当前位置:文档之家› 弦切角(2)

弦切角(2)

弦切角(2)
弦切角(2)

弦切角

1、教材分析

(1)知识结构

(2)重点、难点分析

重点:弦切角定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.

难点:弦切角定理的证明.因为在证明过程中包含了由“一般到特殊”的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.

2、教学建议

(1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;

(2)学习时应注意:(Ⅰ)弦切角的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用弦切角定理时,首先要根据图形准确找到弦切角和它们所夹弧上的圆周角;(Ⅲ)要注意弦切角定理的证明,体现了从特殊到一般的证明思路.

教学目标:

1、理解弦切角的概念;

2、掌握弦切角定理及推论,并会运用它们解决有关问题;

3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.

教学重点:弦切角定理及其应用是重点.

教学难点:弦切角定理的证明是难点.

教学活动设计:

(一)创设情境,以旧探新

1、复习:什么样的角是圆周角?

2、弦切角的概念:

电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A 旋转至与圆相切时,得∠BAE.

引导学生共同观察、分析∠BAE的特点:

(1)顶点在圆周上;(2)一边与圆相交;(3)一边与圆相切.

弦切角的定义:

顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

3、用反例图形剖析定义,揭示概念本质属性:

判断下列各图形中的角是不是弦切角,并说明理由:

以下各图中的角都不是弦切角.

图(1)中,缺少“顶点在圆上”的条件;

图(2)中,缺少“一边和圆相交”的条件;

图(3)中,缺少“一边和圆相切”的条件;

图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.

通过以上分析,使全体学生明确:弦切角定义中的三个条件缺一不可。

(二)观察、猜想

1、观察:(电脑动画,使C点变动)

观察∠P与∠BAC的关系.

2、猜想:∠P=∠BAC

(三)类比联想、论证

1、首先让学生回忆联想:

(1)圆周角定理的证明采用了什么方法?

(2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?

2、分类:教师引导学生观察图形,当固定切线,让过切

点的弦运动,可发现一个圆的弦切角有无数个.

如图.由此发现,弦切角可分为三类:

(1)圆心在角的外部;

(2)圆心在角的一边上;

(3)圆心在角的内部.

3、迁移圆周角定理的证明方法

先证明了特殊情况,在考虑圆心在弦切角的外部和内部两种情况.

组织学生讨论:怎样将一般情况的证明转化为特殊情况.

如图 (1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠l =∠APQ-∠2=∠APC.

如图 (2),圆心O在∠CAB内,作⊙O的直径AQ.连结PQ,则∠BAC=∠QAB 十∠1=∠QPA十∠2=∠APC,

(在此基础上,给出证明,写出完整的证明过程)

回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:

弦切角定理:弦切角等于它所夹的弧对的圆周角.

4.深化结论.

练习1 直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.

练习2 如图,DE切⊙O于A,AB,AC

是⊙O 的弦,若=,那么∠DAB和

∠EAC是否相等?为什么?

分析:由于和分别是两

个弦切角∠OAB和∠EAC所夹的弧.而=.连结B,C,易证∠B

=∠C.于是得到∠DAB=∠EAC.

由此得出:

推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.

(四)应用

例1如图,已知AB是⊙O的直径,AC是弦,直线CE

和⊙O切于点C,AD⊥CE,垂足为D

求证:AC平分∠BAD.

思路一:要证∠BAC=∠CAD,可证这两角所在的直角

三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.

证明:(学生板书)

组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.

思路二,连结OC,由切线性质,可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可证得结论。

思路三,过C作CF⊥AB,交⊙O于P,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.

练习题

1、如图,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC

=56°,则∠ECA=______度.

2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比

为3:1,则夹劣弧的弦切角∠BAC=________

3、如图,经过⊙O上的点T的切线和弦AB的延长线相

交于点C.

求证:∠ATC=∠TBC.

(此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)

(五)归纳小结

教师组织学生归纳:

(1)这节课我们主要学习的知识;

(2)在学习过程中应用哪些重要的数学思想方法?

(六)作业:教材P13l习题7.4A组l(2),5,6,7题.

探究活动

一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明.

提示:是圆周角(它是弦切角定理的逆命题).分三种情况证明(证明略).

弦切角定理及其推论

弦切角定理及其推论 定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 证明:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴∠BOC=2∠TCB (定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB (定理:弦切角的度数等于它所夹的弧的圆周角) 弦切角定理推论:两弦切角所夹的弧相等,则这两个弦切角也相等。 应用举例:

第一个算出地球周长的人 ──埃拉托色尼 2000多年前,有人用简单的测量工具计算出地球的周长。这个人就是古希腊的埃拉托色尼。 埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长。 细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子。但是,亚历山大城地面上的直立物却有一段很短的影子。他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几。他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近。这充分反映了埃拉托色尼的学说和智慧。 埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著。书中描述了地球的形状、大小和海陆分布。埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学。

弦切角定理证明方法

弦切角定理证明方法 弦切角定理证明方法连oc、oa,则有oc⊥cd于点c。得oc‖ad,知∠oca=∠cad。 而∠oca=∠oac,得∠cad=∠oac。进而有∠oac=∠bac。 由此可知,0a与ab重合,即ab为⊙o的直径。 连接bc,且作ce⊥ab于点e。立即可得△abc为rt△,且∠acb=rt∠。 由射影定理有ac2=ae*ab。又∠cad=∠cae,ac公用,∠cda=∠cea,得△cea ≌△cda,有ad=ae,所以,ac2=ab*ad。 第一题重新证明如下: 首先证明弦切角定理,即有∠acd=∠cba。

连接oa、oc、bc,则有 ∠acd+∠aco=90° = = =∠aco+∠aoc, 所以∠acd=∠aoc, 而∠cba=∠aoc, 得∠acd=∠cba。 另外,∠acd+∠cad=90°,∠cad=∠cab, 所以有∠cab+∠cba=90°,得∠bca=90°,进而ab为⊙o的直径。 2 证明一:设圆心为o,连接oc,ob,。 ∵∠tcb=90-∠ocb ∵∠boc=180-2∠ocb ∴,∠boc=2∠tcb ∵∠boc=2∠cab ∴∠tcb=∠cab 证明已知:ac是⊙o的弦,ab是⊙o 的切线,a为切点,弧是弦切角∠bac所夹的弧.

求证: 证明:分三种情况: 圆心o在∠bac的一边ac上 ∵ac为直径,ab切⊙o于a, ∴弧cma=弧ca ∵为半圆, ∴∠cab=90=弦ca所对的圆周角圆心o在∠bac的内部. 过a作直径ad交⊙o于d, 若在优弧m所对的劣弧上有一点e 那么,连接ec、ed、ea 则有:∠ced=∠cad、∠dea=∠dab ∴∠cea=∠cab ∴ 圆心o在∠bac的外部, 过a作直径ad交⊙o于d 那么∠cda+∠cad=∠cab+∠cad=90 ∴∠cda=∠cab ∴ 编辑本段弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两

弦切角(2)

弦切角 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:弦切角定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一. 难点:弦切角定理的证明.因为在证明过程中包含了由“一般到特殊”的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点. 2、教学建议 (1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识; (2)学习时应注意:(Ⅰ)弦切角的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的弦;(Ⅱ)在使用弦切角定理时,首先要根据图形准确找到弦切角和它们所夹弧上的圆周角;(Ⅲ)要注意弦切角定理的证明,体现了从特殊到一般的证明思路. 教学目标: 1、理解弦切角的概念; 2、掌握弦切角定理及推论,并会运用它们解决有关问题; 3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法. 教学重点:弦切角定理及其应用是重点. 教学难点:弦切角定理的证明是难点. 教学活动设计: (一)创设情境,以旧探新

1、复习:什么样的角是圆周角? 2、弦切角的概念: 电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A 旋转至与圆相切时,得∠BAE. 引导学生共同观察、分析∠BAE的特点: (1)顶点在圆周上;(2)一边与圆相交;(3)一边与圆相切. 弦切角的定义: 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。 3、用反例图形剖析定义,揭示概念本质属性: 判断下列各图形中的角是不是弦切角,并说明理由: 以下各图中的角都不是弦切角. 图(1)中,缺少“顶点在圆上”的条件; 图(2)中,缺少“一边和圆相交”的条件; 图(3)中,缺少“一边和圆相切”的条件; 图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件. 通过以上分析,使全体学生明确:弦切角定义中的三个条件缺一不可。 (二)观察、猜想

弦切角定理练习-初三数学

一、填空 1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____. 2.已知:如图7-144,直线DC与⊙O相切于点C,AB为直径,AD⊥DC于D,∠DAC=28°,则∠CAB=____ . 3.已知:如图7-145,PA切⊙O于点A,∠P=15°,∠ABC=47°,则∠C= ____. 4.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____. 二、选择 5.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于() A.62.5°B.55° C.50°D.40° 6.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径, 则图中与∠PAB相等的角的个数为() A.1 个B.2个C.4个D.5个 7.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径, MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是 A.38°B.52°C.68°D.42° 三、解答 8.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°, AD为⊙O一弦.求∠ADC与∠PCA的度数. 9.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于 P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求 ∠A的度数.

10.已知:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BE⊥AC于E.若AE=6cm,EC=2cm,求BD的长. 2 11.已知:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC. 12.已知:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE于F.求证: (1)△ABE为等腰三角形; (2)若 BC=1cm,AB=3cm,求EF的长.

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

怎样证明弦切角

怎样证明弦切角 怎样证明弦切角设圆心为o,连接oc,ob,oa。过点a作tp的平行线交bc于d, 则∠tcb=∠cda ∵∠tcb=90-∠ocd ∵∠boc=180-2∠ocd ∴,∠boc=2∠tcb ∵∠boc=2∠cab ∴∠tcb=∠cab 2 接oboc过o做oe⊥bc 所以∠a=1/2 又因为∠oct=90° ∠oec=90° 所以∠eoc=∠tcb

所以∠tcb=∠a 3 温馨提示 设切点为a切线ab弦ac圆心为o 过a作直径ad连oc 角cab等于90度减角dac 因为oa等于oc所以角aoc等于180度减去二倍的角dac 即可证明角aoc等于二倍的角cab 参考资料:弦切角是这弦所对的圆心角的一半 4 线段ad与线段ef互相垂直平分。 证明:设ad交ef于点g. 因为ap为切线,所以弦切角等于所对的圆周角,即∠pac=∠b, 又因为ad平分∠bac,所以∠dac=∠bad, 从而∠pac+∠dac=∠b+∠bad, 而∠pac+∠dac=∠pad, ∠b+∠bad=∠pda,所以 ∠pad=∠pda,则△pad为等腰三角

形, 因pm平分∠apd,所以pm垂直平分ad,则ef垂直平分ad, 从而ad垂直ef, 则∠age=∠agf=90°, 再由∠gaf=∠gae,得到 △eag≌△fag, 从而eg=fg,从而ad也垂直平分ef。 5 圆心o在∠bac的一边ac上 ∵ac为直径,ab切⊙o于a, ∴弧cma=弧ca ∵为半圆, ∴∠cab=90=弦ca所对的圆周角圆心o在∠bac的内部. 过a作直径ad交⊙o于d, 若在优弧m所对的劣弧上有一点e 那么,连接ec、ed、ea 则有:∠ced=∠cad、∠dea=∠dab ∴∠cea=∠cab ∴ 圆心o在∠bac的外部,

弦切角(一)

弦切角(一) 弦切角(一)弦切角(一)教学目标:1、使学生理解弦切角定义;2、初步掌握弦切角定理及其运用.3、通过运用弦切角定理,培养学生的推理论证能力;教学重点:正确理解弦切角定理,这一定理在以后的证明中经常使用.教学难点:弦切角定理的证明.学生不太容易想到把弦切角的(2)(3)种情况“转化”为(1).教学中可提醒学生注意圆周角定理的证明方法.教学过程:一、新课引入:我们已经学过圆心角和圆周角,本课我们用同样的思想方法来学习弦切角.二、新课讲解:实际上,我们把圆周角∠bac的一边ab绕顶点a旋转到与圆相切时,所成的∠bac称为弦切角.从数学的角度看,弦切角能分为几大类?请同学们打开练习本,画一画.学生动手画,教师巡视,当所有学生都把三种情形的弦切角画出来时,教师可以打开计算机或幻灯给同学们作演示.按直角、锐角、钝角顺序分为图形(1)、(2)、(3).教师指导学生给出弦切角的定义,并就图(1)中的弦切角猜想弦切角定理.指导学生完成证明,并得到推论.1.定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.2.弦切角定理:弦切角等于它所夹的弧对的圆周角.3.弦切角定理推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等.(三)重点、难点的学习与目标完成过程.由圆周角定理我们知道,一条弧所对的圆周角无数个,但它们的度数相等.因此,一条弧的度数的大小,就决定了它所

对的圆周角的大小.在猜想和证明弦切角定理时,教师可提示学生观察图7-71(1)中弦切角∠bac所夹的弧为半圆,半圆所对的圆周角是直角,故图7-71(1)中∠bac等于它所夹弧对的圆周角.在把图7-71(2)和(3)向(1)转化时,图7-71(2)中要运用“直角三角形的两锐角互余”,图7-71(3)中要用到“圆内接四边形对角互补”.教师务必就图形把转化过程讲清楚,得到推论已是顺理成章的事情了.证明过程参照教材.练习一,p.123练习1,如图7-72,直线ab和⊙o相切于点p,pc和pd为弦,指出图中所有的弦切角.此题利用定义直接判定∠apc、∠apd、∠bpd、∠bpc.练习二,p.123练习2,如图7-73,经过.⊙o上的点t的切线和弦ab的延长线相交于c.求证:∠atc=∠tbc.分析:欲证∠atc=∠tbc,可证△atc∽△tbc或角的其它性质,△atc∽△tbc∠atc=∠tbc.∠atc=∠tbc∠atc=∠tbc.此题应指导学生结合学过的知识,灵活运用弦切角定理.例1,p.122如图7-74,已知ab是⊙o的直径,ac是弦,直线ce和⊙o切于点c,ad⊥ce,垂足为d.求证:ac平分∠bad.分析,如果连结bc,则∠bac和∠dac分别在两个三角形中,可通过三角形相似证得,也可通过直角三角形两锐角互余证得.如果连结oc,还可通过平行线的性质和切线的性质证得,教师板书本书证法,另外两种方法让学生在练习本上完成.证明:连结bc.ab是⊙o的直径∠acb=90°∠b+∠cab=90°ad ⊥ce ∠adc=90°∠dac=∠cab即ac平分∠bad.三、课堂小结:让学生阅读教材p.121至p.123.从中总结出本课学习的主要内容:1.弦切角定义,除了由位置上定义弦切角外,还可从运动的角度,通过圆

圆切线长定理及弦切角练习题

切线长定理及弦切角练习题 (一)填空 1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____. 2.已知:如图7-144,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°侧∠CAB=____ . 3.已知:直线AB与圆O切于B点,割线ACD与⊙O交于C和D 4.已知:如图7-145,PA切⊙O于点A,割线PBC交⊙O于B和C两点,∠P=15°,∠ABC=47°,则∠C= ____. 5.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____.

6.已知:如图 7-147,△ABC内接于⊙O,DC切⊙O于C点,∠1=∠2,则△ABC为____ 三角形. 7.已知:如图7-148,圆O为△ABC外接圆,AB为直径,DC切⊙O于C点,∠A=36°,那么∠ACD=____. (二)选择 8.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于 [ ] A.62.5°;B.55°;C.50°;D.40°. 9.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径,则图中与∠PAB相等的角的个数为 [ ]

A.1 个;B.2个;C.4个;D.5个. 10.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径,MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是 [ ] A.38°;B.52°;C.68°;D.42°. 11.已知如图7-151,PA切⊙O于点A,PCB交⊙O于C,B两点,且 PCB过点 O,AE⊥BP交⊙O于E,则图中与∠CAP相等的角的个数是 [ ] A.1个;B.2个;C.3个;D.4个. (三)计算 12.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°,AD为⊙O一弦.求∠ADC与∠PCA的度数.

弦切角定理

弦切角定理 弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 如图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角 ∠BAC所夹的弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角 B点应在A点左侧 (2)圆心O在∠BAC的内部. 过A作直径AD交⊙O于D, 若在优弧m所对的劣弧上有一点E 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴∠CEA=∠CAB ∴(弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么∠CDA+∠CAD=∠CAB+∠CAD=90 ∴∠CDA=∠CAB ∴(弦切角定理)

切线长定理 切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O 的两条切线,我们把线段PA,PB叫做点 P到⊙O的切线长. 切线长定理:从圆外一点引圆的两 条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.切线长定理推论:圆的外切四边形的两组对边的和相等 相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 相交弦定理说明: 若弦AB、CD交于点P 则PA·PB=PC·PD(相交弦定理) 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项若AB是直径,CD垂直AB于点P, 则PC2=PA·PB(相交弦定理推论) 割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

弦切角定理证明方法

弦切角定理证明方法 弦切角定理证明方法 (1)连oc、oa,则有oc⊥cd于点c。得oc‖ad,知 ∠oca=∠cad。 而∠oca=∠oac,得∠cad=∠oac。进而有∠oac=∠bac。 由此可知,0a与ab重合,即ab为⊙o的直径。 (2)连接bc,且作ce⊥ab于点e。立即可得△abc为rt△,且∠acb=rt∠。 由射影定理有ac2=ae*ab。又∠cad=∠cae,ac公用, ∠cda=∠cea,得△cea≌△cda,有ad=ae,所以,ac2=ab*ad。 第一题重新证明如下: 首先证明弦切角定理,即有∠acd=∠cba。 连接oa、oc、bc,则有 ∠acd+∠aco=90° =(1/2)(∠aco+∠cao+∠aoc) =(1/2)(2∠aco+∠aoc) =∠aco+(1/2)∠aoc, 所以∠acd=(1/2)∠aoc, 而∠cba=(1/2)∠aoc(同弧上的圆周角等于圆心角的一半), 得∠acd=∠cba。 另外,∠acd+∠cad=90°,∠cad=∠cab, 所以有∠cab+∠cba=90°,得∠bca=90°,进而ab为⊙o的直径。

2 证明一:设圆心为o,连接oc,ob,。 ∵∠tcb=90-∠ocb ∵∠boc=180-2∠ocb ∴,∠boc=2∠tcb(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半) ∵∠boc=2∠cab(圆心角等于圆周角的两倍) ∴∠tcb=∠cab(定理:弦切角的度数等于它所夹的弧的圆周角) 证明已知:ac是⊙o的弦,ab是⊙o的切线,a为切点,弧是弦切角∠bac所夹的弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心o在∠bac的一边ac上 ∵ac为直径,ab切⊙o于a, ∴弧cma=弧ca ∵为半圆, ∴∠cab=90=弦ca所对的圆周角(2)圆心o在∠bac的内部. 过a作直径ad交⊙o于d, 若在优弧m所对的劣弧上有一点e 那么,连接ec、ed、ea 则有:∠ced=∠cad、∠dea=∠dab ∴∠cea=∠cab ∴(弦切角定理) (3)圆心o在∠bac的外部,

弦切角定理及其应用

弦切角定理及其应用 顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 弦切角定义 图1 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。 弦切角定理 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 如上图,∠PCA=1/2∠COA=∠CBA 弦切角定理证明: 证明一:设圆心为O,连接OC,OB,。 ∵∠TCB=90°-∠OCB ∵∠BOC=180°-2∠OCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的 弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角 (2)圆心O在∠BAC的内部. (B点应在A点左侧) 过A作直径AD交⊙O于D, E 若在优弧m所对的劣弧上有一点 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴∠CEA=∠CAB ∴(弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么∠CDA+∠CAD=∠CAB+∠CAD=90° ∴∠CDA=∠CAB

∴(弦切角定理) 3弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在⊙O中,⊙O的切线AC、BC交与 点C,求证:∠CAB=∠CBA。 解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。∴∠CAB=∠CBA。(等腰三角形“等边对等角”)。 例2:如图,AD是ΔABC中∠BAC的平分线,经过点A 的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求 证:EF//BC. 证明:连接DF AD是∠BAC的平分线 ∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC ⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDC EF∥BC 例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB 于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD. 证明:∵AB是⊙O直径∴∠ACB=90 ∵CD⊥AB ∴∠ACD=∠B,

弦切角

思考:弦切角与它所夹的弧的圆周角有什么关系? (提示分三种情况考虑) 定理:弦切角的度数等于它所夹的弧的圆周角 定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半

若两弦切角所夹的弧相等,则这两个弦切角也相等 例题:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF∥BC.

顶点在圆上,一边和圆相交,另 图示 一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角) 如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。 弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 弦切角定理证明:证明一:设圆心为O,连接OC,OB,连接BA并延长交直线T于点P。 ∵∠TCB=90-∠OCB ∵∠BOC=180-2∠OCB 此图证明的是弦切角∠TCB ∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半)∵∠BOC=2∠CAB(圆心角等于圆周角的两倍) ∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角) 证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧. 求证:(弦切角定理) 证明:分三种情况: (1)圆心O在∠BAC的一边AC上 ∵AC为直径,AB切⊙O于A, ∴弧CmA=弧CA ∵为半圆, ∴∠CAB=90=弦CA所对的圆周角

B点应在A点左侧 (2)圆心O在∠BAC的内部. 过A作直径AD交⊙O于D, 若在优弧m所对的劣弧上有一点E 那么,连接EC、ED、EA 则有:∠CED=∠CAD、∠DEA=∠DAB ∴ ∠CEA=∠CAB ∴(弦切角定理) (3)圆心O在∠BAC的外部, 过A作直径AD交⊙O于D 那么∠CDA+∠CAD=∠CAB+∠CAD=90 ∴∠CDA=∠CAB ∴(弦切角定理) 编辑本段弦切角推论 推论内容 若两弦切角所夹的弧相等,则这两个弦切角也相等 应用举例 例1:如图,在中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长. 解:连结OA,OB. ∵在中, ∠C=90 ∴∠BAC=30°

相关主题
文本预览
相关文档 最新文档