当前位置:文档之家› (完整版)钠离子电池负极材料

(完整版)钠离子电池负极材料

(完整版)钠离子电池负极材料
(完整版)钠离子电池负极材料

钠离子电池负极材料

摘要

在大量电池需求下,由于钠相对于锂更加环保、价格低廉、分布广泛等优点,对钠离子电池负极材料的研究热情日益高涨。钠离子电池负极材料主要分为含碳材料、氧化物/磷酸盐(钠嵌入材料)、钠合金/复合物等。阐述不同的材料有不同的嵌入/脱嵌钠的反应机制。同时强调钠离子电池作为锂离子电池潜在的商业对手,由于价格低廉和相对高的能量密度带来的前景。

1.引言

可充电锂电池,通常叫做锂离子电池,,被认为是至今最成功和成熟的能量储存装置。起初因为高能和安全被广泛研究,同时作为电车的可选电源。配备大量锂电池作为电源的电车已经慢慢占领电动市场,将来有望减少对化石燃料的依赖性。但是必要元素锂广泛分布在地壳,并不能被认为很充足;同时,自从锂离子电池的商业化,锂材料价格迅速上升。恰恰相反,钠元素广泛存在于海盐中,可谓用之不尽;同时作为半径仅次于锂的第二轻的碱金属元素,化学性质与锂相似。

钠与锂有些许的差别:钠

原子是锂原子的三倍重,离子

半径更大,Na/Na+标准电势高

于Li/Li+3.4V,相应地体能量

密度或者重量能量密度低,钠

熔点(97.7℃)低于锂熔点

(180.5℃),所以钠的安全性

低于锂。因为钠离子半径大,

主电极材料要求有充足大的

间隙容纳钠离子,进行可逆、

迅速的离子/电子注入与排出。

钠离子电池主要的障碍在于合适的负电极。石墨烯的发现,加速了锂离子电池的发展,理论容量为372 mA h g-1,低平的工作电压平台。不幸的是,石墨烯不能作为钠离子的嵌入主体。随着对大规模电能储存电池要求的增加,产生对NIB的研究热情。在过去的三四十年,由于全世界大量的研究努力,NIB的负极化学性能已经有了极大提高。对NIB负极材料大致分为四类:⑴含碳材料⑵氧化物/磷酸盐材料(嵌入)⑶p-block元素⑷氧化物/硫酸盐(还原反应)

2.碳基电极

2.1钠注入硬碳

由于石墨烯可逆容量高达360 mA h g-1,被广泛作为LIB负极材料。然而在钠电池中化学活性非常低,仅有在氦气或真空条件加热金属钠小量的钠原子可以注入到石墨烯,形成NaC64,远远小于Li和K。较低晶态碳如软碳、硬碳,有更高的电化学活性。通常软碳包含无序结构,在高于2800℃是石墨化的。在高于600-700℃软碳高于石墨在锂电池的容量。然而初始循环后由于在软碳表面电解质分解,产生不可逆容量。硬碳(所谓的非石墨化碳)有类似于软碳的无序结构,

然而它们的具体结构一直是个争论的话题。由于硬碳结构随着合成条件改变,比如碳源和碳化温度,很难有普适的硬碳结构模型。在所有的模型中,硬碳由碳层(类石墨烯)和形成于无序堆垛碳层之间的微孔(纳米孔)两部分组成。具体结构、畴的尺寸、碳层和微孔含量依赖于碳化条件。

硬碳被首先适用于商业锂离子电池,

由于无序不会发生态的过渡。某些情况可

逆容量高于石墨烯的理论容量。Stevens

和Dahn首先报道了钠注入/排出硬碳的

室温性能,在1000℃通过葡萄糖的碳化得

到的硬碳容量达到300 mA h g-1。硬碳

通过电化学还原可以可逆地更大量的注

入钠。Dahbi, M等人利用在1300℃碳化

蔗糖得到的硬碳测得了充电/放电性能,

如图,在0.8V初始还原过程的不可逆还

原电压平台,表明在伴随硬碳表面钝化层

形成时,电解质溶剂、盐、添加物的分解。

1.2V到0.1V的电位图斜率紧随一个在

0.1V的平台,大约300 mA h g-1可逆容

量。在氧化过程,0.1V附近容量达到100-

130 mA h g-1,然后电势上升到1.2V,表

明Na的可逆注入/排出。

对于Li和Na注入无序碳的反应机制

主要有两种模型。第一种模型中,Sato和

Yata等人基于LiC2态,LI+离子容纳在离子位,Li2共价位在碳层之间。第二种模型,li注入到微孔中。

2.2固体电解质中间相(SEI)

对于钠电池,溶剂、电解质盐、添加剂和烧结机都会影响硬碳电极容量,性能差别来源于电解质的分解和表面层的形成。电解质中间相的观点首先被Peled 等人提出:①SEI防止电极和溶液的直接接触②SEI是离子导体。通常,几乎所有的非质子溶剂都是热力学不稳定的,所以钝化层在实现高循环容量起到关键作用。薄膜稳定层形成在碳材料表面的观点被普遍接受,它抑制电解质的分解。

Moshkovich对比了形成在贵金属表面的表面薄膜,发现贵金属不完全钝化和表面膜的溶解,可能是因为Na系统中碳酸酯基电解质溶液电化学分解产物的溶解度高于Li系统。由于不完全钝化,Na和C遭受着化学腐蚀(化学氧化),Na 金属沉积/贵金属分解可逆性更低。同样Na和Li系统中形成在硬碳颗粒上的表面层也存在差异。Dahbi,M等人利用SEM、TEM、XPS等技术,发现不同的薄膜形态和厚度。在Na系统沉积层粗糙不均匀,在TOF-SIMS图中观察,Na的锋更强,结果表明Na的表面膜为无机化合物,相反LI的为有机化合物。以上表明含钠有机化合物更加可溶。综上所述,钝化层防止注入硬碳的Na和Li在界面与电解质的化学反应,但是薄膜的形态和化学不成不同。

3.钛基化合物

钛基化合物尤其是TiO2和尖晶石型Li[Li1/3Ti5/3]O4作为LIB负极材料被广泛深刻研究。许多钛基材料作为Li注入的主体材料。然而对于NIB,钛材料很少被研

究,比如NaTi2(PO4)3和TiS2。随着对NIB研究热情的高涨,如TiO2等也被广泛研究。

3.1TiO2和钛酸盐

钛化合物常见形式是TiO2,结构包含Ti4+的TiO6八面体,Ti4+没有d电子,电子绝缘。稳定、无毒性、便宜、量大。几种晶型的TiO2可以作为Li+的注入主体。其中脱钛矿型TiO2作为一种自然矿石,作为Li+注入主体研究最早。TiO6和其他的TiO6共边,形成变形的立方米堆积(CCP)晶格。微观尺度每通式TiO2可以可逆储存0.5molLi+。尽管通过第一原理计算,对Na+和Li+的扩散阻碍都很小,但是在Na电池中,脱钛矿型TiO2是没有电化学活性,纳米级的粒子可以通过缩短迁移距离提高TiO2电极性能。在0-0.2V vs Na+/Na电压范围获得150mA h g-1(0.5molNa),但是大的表面积导致库伦效率很低。金红石型TiO2包含共角的TiO6八面体,是作为Li注入TiO2最稳定的晶型,微米尺度不活泼,然而纳米尺度粒子活性很高。

尖晶石型Li[Li1/3Ti5/3]O4(空间群Fd3m),框架结构为阳离子有序岩盐相,1/4的Li+和全部的Ti4+在八面体位,八面体共边,形成三维通道,剩余的Li+占据四面体位。当Li+注入到Li[Li1/3Ti5/3]O4,四面体位的Li+迁移到邻近的八面体位,伴随Ti4+到Ti3+,形成Li2[Li1/3Ti5/3]O4。但是没有体积变化,故成为零应力负极材料,该材料对长期循环是非常有利,工作势能1.55V vs. Li/Li+,所以不会存在电解质分解锂注入的不安全性,也不会有枝晶生长。Hu 等人首先研究了Li[Li1/3Ti5/3]O4的Na注入电化学,获得可逆容量155 mA h g-1,0.7V注入/排出电压平台,且循环性能好。然而在钠电池中膜的形成是不可避免的,导致低的库伦效率,所以粘结剂的选择对提高循环性能尤其重要。

钠的钛酸盐化合物可以表示为

Na2O·nTiO2,可以用钠氧化物,Na2O和TiO2

合成。对于Na注入主体的Na2Ti3O7被广泛

研究,结构如右图。Na2Ti3O7是至今报道的

电压最低的氧化物注入电极,仅为0.3V。每

个Na2Ti3O7单元可容难2个Na,相应地2/3

的Ti4+还原到Ti3+。Na2Ti3O7/carbon black

复合物电极在低的循环倍率(C/10)有177

mA h g-1容量。纳米尺度的Na2Ti3O7具有高的充电/放电倍率性能。但是对于低电压氧化物的一个挑战是初始循环不可逆性能损失。由于钛氧化物的绝缘特性,会产生大的容量损失。Na2Ti6O13与Na2Ti3O7结构类似,每个Na2Ti6O13可以容纳0.85Na,容量65 mA h g-1,电压平台0.8V。C做添加剂的Na2Ti6O13具有稳定的循环和高倍率性能,高达5000次和20C。Na0.66[Li0.22Ti0.78]O2为P2型层状结构,Ti4+和Li+占据八面体位,理论容量104 mA h g-1,体积变化小1.0%,几乎零应力。100次循环之后容量保留75%。

3.2钛磷酸盐

NaTi2(PO4)3具有NASICON型结构,TiO6八面体被共角的PO4相互孤立,形成有一系列碱金属离子空位的开放结构。可以容纳4个Na+,基于Ti3+/Ti4+其中2个Na+是可逆注入的,形成Na3Ti2(PO4)3。理论容量133 mA h g-1,在Na电池中通过实验获得,2.1V的工作电压,由于诱导效应相对于氧化物材料工作电压很高。最近Senguttuvan报道了额外的电压平台,大约0.4V,对应于Ti3+/Ti2+,额外的Na+被注入,形成Na4Ti2(PO4)3。2.1V的电压可能限制了

硅负极材料在锂离子电池中的应用

新型硅负极材料在锂离子电池中的应用研究 吴孟涛 天津巴莫科技股份有限公司 当今社会便携式可移动电子设备的高速发展极大的刺激了市场对重量轻体积小容量和能量密度更高的锂离子电池的需求。目前商业化锂离子电池都是以碳基材料作为负极的,但由于石墨负极的可逆容量只有372mAh/g (LiC6),严重限制了未来锂离子电池的发展,所以研发下一代锂离子电池负极材料成为新的热点。人们发现在Li22Si5中硅的恒流理论容量达到了4200mAh/g,是极具开发潜力的锂离子负极材料。但这种材料的缺点也很突出:在嵌锂和脱锂过程中材料体积会发生膨胀,微观结构发生改变而导致在嵌锂脱嵌过程中电极的断裂和损耗[1]。虽然不少文献提出了很多改进方法但由于制备出的硅薄膜材料厚度较薄,不适宜商业化生产。为了使硅负极可以应用于实际生产,我公司以无定形硅薄膜溅射在铜箔上成功制备出了厚度大于1μ的硅薄膜负极材料并与市场上的LiCoO2制成电池进行了一系列循环和倍率性能测试。 1 实验: 硅薄膜是以物理溅射的方法在表面粗糙的铜箔上的[2]。表面形貌分析应用的是HRTEM(FEI Tecnai20).制备出的硅薄膜材料在80℃下真空干燥24h,与市场上销售的LiCoO2在手套箱中组成2025扣式全电池。电解液为1M LiPF6/EC+DMC(体积比1:1);隔膜使用的是Celgard-2300。所有倍率试验和循环性能试验都是在电脑控制的25±1℃恒温系统中进行的。 2结果与讨论: 图1是循环前硅薄膜材料的HRTEM图和SAED图,从图中可以清楚看出涂在铜箔上的硅薄膜是无定形状态的。 图1 硅薄膜材料的HRTEM图和SAED图

(完整版)钠离子电池负极材料

钠离子电池负极材料 摘要 在大量电池需求下,由于钠相对于锂更加环保、价格低廉、分布广泛等优点,对钠离子电池负极材料的研究热情日益高涨。钠离子电池负极材料主要分为含碳材料、氧化物/磷酸盐(钠嵌入材料)、钠合金/复合物等。阐述不同的材料有不同的嵌入/脱嵌钠的反应机制。同时强调钠离子电池作为锂离子电池潜在的商业对手,由于价格低廉和相对高的能量密度带来的前景。 1.引言 可充电锂电池,通常叫做锂离子电池,,被认为是至今最成功和成熟的能量储存装置。起初因为高能和安全被广泛研究,同时作为电车的可选电源。配备大量锂电池作为电源的电车已经慢慢占领电动市场,将来有望减少对化石燃料的依赖性。但是必要元素锂广泛分布在地壳,并不能被认为很充足;同时,自从锂离子电池的商业化,锂材料价格迅速上升。恰恰相反,钠元素广泛存在于海盐中,可谓用之不尽;同时作为半径仅次于锂的第二轻的碱金属元素,化学性质与锂相似。 钠与锂有些许的差别:钠 原子是锂原子的三倍重,离子 半径更大,Na/Na+标准电势高 于Li/Li+3.4V,相应地体能量 密度或者重量能量密度低,钠 熔点(97.7℃)低于锂熔点 (180.5℃),所以钠的安全性 低于锂。因为钠离子半径大, 主电极材料要求有充足大的 间隙容纳钠离子,进行可逆、 迅速的离子/电子注入与排出。 钠离子电池主要的障碍在于合适的负电极。石墨烯的发现,加速了锂离子电池的发展,理论容量为372 mA h g-1,低平的工作电压平台。不幸的是,石墨烯不能作为钠离子的嵌入主体。随着对大规模电能储存电池要求的增加,产生对NIB的研究热情。在过去的三四十年,由于全世界大量的研究努力,NIB的负极化学性能已经有了极大提高。对NIB负极材料大致分为四类:⑴含碳材料⑵氧化物/磷酸盐材料(嵌入)⑶p-block元素⑷氧化物/硫酸盐(还原反应) 2.碳基电极 2.1钠注入硬碳 由于石墨烯可逆容量高达360 mA h g-1,被广泛作为LIB负极材料。然而在钠电池中化学活性非常低,仅有在氦气或真空条件加热金属钠小量的钠原子可以注入到石墨烯,形成NaC64,远远小于Li和K。较低晶态碳如软碳、硬碳,有更高的电化学活性。通常软碳包含无序结构,在高于2800℃是石墨化的。在高于600-700℃软碳高于石墨在锂电池的容量。然而初始循环后由于在软碳表面电解质分解,产生不可逆容量。硬碳(所谓的非石墨化碳)有类似于软碳的无序结构,

钠离子电池正负极材料研究新进展

第46卷第4期2018年4月 硅酸盐学报Vol. 46,No. 4 April,2018 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.doczj.com/doc/2218078123.html, DOI:10.14062/j.issn.0454-5648.2018.04.05 钠离子电池正负极材料研究新进展 潘都1,2,戚兴国1,刘丽露1,蒋礼威1,陆雅翔1,白莹2,胡勇胜1,陈立泉1 (1. 中国科学院物理研究所清洁能源实验室,北京 100190; 2. 河南大学物理与电子学院,河南大学光伏材料重点实验室,河南开封 475004) 摘要:锂离子电池由于能量密度高、循环寿命长等优点在储能领域备受关注,但锂资源稀缺与分布不均制约了其大规模应用。基于与锂离子电池相似离子穿梭原理的钠离子电池由于钠资源丰富、成本低廉、适合于大规模储能等优点近年来发展迅速。本文介绍一些典型的钠离子电池正负极材料的研究新进展,评述其应用可行性及目前面临的问题,为长寿命、低成本钠离子电池的设计与开发提供参考依据。 关键词:规模储能;钠离子电池;正极材料;负极材料。 中图分类号:TM911 文献标志码:A 文章编号:0454–5648(2018)04–0479–20 网络出版时间:网络出版地址: Recent Development on of Cathode and Anode Materials for Sodium-Ion Batteries P AN Du1, 2, QI Xingguo1, LIU Lilu1, JIANG Liwei1, LU Yaxiang1, BAI Ying2, HU Yongsheng1, C HEN Liquan1 (1. Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. School of Physics & Electronics and Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, Henan, China) Abstract: Lithium-ion batteries (LIBs) used in energy storage have attracted much attention due to the advantages of high energy density and long cycle life. However, the limited resources and uneven distribution restrict its large-scale application in grid energy storage. Therefore, sodium-ion batteries (SIBs) with the similar ion shuttling principle as LIBs are rapidly developed in recent years due to the massive abundance and low cost, which are suitable for large-scale energy storage system. This review introduced cathode and anode materials of SIBs developed in recent years. In addition, some challenges in practical application were also analyzed. Keywords: large-scale energy storage; sodium-ion batteries; cathode materials; anode materials. 随着人类社会的不断发展,化石燃料已经成为人们生活的主要供电来源。大范围地使用化石燃料而排放出的二氧化碳气体,成为全球变暖的主要原因之一。因此,新型电网中大力发展可再生能源如风能和太阳能的已经变得日益严峻和迫切。然而,电网的正常运行需要持续稳定的电力供给,但考虑到太阳能和风能过度依赖于环境、天气、季节和地点等自然和地理因素,并不适合直接并入电网。为了克服这个问题,诞生了各种储能技术,目前主要包括物理储能和化学储能。物理储能包括抽水蓄能、压缩空气储能、超导储能和飞轮储能等;化学储能则基于各种电化学储能器件,主要有铅酸电池、高温钠硫电池、钒液流电池、锂离子电池和超级电容器等。抽水蓄能是应用较多的物理储能技术,但是受到了地理条件的制约,难以实现对可再生能源发电站的灵活配套。电化学储能具有能量和功率密度 收稿日期:2017–07–16。修订日期:2017–09–30。 基金项目:国家重点研发计划(2016YFB0901504)项目;国家自然科学基金(11234013,51421002,51472268,51672069) 项目;中国 科学院“百人计划”项目。 第一作者:潘都(1989―),男,博士研究生。 通信作者:胡勇胜(1976―),男,博士,研究员。Received date: 2017–07–16. Revised date: 2017–09–30. First author: PAN Du (1989–), male, Doctoral candidate. E-mail: shangguandu@https://www.doczj.com/doc/2218078123.html, Correspondent author: HU Yongsheng (1976–), male, Ph.D., Professor. E-mail: yshu@https://www.doczj.com/doc/2218078123.html,

锂电池负极材料大体分为以下几种

锂电池负极材料大体分为以下几种: 第一种是碳负极材料: 目前已经实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。 第二种是锡基负极材料: 锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。目前没有商业化产品。 第三种是含锂过渡金属氮化物负极材料,目前也没有商业化产品。 第四种是合金类负极材料: 包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,目前也没有商业化产品。 第五种是纳米级负极材料:纳米碳管、纳米合金材料。 第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。 锂金属电池 锂-二氧化锰电池是一种以锂为阳极(负极)、以二氧化锰为阴极(正极),并采用有机电解液的一次性电池。该电池的主要特点是电池电压高,额定电压为3V(是一般碱性电池的2倍);终止放电电压为2V;比能量大(金属锂的理论克容量为3074mAh);放电电压稳定可靠;有较好的储存性能(储存时间3年以上)、自放电率低(年自放电率≤10%);工作温度范围-20℃~+60℃。 该电池可以做成不同的外形以满足不同要求,它有长方形、圆柱形及纽扣形(扣式)。 锂离子电池 可充电锂离子电池是目前手机、笔记本电脑等现代数码产品中应用最广泛的电池,但它较为“娇气”,在使用中不可过充、过放(会损坏电池或使之报废)。因此,在电池上有保护元器件或保护电路以防止昂贵的电池损坏。锂离子电池充电要求很高,要保证终止电压精度在±1%之内,目前各大半导体器件厂已开发出多种锂离子电池充电的IC,以保证安全、可靠、快速地充电。 现在手机已十分普遍,基本上都是使用锂离子电池。正确地使用锂离子电池对延长电池寿命是十分重要的。它根据不同的电子产品的要求可以做成扁平长方形、圆柱形、长方形及扣式,并且有由几个电池串联并联在一起组成的电池组。锂离子电池的额定电压,因为近年材料的变化,一般为3.7V,磷酸铁锂(以下称磷铁)正极的则为3.2V。充满电时的终止充电电压一般是4.2V,磷铁3.65V。锂离子电池的终止放电电压为2.75V~3.0V(电池厂给出工作电压范围或给出终止放电电压,各参数略有不同,一般为3.0V,磷铁为2.5V)。低于2.5V(磷铁2.0V)继续放电称为过放,过放对电池会有损害。

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:随着时代的进步,能源与人类社会的生存和发展密切相关,持续发展是全人类的、共同愿望与奋斗目标。矿物能源会很快枯竭,解决日益短缺的能源问题和日益严重的环境污染是对国家经济和安全的挑战也是对科学技术界地挑战。电池行业作为新能源领域的重要组成部分,已经成为全球经济发展的一个新热点本文阐述了锂离子负极材料的基本特性,综述了碳类材料、硅类材料以及这两种材料形成的复合材料作为锂离子电池负极材料的研究及开发应用现状。 关键词:锂离子电池负极材料碳/硅复合材料 引言:电极是电池的核心,由活性物质和导电骨架组成正负极活性物质是产生电能的源泉,是决定电池基本特性的重要组成部分。本文就锂离子电池的负极材料进行研究。锂离子电池是目前世界上最为理想的可充电电池。它不仅具有能量密度大、无记忆效应、循环寿命长等特点,而且污染小,符合环保要求。随着技术的进步,锂离子电池将广泛应用于电动汽车、航空航天、生物医学工程等领域,因此,研究与开发动力用锂离子电池及其相关材料有重大意义。对于动力用锂离子电池而言,关键是提高功率密度和能量密度,而功率密度和能量密度提高的根本是电极材料,特别是负极材料的改善。 1、锂离子负极材料的基本特性 锂离子电池负极材料对锂离子电池性能的提高起着至关重要的作用。锂离子电池负极材料应具备以下几个条件: (1) 应为层状或隧道结构,以利于锂离子的脱嵌且在锂离子嵌入和脱出时无结构上的变化,以使电极具有良好的充放电可逆性和循环寿命; (2) 锂离子在其中应尽可能多的嵌入和脱出,以使电极具有较高的可逆容量。在锂离子的脱嵌过程中,电池有较平稳的充放电电压; (3) 首次不可逆放电比容量较小; (4) 安全性能好; (5) 与电解质溶剂相容性好; (6) 资源丰富、价格低廉; (7) 安全、不会污染环境。 现有的负极材料很难同时满足上述要求。因此,研究和开发新的电化学性能更好的负极材料成为锂离子电池研究领域的热门课题。 2、选材要求 一般来说,锂离子电池负极材料的选择主要要遵循以下原则:1、插锂时的氧化还原电位应尽可能低,接近金属锂的电位,从而使电池的输出电压高;2、锂能够尽可能多地在主体材料中可逆的脱嵌,比容量值大;3、在锂的脱嵌过程中,主体结构没有或很少发生变化,以确保好的循环性能;4、氧化还原电位随插锂数目的变化应尽可能的少,这样电池的电压不会发生显著变化,可以保持较平稳的充放电:5、插入化合物应有较好的电子电导率和离子电导率,这样可以减少极化并能进行大电池充放电;6、具有良好的表面结构,能够与液体电解质形成良好的固体电解质界面膜;7、锂离子在主体材料有较大的扩散系数,便于快速的充放电;8、价格便宜,资源丰富对环境无污染 3、负极材料的主要类型用作锂离子电池负极材料的种类繁多,根据主体相

钠离子电池

钠离子电池 钠离子电池实际上是一种浓差电池,正负极由两种不同的钠离子嵌入化合物组成。充电时,Na+从正极脱嵌经过电解质嵌入负极,负极处于富钠态,正极处于贫钠态,同时电子的补偿电荷经外电路供给到极,保证正负极电荷平衡。放电时则相反,Na+从负极脱嵌,经过电解质嵌入正极,正极处于处于富钠态。 钠离子电池工作原理示意图 几种重要的钠离子电池正、负极材料的容量和电压值 中科院物理设计了一系列含Cu的O3相层状氧化物材料,其通式可以写为 Naa[Cu1-x-y-z-d Fe x Mn y Ti z D d]O2(D: dopant, e.g., Li, Mg, Al, etc., 0 < x < 1, 0 < y < 1, 0 ≤ z < 1, 0 ≤d < 1,0.6 < a ≤1) ,实现了Cu2+/Cu3+的氧化还原反应。其中, O3-Na0.90[Cu0.22Fe0.30Mn0.48]O2正极材料可以实现0.4个钠离子的可逆脱嵌,可逆

容量达到100 mAh/g。该钠离子电池正极材料是迄今发现的唯一可在空气中稳定的O3相层状氧化物材料;且循环性能优异,100周循环后容量保持率97%。使用该材料作为正极、硬碳作为负极组装的钠离子全电池具有210 Wh/Kg 的能量密度(基于正负极活性物质质量计算得到) Advanced Materials, 2015, 27, 6928-6933 Yu et al.制备了在碳纳米纤维中植入单层MoS2纳米片所制备的钠离子电池的容量密度达到854mA·h/g Angew. Chem. Int. Ed. 2014, 53, 2152 –2156

钠离子电池综述

钠离子电池 近年来,随着电子设备、电动工具、小功率电动汽车等迅猛发展,研究高能效、资源丰富及环境友好的储能材料是人类社会实现可持续性发展的必要条件。为满足规模庞大的市场需求,仅依靠能量密度、充放电倍率等性能衡量电池材料是远远不够的。电池的制造成本与能耗是否对环境造成污染以及资源的回收利用率也将成为评价电池材料的重要指标。电池发展有以下显著特点:绿色环保电池发展迅猛;一次电池向二次电池转化,这有利于节约地球有限的资源,符合可持续发展的战略;电池进一步向小、轻、薄方向发展。 钠是地球上储量较丰富的元素之一,与锂的化学性能类似,因此也可能适用于锂离子电池体系。钠离子电池相比锂离子电池有诸多优势,如成本低,安全性好,随着研究的深入,钠离子电池将越来越具有成本效益,并有望在未来取代锂离子电池而被广泛应用。 1钠离子电池电化学原理 同为元素周期表第I主族的钠离子和锂离子的性质有许多相似之处,钠离子完全有可能和锂离子电池一样构造一种广泛使用的二次电池。并且钠离子电池与锂离子电池相比,原材料成本比锂离子电池低,半电池电位(E0Na+/Na=E0Li+/Li+0.3)比锂离子电池高,适合采用分解电压更低的电解液,因而安全性能更佳。钠离子电池不以钠作为负极,而是由硬碳或嵌入化合物组成。

(1)钠离子电池优点:依据目前的研究进展,钠离子电池与锂离子电池相比有3个突出优势:①原料资源丰富,成本低廉,分布广泛;②钠离子电池的半电池电势较锂离子电势高0.3~0.4 V,即能利用分解电势更低的电解质溶剂及电解质盐,电解质的选择范围更宽; ③钠离子电池有相对稳定的电化学性能,使用更加安全。 (2)钠离子电池缺陷:钠离子电池也存在着缺陷,如钠元素的相对原子质量比锂高很多,导致理论比容量小,不足锂的1/2;钠离子半径比锂离子半径大(Na+半径:95pm,Li+半径:60pm),使得钠离子在电池材料中嵌入与脱出更难。下图为钠离子电池的电极材料:

锂离子电池碳负极材料研究进展

锂离子电池碳负极材料的研究进展 赵永胜 (河北工业大学化工学院应用化学系,天津 300130) 摘要综述了锂离子电池碳负极材料中石墨化碳、无定形碳和碳纳米材料近几年的研究成果及发展方向,探讨了该类材料目前存在的问题及解决办法,对该类材料的发展趋势进行了展望。 关键词锂离子电池负极材料碳材料 Research progress of carbon anode materials for lithium ion batteries Zhao Yongsheng (Department of Applied Chemistry,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130)Abstract:The research achievements on three main aspects in the field of lithium ion battery carbon anode materials in recent years. Graphitized carbon,amorphous carbon,carbon nano-materials are summarized. The problems in these materials and the feasible methods to solve the problems are discussed. Finally, the developing trend of lithium ion battery carbon anode materials is prospected. Keywords:Lithium ion batteries;anode materials;carbon materials 自1991年日本索尼公司开发成功以碳材料为负极的锂离子电池(LixC6/LiX In PC-EC(1:1)/Li1-x CoO2)以来(LiX为锂盐),锂离子电池已迅速向产业化发展,并在移动电话、摄像机、笔记本电脑、便携式电器上大量应用[1]。自锂离子电池的商品化以来,研究的负极材料有以下几种:石墨化碳材料、无定向碳材料、氮化物、硅基材料、锡基材料、新型合金[2]。本文着重对锂离子电池碳负极材料方面的研究进展进行评述。 1.碳基负极材料的分类 炭素材料的种类繁多,其结晶形式有金刚石、石墨、富勒烯、碳纳米管等,

锂离子电池的组成部分之负极(非常详细)

锂离子电池的组成部分之负极(非常详细) 2、负极(1) 此主题相关图片如下: 2、负极(2) 在负极材料部分,锂电池的负极材料主要是: A、石墨系碳(graphite) a、天然石墨 b、人工石墨 c、类石墨(如 MCMB , Meso Carbon Micro Beads) B、非石墨碳材(如焦碳系,coke) 由于石墨系的重量能量密度较高且材料本身的结构具有较高的规则性,所以第一次放电的不可逆电容量会较低,另外石墨系负极材料具有平稳工作电压作用,对电子产品的使用和充电器的设计较具优势。而另一种类的焦炭系与碳黑系﹝carbon black﹞的负极材料在第一次充放电反应的不可逆电容量很高,但是此材料可以在较高的C- rate下作充放电,另外此材料的放电曲线较斜,有利于使用电压来监控电池容量的消耗。 负极(3) 石墨为层状结构,由碳网平面沿C轴堆积而成,层间距为3.36A。平面碳层由碳原子呈六角形排列并向二维方向延伸,碳层间以弱的范德华力结合,锂嵌在碳层之间 石墨的实际比容量为320—340mAh/g。平均嵌锂电位约为0.1V(VS Li+/Li),第一周充放电效率约为8 2—84%,循环性能好,且价格低廉(<10元/Kg)。 A、石墨类的制备 ①中间相碳微球(Mesophase Carbon Micro Beads, MCMB)是用煤焦油沥青、石油重质油等在350—5

00℃温度下加热并经分离、洗涤、干燥和分级等过程制得的平均粒径6-10微米的碳微球,然后于28000C 下进行石墨化热处理制得的碳材料。其外形呈球形,晶体结构同石墨基本一致。 MCMB的实际比容量约为310—330mAh/g,平均嵌锂电位约为0.15V(VS Li+/Li),第一周充放电效率约为88%—90%,循环性及大电流性能好,是目前为止最为理想的负极材料,但价格昂贵(约300元/Kg) 负极(4) A、石墨类的制备 ②气相成长碳纤(Vapor-Grown Carbon Fiber, VGCF) 以碳氢化合物经化学蒸镀(CVD)反应,再用不同温度经热处理而成 负极(5) B、非石墨类的制备 ①可石墨化碳类 ---- 软碳主要为焦碳﹝Coke﹞类,可由沥青或煤渣而来 2、负极(6) B、非石墨类的制备 ②不可石墨化类 ---- 硬碳(最具发展潜力) 硬碳不易石墨化。是一种与石墨不同的近似非晶结构的碳材料,晶体尺寸较小,通常在几个纳米以下,呈无规则排列,有细微空隙存在,是利用高分子先驱物(polymer precursor),在不同温度下经热解所形成的无次序碳材而得到。其主要特点:嵌锂容量高,一般可达600mAh/g以上。问题: A、第一周充放电效率低,一般不超过60% B、循环性能差 此主题相关图片如下: 负极(7)-锡基金属间化合物及复合物、锡基复合氧化物 Sn与Li能可逆地形成组成为Li4.4Sn的合金,七十年代开始就引起了人们的广泛关注。由于Sn贮锂—脱锂过程体积膨胀超过200%,极易引起电极粉化,导致循环性能迅速衰减。如何稳定材料结构,防止电极 粉化是一直以来研究的重点。 近年来,人们发现将Sn均匀的分布在对锂惰性的金属或化合物、复合物中,可较好地缓冲电极的膨胀, 抑制电极粉化问题,从而获得比较好的循环性能。

【CN109980211A】钠离子电池正极材料及其制备方法及应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910327175.6 (22)申请日 2019.04.23 (71)申请人 深圳大学 地址 518060 广东省深圳市南山区南海大 道3688号 (72)发明人 卓海涛 陈少军 陈雨欣  (74)专利代理机构 深圳市恒申知识产权事务所 (普通合伙) 44312 代理人 袁文英 (51)Int.Cl. H01M 4/36(2006.01) H01M 4/58(2010.01) H01M 4/62(2006.01) H01M 10/054(2010.01) (54)发明名称 钠离子电池正极材料及其制备方法及应用 (57)摘要 本发明一种包覆结构的钠离子电池正极材 料及其制备方法。本发明通过溶胶-凝胶法制备 了Na3V2(PO4)3/C正极材料,合成的两性离子聚 合物即可作螯合剂,又作碳源,工艺简单,能快速 形成凝胶状,缩短反应时间;且含两性离子结构, 可以很好地与磷酸钒钠前驱体相溶,形成稳定碳 包覆层。与现有技术相比本发明的钠离子电池正 极材料通过氮元素和硫元素对碳的掺杂提升了 正极材料的导电性能和循环性能;同时制备的钠 离子电池正极材料具有钠空位,在钠离子嵌入/ 脱出的过程中保持结构稳定。权利要求书1页 说明书5页 附图3页CN 109980211 A 2019.07.05 C N 109980211 A

权 利 要 求 书1/1页CN 109980211 A 1.一种钠离子电池正极材料的制备方法,其特征在于,包含如下步骤: 在甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐以及丙烯酸体系中加入引发剂,加热反应得到两性离子聚合物溶液; 将所述两性离子聚合物溶液与磷酸钒钠水溶液进行混合处理,并进行干燥处理,得到钠离子电池正极材料前驱体; 将所述钠离子电池正极材料前驱体进行烧结处理,得到钠离子电池正极材料。 2.如权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述磷酸钒钠水溶液的制备方法包括如下步骤: 将偏钒酸铵、草酸、磷酸二氢氨及乙酸钠按照钠、钒、磷元素摩尔比为[2~1]:[1~3]: [4~2]配置,其中草酸与偏钒酸铵质量比为[2~1]:[2~1]。 3.如权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述引发剂为过硫酸铵,过硫酸钾和过氧化氢-硫酸亚铁中的任意一种。 4.如权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐以及丙烯酸的质量比为10-90:10-30:10-30。 5.权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述引发剂的质量分数为0.5%-1%。 6.权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述两性离子聚合物和磷酸钒钠的质量比为1-20:80-99。 7.权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述烧结处理包括如下步骤: 在300℃-400℃温度中初始烧结5小时,然后在700℃-800℃温度中二次烧结8小时,烧结的升温速率均为3℃/min。 8.一种由权利要求1-7所述的制备方法制备的钠离子电池正极材料。 9.一种钠离子电池正极,其特征在于:包含如权利要求8所述的钠离子电池正极材料。 10.一种钠离子电池,其特征在于:包含如权利要求8所述的钠离子电池正极材料。 2

动力锂离子电池及其负极材料的现状和发展

动力锂离子电池及其负极材料的现状和发展 2010-11-10 14:45:06 中国石墨碳素网 文/苗艳丽杨红强岳敏 天津市贝特瑞新能源材料有限责任公司 随着汽车行业的发展,石油、天然气等不可再生石化燃料的耗竭日益受到关注,空气污染和室温效应也成为全球性的问题。为解决能源问题、实现低碳经济,基于目前能源技术的发展水平,电动汽车技术逐渐成为全球经济发展的重点方向,美国、日本、德国、中国等国家相继限制燃油车使用,大力发展电动车。作为电动汽车的核心部件——动力电池也迎来了大好的发展机遇。动力电池是指应用于电动车的电池,包括锂离子电池、铅酸电池、燃料电池等,其中,锂离子电池因具有比能量高、比功率大、自放电少、使用寿命长及安全性好等特性,成为目前各国发展的重点。 国外政府及企业在动力锂离子电池研发上均做出了很大的努力。我国的锂离子电池产业起步虽较晚,但发展速度非常快,同时,政府给予了大力的支持。“十一五”期间,“863”电动汽车重大专项对混合动力(HEV)、外接充电式混合动力(PHEV)用锂离子电池关键材料和电池进行了专门的研究。 与锂离子电池其他部件相比,锂离子电池负极材料的发展较为成熟。在商业应用中,石墨类碳材料技术较为成熟,市场价格也比较稳定,但随着锂离子动力电池对能量密度、功率密度、安全等性能的要求不断提升,硬碳、钛酸锂(Li4Ti5O12)、合金等其他材料也相继成为研究热门。 一、动力锂离子电池负极材料简介 1.动力锂离子电池负极材料特性 锂离子电池由正极、负极、电解液、隔膜和其他附属材料组成。锂离子电池负极材料要求具备以下的特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉;⑧安全、无污染。 2.动力锂离子电池负极材料主要类型 早期人们曾用金属锂作为负极材料,但由于存在安全问题没有大规模商业应用。目前,对锂离子电池负极材料的研究较多有:碳材料、硅基材料、锡基材料、钛酸锂、过渡金属氧化物等。本文将主要介绍3类负极材料:碳材料、合金材料(锡(Sn)、硅(Si)等)和钛酸锂。 (1)碳材料 碳材料是人们最早开始研究并应用于锂离子电池生产的负极材料,至今仍然为大家关注和研究的重点。碳材料根据其结构特性可分成3类:石墨、易石墨化碳及难石墨化碳(也就是通常所说的软碳和硬碳)。软碳主要有中间相炭微球、石油焦、针状焦、碳纤维等;硬碳主要有树脂碳(如酚醛树脂、环氧树脂、聚糠醇PFA-C 等),有机聚合物热解碳(包括聚乙烯醇基、聚氯乙烯基、聚丙烯腈基等)以及碳黑等。由于软碳与石墨的结晶性比较类似,一般认为它比硬碳更容易插入锂,即更容易充电,安全性也更好些。 石墨类碳材料技术比较成熟,在安全和循环寿命方面性能突出,并且廉价、无毒,是较为常见的负极材料。常规锂离子电池负极材料包括天然石墨、天然石墨改性材料、中间相炭微球和石油焦类人造石墨。天然石墨和天然石墨改性材料价格比较低,但是在充放电效率和使用寿命方面有待进一步提高。中间相炭微球结构特殊,呈球形片层结构且表面光滑,直径在5~40μm之间,该材料独特的形貌使其在比容电量(可达到330mAh/g以上)、安全性、放电效率、循环寿命(循环次数达到2000次以上)等方面具有显著优势,但是成本有待降低。石油焦类的产品在放电效率和循环寿命方面比较突出,但存在着高成本和制备工艺复杂的问题。 近年来,随着研究工作的不断深入,研究者发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,有利于锂在其中的嵌入-脱

锂离子电池负极材料发展历程

锂电池是一类由锂金属或锂合金为正极材料、使用非水电解质溶液的电池。优点:绿色环保,不论生产、使用和报废,不产生任何铅、汞、镉等有毒有害重金属元素和物质。 电池原理: 组成材料主要包括:负极材料、正极材料和隔膜。 在充放电过程中,锂离子在正负极之间来回运动。充电时,锂离子从正极脱出,经过隔膜嵌入到负极中。放电时,锂离子再从负极中脱出,重新回到正极。由此可以看出锂电池的正、负极材料都要有良好的嵌入、脱出锂离子的能力。一般来说,锂离子电池的总比容量是由正极材料的比容量、负极材料的比容量及电池的其它组分决定的,因此,我们迫切需要提高正负极材料的比容量。 负极材料: 碳材料:商业化锂电池负极材料一般为碳作为基质的材料,包括石墨、中间相碳微球、碳纳米管等。虽然碳材料作为锂离子电池负极具有较好的循环性能,但已基本达到其理论极限容量(石墨理论比容量为372mAh/g),限制了电池的性能。另外实际应用中也暴露出碳负极存在许多缺陷:在快速充电或低温充电易发生“析锂”现象引发安全隐患;有机电解液中会形成钝化层,引起初始容量损失;这些因素直接制约了锂离子电池的进一步发展。因此,高能动力型锂离子电池的发展需要寻求高容量、长寿命、安全可靠的新型负极来取代碳负极材料。 其中锡基负极材料具有质量与体积比能量高,价格便宜,无毒副作用,加工合成相对容易等优点,因此一经提出就受到研究者的广泛关注。 研究表明,当负极材料的比容量在1000~1200 mAh/g时可以显著提高锂离子电池的总比容量。在各种非碳负极材料中,硅的理论比容量为4200mAh/g,具有明显的优势,因此吸引了越来越多研究者的目光。 硅-非金属体系:在此复合体系中,硅颗粒作为活性物质,提供储锂容量;非金属相作为分散基体,缓冲硅颗粒嵌脱锂时的体积变化,保持电极结构的稳定性,并维持电极内部电接触。目前主要有硅-碳复合体系、硅-玻璃/陶瓷体系、硅的氧化物、金属氮化物等体系。其中,碳类负极材料具有良好的导电性,在充放电过程中体积变化很小,循环稳定性能好。与硅结合可以很好的改善硅的体积膨胀,提高其电化学稳定性。因此,硅-碳复合材料成为当前负极材料的研究的热点。

多孔材料在锂钠离子电池负极材料的应用

多孔材料在锂钠离子电池负极材料的应用

HUNAN UNIVERSITY 课程论文 论文题目多孔材料在锂/钠离子电池负极 材料的应用

学生姓名张成智 学生学号 B1513Z0359 学院名称材料科学与工程学院 指导老师刘金水 2016年7月2日 多孔材料在锂/钠离子电池负极材料的应用 多孔材料,如多孔炭已广泛应用在催化、吸附分离、Li/Na离子电池负极材料等领域。近年来,多孔材料的应用潜力被进一步挖掘,已拓展到微电子学,分子/光学器件学,生物医学等高新技术领域。随着材料技术的发展,人们对多孔材料的功能应用提出了更多要求,多孔材料的功能化与新应用的开发已经成为当前孔材料领域的研究热点之一。这些所有的应用都离不开多孔材料发达的孔隙结构。本文主要致力于多孔材料在Li/Na离子电池负极材料的应用。 关键词:多孔材料、孔隙结构、Li/Na离子电池负极材料 1、介绍

多孔材料作为材料科学的一个重要分支,对我们的科学研究、工业生产以及日常生活等方面均具有极其重要的意义。广义的多孔材料是指具有大比表面积、低密度、低热导率、低相对密度、高孔隙率等特点的,富含孔结构的材料。近年来,关于多孔材料的制备研究受到了广大科研工作者的广泛关注。目前无论是制备方法的改善和创新,还是物理性能的开发和利用,都取得了长足的进展,这也为新型多功能材料的制备与开发开辟了一条新的途径。多孔材料,无论是从微孔、介孔到大孔,在工业催化、吸附分离、离子交换、主客体化学等领域都得到了广泛地研究和应用,尤其是作为高效催化剂及催化剂载体,它们引导了石油化工领域的巨大进步。与此同时,随着各学科间的相互交叉渗透,多孔材料的功能化应用已经延伸到微电子学,分子/光学器件学以及药学/生物学等高新技术领域。当今,绿色、节能、高效已成为材料技术发展的主流趋势,人们也对机多孔材料的功能提出了更多要求,开发多孔材料在光,电,磁以及催化领域的应用已成为科研工作者的重要任务,无机多孔材料的功能化和组装为此提供了更多发展机会。 多孔材料名目繁多,既有单一组成的,又有多组分的,用途也各不相同。根据其孔道结构的规则程度可分为:1)具有不规则孔道结构无机多孔材料,例如:活性炭材料,多孔陶瓷材料,大孔氧化硅以及多孔氧化铝等;2)具有规则孔道结构的多孔材料,如微孔分子筛材料(硅铝酸盐、磷酸盐、锗酸盐)、介孔分子筛材料、杂化金属有机骨架(MOFs)材料等。其中,具有规则孔道结构的多孔材料在工业

钠离子电池综述

近年来,随着电子设备、电动工具、小功率电动汽车等迅猛发展,研究高能效、资源丰富及环境友好的储能材料是人类社会实现可持续性发展的必要条件。为满足规模庞大的市场需求,仅依靠能量密度、充放电倍率等性能衡量电池材料是远远不够的。电池的制造成本与能耗是否对环境造成污染以及资源的回收利用率也将成为评价电池材料的重要指标。电池发展有以下显著特点:绿色环保电池发展迅猛;一次电池向二次电池转化,这有利于节约地球有限的资源,符合可持续发展的战略;电池进一步向小、轻、薄方向发展。 钠是地球上储量较丰富的元素之一,与锂的化学性能类似,因此也可能适用于锂离子电池体系。钠离子电池相比锂离子电池有诸多优势,如成本低,安全性好,随着研究的深入,钠离子电池将越来越具有成本效益,并有望在未来取代锂离子电池而被广泛应用。 1钠离子电池电化学原理 同为元素周期表第I主族的钠离子和锂离子的性质有许多相似 之处,钠离子完全有可能和锂离子电池一样构造一种广泛使用的二次电池。并且钠离子电池与锂离子电池相比,原材料成本比锂离子电池低,半电池电位(E0Na+/Na=E0Li+/Li+比锂离子电池高,适合采用分解电压更低的电解液,因而安全性能更佳。钠离子电池不以钠作为负极,而是由硬碳或嵌入化合物组成。 (1)钠离子电池优点:依据目前的研究进展,钠离子电池与锂离子电池相比有3个突出优势:①原料资源丰富,成本低廉,分布广泛;②钠离子电池的半电池电势较锂离子电势高~ V,即能利用分

解电势更低的电解质溶剂及电解质盐,电解质的选择范围更宽;③钠离子电池有相对稳定的电化学性能,使用更加安全。 (2)钠离子电池缺陷:钠离子电池也存在着缺陷,如钠元素的相对原子质量比锂高很多,导致理论比容量小,不足锂的 1/2;钠离子半径比锂离子半径大 (Na+半径:95pm,Li+半径:60pm),使得钠离子在电池材料中嵌入与脱出更难。下图为钠离子电池的电极材料: 2钠离子电池正极材料 用于钠离子电池正极的材料主要有贫钠的Na x CoO2、Na x MnO2层状晶体化合物及它们的掺杂化合物。这些化合物的存在形态取决于其组成(x值)和制备方法。其它一些见诸报道的嵌入式正极材料有:NaxTiS2,NaxNbS2Cl2,NaxWO3-y,非定形),NaxTaS2,各式中0

锂离子电池负极材料介绍及合成方法

锂离子电池负极材料介绍及合成方法 目前,锂离子电池所采用的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS、锡基氧化物、锡基氧化物、锡合金,以及纳米负极材料等。作为锂离子电池负极材料要求具有以下性能:(1)锂离子在负极基体中的插入氧化还原电位尽可能低,接近金属锂的电位,从而使电池的输出电压高; (2)在基体中大量的锂能够发生可逆插入和脱插以得到高容量密度,即可逆的x值尽可能大; (3)在插入/脱插过程中,锂的插入和脱插应可逆且主体结构没有或很少发生变化,这样尽可能大; (4)氧化还原电位随x的变化应该尽可能少,这样电池的电压不会发生显著变化,可保持较平稳的充电和放电; (5)插入化合物应有较好的电导率和离子电导率,这样可减少极化并能进行大电流充放电; (6)主体材料具有良好的表面结构,能够与液体电解质形成良好的SEI 膜; (7)插入化合物在整个电压范围内具有良好的化学稳定性,在形成SEI 膜后不与电解质等发生反应; (8)锂离子在主体材料中有较大的扩散系数,便于快速充放电; (9)从实用角度而言,主体材料应该便宜,对环境无污染。 一、碳负极材料 碳负极锂离子电池在安全和循环寿命方面显示出较好的性能,并且碳材料价廉、无毒,目前商品锂离子电池广泛采用碳负极材料。近年来随着对碳材料研究工作的不断深入,已经发现通过对石墨和各类碳材料进行表面改性和结构调整,或使石墨部分无序化,或在各类碳材料中形成纳米级的孔、洞和通道等结构,锂在其中的嵌入-脱嵌不但可以按化学计量LiC6进行,而且还可以有非化学计量嵌入-脱嵌,其比容量大大增加,由LiC6的理论值372mAh/g提高到700mAh/g~1000mAh/g,因此而使锂离子电池的比能量大大增加。 目前,已研究开发的锂离子电池负极材料主要有:石墨、石油焦、碳纤维、热解炭、中间相沥青基炭微球(MCMB)、炭黑、玻璃炭等,其中石墨和石油焦最有应用价值。 石墨类碳材料的插锂特性是:(1)插锂电位低且平坦,可为锂离子电池提供高的、平稳的工作电压。大部分插锂容量分布在0.00~0.20V之间(vs. Li+/Li);(2)插锂容量高,LiC 6 的理论容量为372mAh.g-1;(3)与有机溶剂相容能力差,易发生溶剂共插入,降低插锂性能。 石油焦类碳材料的插、脱锂的特性是:(1)起始插锂过程没有明显的电位平 台出现;(2)插层化合物Li x C 6 的组成中,x=0.5左右,插锂容量与热处理温度 和表面状态有关;(3)与溶剂相容性、循环性能好。 根据石墨化程度,一般碳负极材料分成石墨、软碳、硬碳。 1、石墨 石墨材料导电性好,结晶度较高具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物,充放电容量可达300mAh.g-1以上,充放电效率在90%

锂离子电池负极材料的研究进展

锂离子电池负极材料的研究进展 摘要:锂离子电池作为一种电源应用很广泛,但是在应用中存在一些不足,选取电化学性能良好的正负极材料是提高和改善锂离子电池电化学性能最重要的因素。简单介绍锂离子电池的电化学反应原理和从新型碳材料、硅基负极材料、锡基负极材料三方面锂离子电池的研究状况,并展望了锂离子电池负极材料的发展趋势。 关键词:锂离子电池;负极材料;研究现状 0 引言 目前全球最具潜力的可充电电池是锂离子电池。用碳负极材料的商品化的锂离子电池可逆比容量已达350 mA?h/g,快接近理论比容量372mA?h/g[1]。随着全球化的加快,科技日新月异,电子产品日益普及,发展中的电动汽车等对电池能源提出了更高的要求,其中主要包括能量密度、使用寿命等[2]。开发新型、廉价的负极材料是锂离子电池研究的热点课题之一。就目前而言,主要有新型碳材料、锡基材料、硅基材料等,本文研究了这些新型负极材料的研究现状及未来的发展方向。 1锂离子电池的电化学反应原理 锂离子电池是指用锂离子嵌入化合物作为正负极的二次电池.锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如LixCoO2,LixNiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到 4 V以上(vs.Li+/Li)[3].负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6等的有机溶液。 锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构成.充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态.锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关[3]。 2新型碳材料 在新型碳负极方面,未来的发展将主要集中在高功率石墨类负极及非石墨类高容量碳负极,以满足未来动力和高能电池的需求。新型碳材料:如碳纳米管(CNT)

相关主题
文本预览
相关文档 最新文档