint 文件。

(3)Toolbox保存功能

在Toolbox搜索框输入Save File As即可看到如图结果。可以利用这些工具将文件另存为ArcView Raster、ASCII、CADRG等格式。

Data Manager(数据管理)

6、ENVI常用系统设置

(2)数据管理设置

在Preferences面板中选择Settings > Data Manager选项,如图所示。可以设置是否自动显示打开文件、多光谱数据显示模式、打开新图像时是否清空视窗、ENVI启动时是否自动启动Data Manager等选项。

(3)显示设置

在Preferences面板中选择Settings > Display General选项,如图所示。可以设置默认缩放因子、缩放插值方法、默认选择颜色等属性。同样可以设置默认滚轮按下功能、使用显卡加速功能、经纬度显示方法、是否显示指北针等。

遥感导论复习重点

1.遥感的基本概念。 广义:泛指一切无接触的远距离探测,包括对电磁场、重力场、声波、地震波的探测; 狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 2.结合P2图,阐述遥感系统的组成。 被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用. 3.按遥感平台、探测波段、传感器的工作方式来分,遥感可分成哪几种类型。 按遥感平台分类:地面遥感、航空遥感、航天遥感、航宇遥感 按探测波段分类:紫外遥感:探测波段在0.05-0.38微米; 可见光探测:探测波段为0.38-0.76微米; 红外遥感:探测波段在0.76-1000微米; 微波遥感:探测波段在1mm-1m,收集与记录目标物发射、散射的微波能量。 按工作方式分类:主动和被动遥感:二者主要区别在于传感器是否发射电磁波。被动式遥感是被动地接受 地表反射的电磁波,受天气状况的影响比较大。主动式遥感多为微波 波段,受天气和云层影响较小。 成像和非成像遥感:成像方式:把目标物发射或反射的电磁波能量以图像形式来表示。 非成像方式:将目标物发射或反射的电磁辐射的各种物理参数记录为 数据或曲线图形式,包括:光谱辐射计、散射计、高度计等。4.阐述遥感的特点。 ①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。 ②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,遥感大大提高了观测的时效性。这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。 ③数据的综合性和可比性:综合性是指,可以根据地物在不同波段的光谱特性,选取相应的波段组合来判断地物的属性。可比性是指,可以将不同传感器得到的数据或图像进行对比。 ④经济性:遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。 ⑤局限性:遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。 5.地物辐射和反射电磁波的特点有哪些。 6.什么叫电磁波谱。 按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。 7. 目前遥感所使用的电磁波有哪些波段(其波长范围、特点、应用)。 可见光波段:0.38-0.76 μm,作为鉴别物质特征的主要波段,是遥感中最常用的波段 红外波段:0.76—1000μm,采用热感应方式探测地物本身的辐射(如热污染、火山、森林火灾等),可进行全天时遥感。 微波波段:1mm—1m,能穿透云、雾而不受天气影响,能进行全天时全天候的遥感探测。能直接透过植被、冰雪、土壤等表层覆盖物。 紫外线波段:0.01—0.4μm,主要用于探测碳酸盐岩的分布和油污染的监测。由于大气层中臭氧对紫外线的强烈吸收和散射作用,通常探测高度在2000米以下。 8.大气对太阳辐射的影响有哪些。 吸收、散射及反射作用、折射。 11.大气对太阳辐射的吸收带主要位于哪几个波段? 在紫外——微波之间,具明显吸收作用的主要是O3、O2、CO2和H20;此外NO2、CH4对电磁辐射也有吸收,多种成份吸收特定波和的电磁波,形成相应的吸收带。

遥感原理与应用知识点

第一章 1、遥感的定义:通过不接触被探测的目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息 2、广义的遥感:在不直接接触的情况下,对目标物或自然现象远距离感知的一种探测技术。 3、狭义的遥感:指在高空和外层空间的各种平台上,应用各种传感器(摄影仪、扫描仪和雷达等)获取地表的信息,通过数据的传输和处理,从而实现研究地面物体形状、大小、位置、性质以及环境的相互关系。 4、探测依据:目标物与电磁波的相互作用,构成了目标物的电磁波特性。(信息被探测的依据)传感器能收集地表信息,因为地表任何物体表面都辐射电磁波,同时也反射入照的电磁波。地表任何物体表面,随其材料、结构、物理/化学特性,呈现自己的波谱辐射亮度。 5、遥感的特点:1)手段多,获取的信息量大。波段的延长(可见光、红外、微波)使对地球的观测走向了全天候全天时。 2)宏观性,综合性。覆盖范围大,信息丰富,一景TM影像185×185km2,可见的,潜在的各类地表景观信息。 3)时间周期短。重复探测,有利于进行动态分析 6、遥感数据处理过程 7、遥感系统:1)被探测目标携带信息 2)电磁波辐射信息的获取 3)信息的传输和记录 4)信息的处理和应用 第三章 1、电磁波的概念:在真空或物质中电场和磁场的相互振荡以及振动而进行传输的能量波。 2、电磁波特征(特征及体现):1)波动性:电磁辐射以波动的形式在空间中传播 2)粒子性:以电磁波形式传播出去的能量为辐射能,其传播也表现为光子组成的粒子流的运动 紫外线、X射线、γ射线——粒子性 可见光、红外线——波动性、粒子性 微波、无线电波——波动性 3、叠加原理:当空间同时存在由两个或两个以上的波源产生的波时,每个波并不因其他的波的存在而改变其传播规律,仍保持原有的频率(或波长)和振动方向,按照自己的传播方向继续前进,而空间相遇的点的振动的物理量,则等于各个独立波在该点激起的振动的物理量之和。 4、相干性与非相干性:由叠加原理可知,当两列频率、振动方向相同,相位相同或相位差恒定的电磁波叠加时,在空间会出现某些地方的振动始终加强,另一些地方的振动始终减弱或完全抵消,这种现象叫电磁波的相干性。没有固定相位关系的两列电磁波叠加时,没有一定的规律可循,这种现象叫电磁波的非相干性

综合遥感实验报告

本科学生实验报告 姓名周文娜学号094130090 专业_地理科学_班级 B 实验课程名称遥感导论 实验名称遥感图像分类---监督分类,非监 督分类 指导教师及职称胡文英 开课学期2011 _至__2011 学年_下学期云南师范大学旅游与地理科学学院编印

一、实验准备 实验名称:遥感图像分类---监督分类,非监督分类 实验时间:2011年6月10日 实验类型:□验证实验□综合实验□设计实验 1、实验目的和要求: (1)理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的。 (2)进一步理解计算机图像分类的基本原理以及监督分类的过程,达到能熟练地对遥感图像进行监督分类的目的,同时深刻理解监督分类与非监督分类的区别。 2、实验相关设备: 计算机一台,及ERDAS软件 3、实验理论依据或知识背景: (1)监督分类的概念: 首先需要从研究区域选取有代表性的训练场地作为样本。根据已知训练区提供的样本,通过选择特征参数(如像素亮度均值、差等),建立判别函数,据此对样本像元进行分类,依据样本类别的特征来识别非样本像元的归属类别。 监督分类包括利用训练区样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。 (2)非监督分类的概念: 非监督分类的前提是假定遥感影像上的同类物体在同样条件下具有相同的光谱信息特征。非监督分类方法不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息(或纹理信息)进行特征提取,再统计特征的差别来达到分类的目的,最后对巳分出的各个类别的实际属性进行确认。 监督分类和非监督分类的根本区别点在于是否利用训练场地来获取先验的类别知识,监督分类根据训练场提供的样本选择特征参数,建立判别函数,对待分类点进行分类。因此,训练场地选择是监督分类的关键。由于训练场地要求有代表性, 训练样本的选择要考虑到地物光谱特征,样本数目要能满足分类的要求,有时这些还不易做到, 这是监督分类不足之处。

遥感概论知识点整理

第一章绪论 遥感 广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。狭义:应用探测仪器,不与探测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感探测系统 根据通感的定义,遥感系统包括被测目标的信息特征、信息的获取、信息的 传输与记录、信息的处理和信息的应用五大部分 主动遥感和被动遥感 主动遥感和被动遥感,主动遥感由探测器主动发射一定电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量 与常规观测相比,遥感观测的特点 遥感观测可以实现大面积同步观测,并且不受地形阻隔等限制。 遥感探测,尤其是空间遥感探测,可以在短时间对同一地区进行重复探测,发现地球上许多事物的动态变化。 与传统地面调查和考察比较,遥感数据可以较大程度地排除人为干扰。 与传统的方法相比,可以大节省人力、物力、财力和时间,具有很高的经济效益和社会效益。 分别从遥感平台、传感器类型、工作方式和应用简述遥感类型 遥感平台:地面遥感,航空遥感,航天遥感,航宇遥感

传感器:紫外遥感,可见光遥感,红外遥感,微波遥感,多波段遥感 工作方式:主动遥感和被动遥感,成像遥感和非成像遥感 应用:外层空间遥感,大气层遥感,陆地遥感,海洋遥感 第二章电磁辐射与地物光谱特征 基本概念: 电磁波谱 按电磁波在真空中传播的波长或频率,递增或递减排序,构成了电磁波谱。 按照波长递减的顺序: 长波,中波和短波,超短波,微波,红外波段(超远红外,远红外,中红外,近红外),可见光(红橙黄绿青蓝紫,0.38~0.76微米),紫外线,X射线,γ射线。朗伯源、朗伯面 辐射亮度L与观察角无关的辐射源,称为朗伯源。一些粗糙的表面可近似看做朗伯源。严格来说,只有绝对黑体才是朗伯源。对于漫反射面,当入射幅照度一定时,从任何角度观察反射面,其反射亮度是一个常数,这种反射面称朗伯面。把反射比为1的朗伯面叫做理想朗伯面。 绝对黑体、灰体、选择辐射体 绝对黑体:一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。 灰体:没有显著的选择吸收,吸收率虽然小于1,但基本不随波长变化,这种物体叫灰体。如果发射率与波长无关,那么可把物体叫作灰体,否则叫选择性辐射体

浅谈对遥感学科、专业、遥感应用与发展的认识

浅谈对遥感学科、专业、遥感应用与发展的认识 摘要 遥感技术是一门建立在空间科学、电子技术、光学、计算机技术、信息论等新的技术科学以及地球科学理论基础上的综合性技术,为现代前沿科学技术之一,具有宏观、动态、综合、快速、多层次、多时相的优势。在新技术迅猛发展的今天,遥感技术伴随着航空、航天技术的发展而不断提高与完善,服务领域因之而不断扩展,受到普遍重视,显示出极其广泛的应用价值、良好的经济效益和巨大的生命力。 关键词 遥感发展现状发展趋势应用范围 引言 遥感作为一种空间数据的获取方法,遥感技术及其图像信息处理信息技术集合了空间、电子、光学、计算机、生物学和地学等科学的最新成就,是现代高新技术领域的重要组成部分。主要为GIS提供全天候的实时的遥感影像,之后GIS便拿这些数据进行利用和分析。遥感是从远离地面的不同工作平台上,如高塔、气球、飞机、火箭、人造地球卫星、宇宙飞船和航天飞机等,通过传感器对地球表面的电磁波辐射信息进行探测,然后经信息的传输、处理和判读分析,对地球的资源与环境进行探测与监测的综合性技术。遥感技术从远距离采用高空鸟瞰的形式进行探测,包括多点位、多谱段、多时段和多高度的遥感影像以及多次增强的遥感信息,能提供综合系统性、瞬时或同步性的连续区域性同步信息,在环境科学领域的应用具有很大优越性。 1、遥感学科发展回顾 遥感是以航空摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术。开始为航空遥感,自1972年美国发射了第一颗陆地卫星后,这就标志着航天遥感时代的开始。经过几十年的迅速发展,目前遥感技术已广泛应用于资源环境、水文、气象,地质地理等领域,成为一门实用的,先进的空间探测技术。萌芽时期 1608年制造了世界第一架望远镜。 1609年伽利略制作了放大三倍的科学望远镜并首次观测月球。 1794年气球首次升空侦察。 1839年第一张摄影像片。 初期发展 1858年用系留气球拍摄了法国巴黎的鸟瞰像片。 1903年飞机的发明。 1909年第一张像片。 一战期间(1914-1918):形成独立的航空摄影测量学的学科体系。 二战期间(1931-1945):彩色摄影、红外摄影、雷达技术、多光谱摄影、扫描

遥感基本知识总结

遥感基本知识总结 一. 遥感的基本概念 1. 遥感的基本知识 “遥感”一词来自英语Remote Sensing,从字面上理解就是“遥远的感知”之意。顾名 思义,遥感就是不直接接触物体,从远处通过探测仪器接受来自目标物体的电磁波信息,经过对信息的处理,判别出目标物体的属性。 实际工作中,重力、磁力、声波、机械波等的探测被划为物理探测(物探)的范畴,因 此,只有电磁波探测属于遥感的范畴。 根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记 录、信息的处理和信息的应用这五大部分。 1. 目标物的电磁波特性 任何目标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。 2. 信息的获取 接受、记录目标物体电磁波特征的仪器,称为“传感器”或者“遥感器”。如:雷达、扫描仪、摄影机、辐射计等。 3. 信息的接收 传感器接受目标地物的电磁波信息,记录在数字磁介质或者胶片上。胶片由人或回收舱 送至地面回收,而数字介质上记录的信息则可通过卫星上的微波天线输送到地面的卫星接收 站。 4. 信息的处理 地面站接收到遥感卫星发送来的数字信息,记录在高密度的磁介质上,并进行一系列的 处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换为用户可以使用的通用 数据格式,或者转换为模拟信号记录在胶片上,才能被用户使用。 5. 信息的应用 遥感技术是一个综合性的系统,它涉及到航空、航天、光电、物理、计算机和信息科学 以及诸多应用领域,它的发展与这些科学紧密相关。 2. 遥感的分类 1)按遥感平台分 地面遥感:传感器设置在地面上,如:车载、手提、固定或活动高架平台。 航空遥感:传感器设置在航空器上,如:飞机、气球等。 航天遥感:传感器设置在航天器上,如:人造地球卫星、航天飞机等。 2)按传感器的探测波段分 紫外遥感:探测波段在0.05~0.38μm之间。 可见光遥感:探测波段在0.38~0.76μm之间。 红外遥感:探测波段在0.76~1000μm之间。 微波遥感:探测波段在1mm~10m之间。

遥感导论知识点整理(梅安新版)

遥感导论知识点整理 【题型】 一、选择题 二、填空题 三、名词解释 四、简答题 五、论述题 注意:标注页码的地方比较难理解,希望大家多看看书,看看ppt。【第一章】绪论 1、【名】遥感(remote sensing) 广义:泛指一切无接触的远距离探测; 定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。 2、遥感系统 包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用。(5个哦亲!详见书第2页图哈~) 3、【名】信息源:任何目标具有发射、反射和吸收电磁波的性质,被称为遥感的信息源。 4、遥感的类型: a)按照遥感平台分 地面遥感、航空遥感、航天(空间)遥感、航宇遥感 b)按传感器的探测波段分 紫外遥感(0.05μm-0.38μm)、可见光遥感(0.38-0.76μm)、红外遥感(0.76-1000μm)、微波遥感(1mm-10m) c)按工作方式分 主动遥感、被动遥感;成像遥感、非成像遥感 5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性 6、遥感发展简史 Remote Sensing 的提出:美国学者布鲁伊特于1960年提出,61年正式通过。 遥感发展的三个阶段:

(1)萌芽阶段 1839年,达格雷发表第一张空中相片; 1858年,法国人用气球携带照相机拍摄了巴黎的空中照片。 1882年,英国人用风筝拍摄地面照片; J N Niepce (1826, France) The world’s first photographic image Intrepid balloon, 1862 1906, Kites Pigeons, 1903. (2)航空遥感阶段 1903年,莱特兄弟发明飞机,创造了条件。 1909年,意大利人首次利用飞机拍摄地面照片。 一战中,航空照相技术用于获取军事情报。 一战后,航空摄影用于地形测绘和森林调查与地质调查。 1930年,美国开始全国航空摄影测量。 1937年,出现了彩色航空像片。 (3)航天遥感阶段 1957年,苏联发射第一颗人造地球卫星,意义重大。 70年代美国的陆地卫星 法国的Spot卫星 发展中国家的情况:中国,印度,巴西等。 卫星遥感 Landsat Spot NOAA EO-1 Terra/modis Ikonos 7、我国遥感发展概况 50年代航空摄影和应用工作。 60年代,航空摄影工作初具规模,应用范围不断扩大。 70年代,腾冲遥感实验获得巨大成功。 70.4.24发射第一颗人造地球卫星。 80年代是大发展阶段。 目前在轨运行卫星:海洋卫星、气象卫星、中巴资源卫星、环境卫星等。 8、遥感的应用 (1)资源调查与应用 1. 在农业、林业方面的应用 农、林土地资源调查、病虫害、土壤干旱、盐化沙化的调查及监测。 土地利用类型调查 精细农业 作物估产 “三北”防护林遥感综合调查

遥感科学与技术专业本科培养方案

2016遥感科学与技术专业本科培养方案 一、专业基本信息 二、培养目标及特色(300字以内) 培养目标: 培养具有德、智、体全面发展,具备数理基础和人文社科知识,掌握遥感科学与技术基础理论、基本知识和基本技能,接受科学思维和工程实践训练,胜任国家基础测绘、城乡建设、国土资源、城市应急等领域空间信息的获取、处理、分析、应用及管理工作,具有较强的组织管理能力、创新能力、继续学习能力和国际视野的复合型工程技术人才。 专业特色: 本专业依托首都建设和学校土木建筑类学科优势,培养服务首都、面向全国、依托建筑行业、服务城乡建设的专业人才。适应摄影测量与遥感高新科技发展,融教学、科研和生产为一体,强调理论与实践密切结合,突出城市遥感特色,培养摄影测量与遥感新技术、新方法、新工艺的应用能力,满足城乡建设、古建筑保护、智慧城市等遥感人才需求。 三、主干学科 测绘科学与技术 四、主干课程 1.主干基础课程 专业概论、数字地形测量学、C语言与数据结构、自然地理学、地图学 2.主干专业课程 遥感原理(双语)、航空航天数据获取、摄影测量基础、遥感数字图像处理、城市遥感、数字摄影测量 五、主要实践教学环节 数字地形测量学实习、摄影测量基础实习、航空数据获取、航空摄影测量外业综合实习、4D产品综合摄影测量实习、遥感原理实习、遥感数字图像处理、遥感综合实习、自然地理地貌及遥感图像解译实习、(近景与激光雷达、移动测量、微波遥感)新技术综合实习、地理信息系统原理、毕业设计。 六、毕业学分要求 参照北京建筑大学本科学生学业修读管理规定及学士学位授予细则,修满本专业最低计划学分应达到160学分,其中理论课程122学分,实践教学环节38学分。 七、各类课程结构比例 学分比例学时学分课程属性课程类别

遥感概论知识点

遥感概论—刘朝顺 第一章绪论 一、遥感的概念 1.广义::泛指各种非接触的、远距离的探测技术,包括对电磁场、力场、机械波(声波、地震波)等的探测。 2.狭义::是一门新兴的科学技术,主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。 二、什么是传感器 1.地物空间信息主要由搭载在遥感平台上的传感器来获取。 2.传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 3.分类:摄影类型的传感器;扫描成像类型的传感器;雷达成像类型的传感器;非图像类型的传感器。 4.构造: 1)收集器:收集地物辐射来的能量。具体的元件如透镜组、反射镜组、天线等。 2)探测器:将收集的辐射能转变成化学能或电能。具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。 3)处理器:对收集的信号进行处理。如显影、定影、信号放大、变

换、校正和编码等。具体的处理器类型有摄影处理装置和电子处理装置。 4)输出器:输出获取的数据。输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。 三、遥感的特点 1空间特性:视域范围大,具有宏观特性。 2.光谱特性:探测的波段从可见光向两侧延伸,扩大了地物特性的研究范围。 3.时相特性:周期成像,有利于进行动态研究和环境监测。 4.大面积的同步观测。 5.时效性- 动态、快速获取监测范围数据。 6.数据的综合性和可比性。 7.经济性-应用领域多,经济效益高。 8.局限性。 四、遥感的发展历史 1.无记录的地面遥感阶段 2.有记录的地面遥感阶段(萌芽阶段) 3.航空遥感阶段 4.航天遥感阶段 第二章电磁辐射与地物光谱特征(理解PPT) 一、电磁波谱 1.电磁波谱:按照电磁波在真空中传播的波长或频率递增或递减排列

遥感导论知识点总结

遥感导论知识点小结 1.遥感技术系统的组成 被测目标的信息特征、信息的火枪、信息的传输与记录、信息的处理和信息的应用。2.遥感的类型 1)按遥感平台分为地面遥感、航空遥感、航天遥感; 2)按工作方式分为主动遥感和被动遥感; 3)按探测波段分为:紫外遥感(0.3-0.4);可见光(0.4-0.7);红外(0.7-14mm); 微波(0.1-100cm)等。 3.遥感技术的特点 大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。 4.电磁波的主要参数 1)波长(Wavelength):指波在一个振动周期内传播的距离。即沿波的传播方向,两个相邻的同相位点(如波峰或波谷)间的距离。 2)周期:波前进一个波长那样距离所需的时间。 3)频率(frequency):指单位时间内,完成振动或振荡的次数或周期(T),用V示。 注:一般可用波长或频率来描述或定义电磁波谱的范围。在可见光——红外遥感中多用波长,在微波遥感中多用频率。 4)振幅(Amplitude):表示电场振动的强度。它被定义为振动物理量偏离平衡位置的最大位移,即每个波峰的高度。 5)电磁波谱:将各种电磁波在真空中的波长按其长短,依次排列制成的图表。5.常用电磁波波段特性 1)紫外线(UV):0.01-0.4μm,碳酸盐岩分布、水面油污染; 2)可见光:0.4-0.76 μm,鉴别物质特征的主要波段;是遥感最常用的波段; 3)红外线(IR):0.76-1000 μm。近红外0.76-3.0 μm’中红外3.0-6.0 μm;远红外6.0-15.0 μm;超远红外15-1000 μm;(近红外又称光红外或反射红外;中红外和远红外又称热红外。) 4)微波:1mm-1m。全天候遥感;有主动与被动之分;具有穿透能力;发展潜力大。6.地物的反射光谱特性

遥感原理期末复习资料(知识点汇总)

遥感的定义: 遥感是指利用飞机、卫星或其他飞行器等运载工具(平台)上安装的某种装置(传感器),探测目标的特征信息(电磁波的反射或发射辐射),经过传输、处理,从中提取感兴趣信息的过程 遥感类型:按平台分为地面遥感、航空遥感、航天遥感、宇航遥感 遥感信息特点: (1)真实性、客观性 (2)探测范围大 (3)资料新颖且能迅速反应动态变化 (4)成图迅速 (5)收集资料方便 遥感系统的组成: 1、目标的信息特性 2、目标信息的传输 3、空间信息的采集 4、地面接收与预处理 5、信息处理 6、信息分析与应用

电磁波:交互变化的电磁场在空间的传播。 (1)电磁波与电磁波谱红外划分 ※紫外线:波长范围为0.01~0.38um,太阳光谱中只有0.3~0.38um波长的光到达地面,对油污染敏感,但探测高度在2000m 以下。 ※可见光:波长范围0.38~0.76um,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。 ※红外线:波长范围为0.76~1000um,根据性质可分为近红外、中红外、远红外和超远红外。 ※微波:波长范围为1mm~1m,穿透性好,不受云雾的影响。红外划分: ※近红外:0.76~3.0um,与可见光相似。 ※中红外:3.0~6.0um,地面常温下的辐射波长,有热感,又

叫热红外。 ※远红外:6.0~15.0um,地面常温下的辐射波长,有热感,又叫热红外。 ※超远红外:15.0~1000um,多被大气吸收,遥感探测器一般无法探测。 偏振:指横波的振动矢量偏于某些方向的现象或振动方向对于传播方向的不对称性。 黑体:在任何温度下,对各种波长的电磁辐射的吸收系数等于1(100%)的物体。 ※黑体辐射:黑体的热辐射称为黑体辐射。 黑体辐射定律:包括普朗克定律,玻尔兹曼定律,维恩位移定律,瑞里—金斯公式(注:基尔霍夫定律是一般物体发射定律。) 发射率概念:地物的辐射出射度(单位面积上发出的辐射总通量)W与同温度下的黑体辐射出射度 W黑的比值。 按照发射率与波长的关系,把地物分为: 黑体或绝对黑体:发射率为1,常数 灰体:发射率小于1,常数 选择性辐射体:反射率小于1,且随波长而变化。 物体的发射辐射—基尔霍夫定律:在一定温度下,地物单位面积上的辐射通量W和吸收率之比,对于任何物体都是一个常数,并等于该温度下同面积黑体辐射通量W 黑。在给定的温度下,物体的发射率=吸收率(同一波段);吸收率越大,发射率也越

遥感知识点系统归纳

遥感指非接触的,远距离的探测技术。 遥感卫星则是指用作外层空间遥感平台的人造卫星。遥感卫星主要用于科学试验、国土资源普查、农作物估产和防灾减灾等领域。它可以在轨道上运行数年,能在规定的时间内覆盖整个地球或指定的任何区域。当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行远距离的探测。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的图像数据通过无线电波传输到地面站,地面站发出指令以控制卫星运行和工作。 9月8日,搭载遥感卫星二十一号的长征四号乙运载火箭点火升空。当日11时22分,我国在太原卫星发射中心用长征四号乙运载火箭,成功将遥感卫星二十一号发射升空,卫星顺利进入预定轨道。此次任务还同时搭载发射了国防科技大学研制的天拓二号卫星。遥感卫星二十一号,主要用于科学试验、国土资源普查、农作物估产及防灾减灾等领域。天拓二号卫星主要用于小卫星技术试验。这是长征系列运载火箭的第193次飞行。 19日11时15分,我国在太原卫星发射中心用长征四号乙运载火箭成功发射“高分二号”卫星,卫星顺利进入预定轨道。据了解,这颗卫星系目前我国分辨率最高的光学对地观测卫星,使国产光学遥感卫星空间分辨率首次精确到1米。 光学遥感卫星的分辨率优于1米即达到亚米级,是现在国际上遥感卫星最高分辨率等级。“高分二号”卫星是高分辨率对地观测系统重大专项首批启动立项的重要项目之一。“高分二号”卫星投入使用后,将与在轨运行的“高分一号”卫星相互配合,推动高分辨率卫星数据应用,为土地利用动态监测等行业和首都经济圈等区域应用提供服务支撑。 第一章、绪论 遥感(Remote Sensing):从远处探测、感知物体或事物的技术。即不直接接触物体本身,从远处通过各种传感器探测和接收来自目标物体的信息,经过信息的传输及其处理分析,来识别物体的属性及其分布等特征的综合技术。 遥感的系统组成:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。 遥感按传感器的探测波段分类: 紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感。 遥感的特点:宏观性、综合性。覆盖范围大、信息丰富。 (简填)多波段性。波段的延长使对地球的观测走向了全天候。 多时相性。重复探测,有利于进行动态分析。 第二章、电磁辐射与地物光谱特征 瑞利散射:当微粒的直径比辐射波长小得多时,此时的散射称为瑞利散射。 粒子直径小于波长.(N/CO2/O3/O) 对可见光明显,波长越长散射越弱. 影像中霭、雾产生的主要原因. 米氏散射:当微粒的直径与辐射波长差不多时的大气散射。 粒子直径与波长相当.(烟/尘埃/小水滴) 方向性明显. 潮湿天气影响大. 无选择性散射:当微粒的直径比辐射波长大得多时所发生的散射。符合无选择性散射条件的波段中,任何波段的散射强度相同。 粒子直径比波长大得多.(水滴) 散射强度与波长无关. 大气窗口概念:由于大气层的反射、散射和吸收作用,使得太阳辐射的各波段受到衰减的作用轻重不

遥感导论期末考试复习重点

遥感复习重点 第一章绪论 1.遥感的基本概念(广义与狭义) 广义遥感:泛指一切无接触的远距离探测,包括电磁场、力场、机械波(声波、地震波)等探测。 狭义遥感:仅指应用探测仪器,不与探测目标接触,从远处将目标电磁波特性纪录下来,通过分析,解释物体特征性质及其变化的综合性探测技术。 补充层面:因此,又可以说:遥感是以电磁波与地表物质相互作用为基础,探测、分析和研究地球资源与环境,揭示地球表面各种要素的空间分布特征和时空变化规律的一门科学技术。 2.遥感、遥测、遥控的区别 遥感区别于遥测(Telemetry)和遥控(Remote Control)。 遥测指对被测物体某些运动参数和性质进行远距离测量技术。 遥控指远距离控制运动物体的运动状态和运动过程技术。 完成空间遥感过程往往需要综合运用遥测技术和遥控技术。例如,卫星遥感必须测定卫星运行参数\控制卫星运行姿态等。 3遥感系统组成 遥感系统包括:被探测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用5大组成部分。 4.遥感类型的划分 (1)按遥感平台分,包括: A、地面遥感→指遥感器安放在地面平台上,如车载平台、船载平台、手提平台等。 B、航空遥感→指遥感器安放在航空器上,如飞机、气球等,一般高度小于80千米。 C、航天遥感→指遥感器安放在航天器上,如人造地球卫星、航天飞机、空间站、火箭等,一般高度大于80千米。 D、航宇遥感→指遥感器安放在星际飞船上,主要用于对地月系统以外目标进行探测。(2)按遥感器的探测波段分,包括: A、紫外遥感→指利用0.05-0.38微米间紫外辐射波段进行探测。 B、可见光遥感→指利用0.38-0.76微米间可见光辐射波段进行探测。 C、红外遥感→指利用0.76-1000微米间红外辐射波段进行探测。 D、微波遥感→指利用1毫米-10米间微波辐射进行探测。 E、多波段遥感→指探测波段在可见光和红外波段范围内,再被分成若干狭窄波段进行遥感探测。 (3)按工作方式分,包括: A、主动遥感→指利用遥感器主动发射一定电磁波能量并接收目标地物后向散射信号进行探测。 B、被动遥感→指遥感器不向目标地物发射电磁波,仅被动接收目标地物自身发射或对自然辐射源如太阳等反射能量。 或者分为: C、成像遥感→指遥感器接收目标地物电磁波信息可以转换成数字图像或模拟图像。 D、非成像遥感→指遥感器接收目标地物电磁波信息不能转换成数字图像及模拟图像。(4)按遥感的应用领域分,包括: A、就较大研究领域看:包括外层空间遥感\大气层遥感\陆地遥感\海洋遥感等。 B、就具体应用领域看:包括资源遥感\环境遥感\农业遥感\林业遥感\渔业遥感\地质遥感\气象遥感\水文遥感\城市遥感\工程遥感\灾害遥感\考古遥感\军事遥感等。

遥感卫星的发展现状

遥感卫星的发展现状 摘要:卫星遥感技术并不被普通人所熟知,本文阐述了现今遥感卫星在我国的应用情况,同时展望未来遥感卫星应用前景,由此引出遥感卫星商业化发展的问题,于是重点分析讨论了当前遥感卫星在商业化发展过程中所遇到的主要困难,并且针对这些困难,提出促进遥感卫星商业化尽快实现的指导理念和主要措施以及预测遥感卫星商业化的可能发展趋势。 前言 面对新的世纪、新的形势,世界各国政府都在认真思考和积极部署新的经济与社会发展战略。尽管各国在历史文化、现实国情和发展水平方面存在着种种差异,但在关注和重视科技进步上却是完全一致的。这是因为,我们面对的是一个以科技创新为主导的世纪,是以科技实力和创新能力决定兴衰的国际格局。一个在科学技术上无所作为的国家,将不可避免地在经济、社会和文化发展上受到极大制约。 卫星遥感技术集中了空间、电子、光学、计算机通信和地学等学科的最新成就,是当代高新技术的一个重要组成部分。我国卫星遥感技术的发展和应用已经走过了多年艰苦探索与攀登的道路。如今,我们欣喜的看到卫星遥感应用技术已经起步并正在走向成熟和辉煌。 近十年来全球空间对地观测技术的发展和应用已经表明,卫星遥感技术是一项应用广泛的高科技,是衡量一个国家科技发展水平的重要尺度。现在不论是西方发达国家还是亚太地区的发展中国家,都十分重视发展这项技术,寄希望于卫星遥感技术能够给国家经济建设的飞跃提供强大的推动力和可靠的战略决策依据。这种希望给卫星遥感技术的发展带来新的机遇。面对这种形势,我国卫星遥感技术如何发展,如何使卫星遥感技术真正成为实用化、产业化的技术,直接为国民经济建设当好先行,是当前业界人士关注的热门焦点。 卫星遥感技术应用 (一)、卫星遥感技术应用现状 首先,到目前为止,我国已经成功发射了十六颗返回式卫星,为资源、环境研究和国民经济建设提供了宝贵的空间图像数据,在我国国防建设中也起到了不可替代的作用。我国自行研制和发射了包括太阳和地球同步轨道在内的六颗气象卫星。气象卫星数据已在气象研究、天气形势分析和天气预报中广为使用,实现了业务化运行。一九九九年十月我国第一颗以陆地资源和环境为主要观测目标的中巴地球资源卫星发射成功,结束了我国没有较高空间分辨率传输型资源卫星的历史,已在资源调查和环境监测方面实际应用,逐步发挥效益。我国还发射了第一颗海洋卫星,为我国海洋环境和海洋资源的研究提供了及时可靠的数据。其次,除了上述发射的遥感卫星外,我国还先后建立了国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等国家级遥感应用机构。同时,国务院各部委及省市地方纷纷建立了一百六十多个省市级遥感应用机构。这些遥感应用机构广泛的开展气象预报、国土普查、作物估产、森林调查、地质找矿、海洋预报、环境保护、灾害监测、城市规划和地图测绘等遥感业务,并且与全球遥感卫星、通信卫星和定位导航卫星相配合,为国家经济建设和社会主义现代化提供多方面的信息服务。这也为迎接21世纪空间时代和信息社会的挑战,打下了坚实的基础。 最后,非常关键,必须要重点指出的是两大系统的建立完成。一是国家级基本资源与环境遥感动态信息服务体系的完成,标志着我国第一个资源环境领域的大型空间信息系统,也是全球最大规模的一个空间信息系统的成功建立;二是国家级遥感、地理信息系统及全球定位系统的建立,使我国成为世界上少数具有国家级遥感信息服务体系的国家之一。 我国遥感监测的主要内容为如下三方面: 1、对全国土地资源进行概查和详查; 2、对全国农作物的长势及其产量监测和估产; 3、对全国森林覆盖率的统计调查。 (二)、卫星遥感技术应用前景 国际上卫星遥感技术的迅猛发展,将在未来十五年把人类带入一个多层、立体、多角度、全方位和全天候对地观测的新时代。由各种高、中、低轨道相结合,大、中、小卫星相协同,高、中、低分辨率相弥补

遥感知识

遥感知识集锦 一. 遥感的基本概念 1. 遥感的基本知识 “遥感”一词来自英语Remote Sensing,从字面上理解就是“遥远的感知”之意。顾名思义,遥感就是不直接接触物体,从远处通过探测仪器接受来自目标物体的电磁波信息,经过对信息的处理,判别出目标物体的属性。 实际工作中,重力、磁力、声波、机械波等的探测被划为物理探测(物探)的范畴,因此,只有电磁波探测属于遥感的范畴。 根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用这五大部分。 1. 目标物的电磁波特性 任何目标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。 2. 信息的获取 接受、记录目标物体电磁波特征的仪器,称为“传感器”或者“遥感器”。如:雷达、扫描仪、摄影机、辐射计等。 3. 信息的接收 传感器接受目标地物的电磁波信息,记录在数字磁介质或者胶片上。胶片由人或回收舱送至地面回收,而数字介质上记录的信息则可通过卫星上的微波天线输送到地面的卫星接收站。 4. 信息的处理 地面站接收到遥感卫星发送来的数字信息,记录在高密度的磁介质上,并进行一系列的处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换为用户可以使用的通用数据格式,或者转换为模拟信号记录在胶片上,才能被用户使用。 5. 信息的应用 遥感技术是一个综合性的系统,它涉及到航空、航天、光电、物理、计算机和信息科学以及诸多应用领域,它的发展与这些科学紧密相关。 2. 遥感的分类 1)按遥感平台分 地面遥感:传感器设置在地面上,如:车载、手提、固定或活动高架平台。 航空遥感:传感器设置在航空器上,如:飞机、气球等。 航天遥感:传感器设置在航天器上,如:人造地球卫星、航天飞机等。 2)按传感器的探测波段分 紫外遥感:探测波段在0.05~0.38μm之间。 可见光遥感:探测波段在0.38~0.76μm之间。 红外遥感:探测波段在0.76~1000μm之间。 微波遥感:探测波段在1mm~10m之间。 3)按工作方式分

遥感导论(梅安新版)考试重点

遥感导论(梅安新版) 考试重点 https://www.doczj.com/doc/2317171754.html,work Information Technology Company.2020YEAR

一、名词解释 定量遥感:利用遥感传感器获取地表地物的电磁波信息,在先验条件和计算机的支持下,定量获取目标物参量或特性的方法和技术,区别于仅依靠经验判读的定性识别地物的方法。 遥感建模:从传感器上获得的遥感数据叫可测参数,建立可测参数与地面目标的状态参数之间数关系叫建模。 影像空间:不同区域、不同时间、不同传感器特征的遥感影像所表达的地理空间称为影像空间。 遥感影像的综合与分解 遥感影像的综合:①由高空间分辨率向低空间分辨率遥感数据的转换;②由高光谱分辨率数据向低光谱分辨率遥感数据的转换;③由多传感器遥感数据经融合;④由多波段遥感数据的融合。 遥感影像的分解:①由低空间分辨率遥感数据向高空间分辨率遥感数据的转换(像元分解);②经过运算的高光谱向多光谱数据转换成新的遥感数据。 遥感信息:遥感信息是指以电磁波为载体,经介质传输而由航空或航天遥感平台所收集到的反应地球表层系统现象的空间信息,是影像空间所包含的地学信息。 光谱分辨率:是指传感器在接收目标辐射的光谱时能分辨的最小波长间隔,是对光谱细节的分辨能力的表达。间隔愈小,分辨率愈高。 空间分辨率:是指遥感图像上能够详细区分的最小单元的尺寸或大小(像元所代表的地面范围的大小),即传感器能把两个目标物作为清晰的实体记录下来的两个目标物之间最小的距离。 地面分辨率:衡量遥感图像能有差别地区分两个相邻地物最小距离的能力,超过分辨率的限度,相邻两物体在图像上即表现为一个单一的目标。是空间分辨率数值在地面上的实际尺寸,取决于像元大小和背景信息。 遥感信息独立的地学变量:由于地物的物理化学性质不同,具有不同的反射和辐射量,这些反射和辐射量在不同波段的遥感数据中有不同的灰度值,经过不同波段遥感数据的特殊处理,可以获得新的特殊的灰度值的遥感影像,与其他地物具有明显不同的灰度值,这就是地物在遥感影像中具有独立的地学变量。 同质阈值:对于一定大小和基本要素空间的目标,我们可以制定出分辨的标准,而如果目标超出标准,其要素就散焦和无法分辨,这就是该目标的同质阈值。 空间增强:针对像元极其周围像元运算,单波段。光谱增强:对多图像,多波段。 高通滤波:高频过去,低频滤掉,用于边缘增强;低通滤波:低频过去,高频滤掉,用于内部特征增强。(滤波是把某种信号处理成为另一种信号的过程。)光谱模式识别:根据像元到像元之间的光谱信息自动划分土地类型的分类过程,监督、非监督分类都属于光谱识别模式。空间模式识别:根据像元与周围像元的空间关系进行图像分类。 非监督分类:是一种无先验(已知)类别标准的分类方法。对于待研究对象和区域,没有已知类别或训练样本做标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的地物类别。

遥感基础知识

遥感原理与应用(A) 第 1 章绪论 §1 遥感的基本概念 1.1 遥感的涵义 “遥感”一词最早源于美国,由Evelyn.L.pruitt(伊夫林.L.布鲁依特)于1960年提出。其英文原词是Remote sensing,即遥远感知的意思。 在一定距离的空间,不与目标物接触,通过信息系统去获取有关目标物的信息,经过对信息的分析研究,确定目标物的属性及目标物之间的相互关系。简言之,泛指一切无接触的远距离探测。 1.1.1 广义遥感 是指以现代工具为技术手段,对目标进行遥远感知的整个过程。从这一概念看,遥感技术的范围很广,因为没限定目标的空间范围。 1.1.2 狭义遥感技术 是指从远距离高空以至外层空间的平台上,利用紫外线、可见光、红外、微波等探测仪器,通过摄影或扫描方式,对目标电磁波辐射能量的感应、接收、传输、处理和分析,从而识别目标物性质和运动状态的现代化技术系统。 狭义遥感技术是20世纪60年代蓬勃发展起来的一门综合性探测技术,属高新技术领域范畴。 §2 遥感系统 根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分 §3 遥感的分类和特点 3.1 遥感的分类 3.1.1 按遥感平台分 ●航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测。 ●航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等; ●航空遥感:传感器设置于航空器上,主要是飞机、气球等; ●地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等。 3.1.2 按传感器的探测波段分 ●紫外遥感(0.05—0.38μm) ●可见光遥感(0.38—0.76μm) ●红外遥感(0.76—1000μm) ●微波遥感(1mm—10m) ●多波段遥感——指探测波段在可见光和红外波段范围内,再分成若干个窄波段来探测目标。 3.1.3 按工作方式分 ●主动遥感和被动遥感:前者是由探测器主动向目标发射一定能量的电磁波,并接收目标的反射或散射信号。后者是被动接收目标物的自身发射和自然辐射源的反射能量。

遥感科学与技术专业

遥感科学与技术专业 培养目标 培养德、智、体全面发展,具备遥感与摄影测量的基本理论、方法和技术,具有传感器的集成与设计、遥感数据获取与处理、专题信息提取、遥感数据建模与反演、数字化测绘和遥感信息服务等方面的生产、研发、教学和管理等工作技能,能在在测绘、地质、城市、矿山、海洋、资源、环境、电力、水利、交通、农业、林业、国防、军工和文物等领域从事摄影测量与遥感生产设计以及有关空间信息系统的建设和应用、规划、管理、科研和教学的高级专门人才。 课程设置 在学习高等数学、工程数学、大学物理等基础理论知识和英语、计算机等公共基础课程的基础上,本专业主要学习自然地理与地质学、普通测量学、大地测量学基础、地图学原理、误差理论与测量平差、遥感物理基础、遥感原理与方法、遥感数字图像处理、摄影测量学、微波遥感与干涉测量、高光谱遥感、高空间分辨率遥感、地理信息系统、卫星导航定位、计算机地图制图、空间数据库基础等专业课程,接受实践技能、资源与环境遥感、遥感地学分析与应用、科学研究方法等方面的能力训练。 培养特色 本专业注重遥感科学与技术基础理论、基本知识和基本技能的教学。在公共必修与专业基础课程学习结束后,自大学三年级开始分矿山环境与灾害遥感、高分遥感地图制图两大培养方向,具有高空间分辨率遥感测绘制图、矿区与城市地表形变微波干涉测量、土地与环境遥感、矿产资源遥感探测、环境污染遥感监测、自然灾害遥感测量与评估等培养特色。注重综合能力和创新精神的培养,注重英语能力、计算机应用能力和解决实际问题能力的提高。 就业深造 我校拥有“测绘科学与技术”一级学科博士学位授权点和博士后流动站,拥有该学科所有专业硕士、博士学位授予权,学生可以选择进一步深造,2006年以来,历年攻读硕士研究生的人数均超过应届毕业生总人数的40%。 完成本科生学业后,可以在大地测量学与测量工程、摄影测量与遥感、地图制图学与地理信息工程、矿山空间信息学与沉陷控制工程、土地资源管理及相关专业领域攻读硕士学位。本专业毕业生可在测绘、遥感、地质、水利、交通、农业、林业、石油、矿山、煤炭、国防、军工、城建、环保、文物保护等行业和部门从事与摄影测量与遥感相关的科研、教学、设计、生产及管理工作。

相关主题
文本预览
相关文档 最新文档