当前位置:文档之家› 水泥中的混合料和混凝土的掺合料

水泥中的混合料和混凝土的掺合料

水泥中的混合料和混凝土的掺合料
水泥中的混合料和混凝土的掺合料

1. 水泥由水泥熟料和混合材料组成,熟料主要含硅酸钙、铝酸钙和铁酸钙,混合材料种类较多,如粉煤灰等。我们常用的普通硅酸盐水泥(PO)混合材料大概在5%-15%之间,复合硅酸盐水泥(PC)混合材料15%-50%。

混凝土掺合料主要是一些外加剂,改变混凝土的一些性质,比如木质纤维素、建筑胶粉、缓凝剂等。

2. 混凝土掺合料是在混凝土拌合时掺入的能改善混凝土性能的粉状物质。在加入混凝土掺合料后,可以提高混凝土的各项性能,如和易性,粘聚性,可泵性;降低混凝土的坍落度损失;降低混凝土内部早期干燥收缩,使硬化后的混凝土结构更密实,混凝土早期和后期强度都能得到提高,抗渗、抗冻及耐化学腐蚀能力会有显著的改善

3. 掺合料是用于混凝土改善其性能或降低成本的掺量大于5%的粉末材料。掺合料包括:矿粉(钢渣粉)、粉煤灰、沸石粉、硅灰、过火煤矿石等几类。掺合料研究的重要性:降低水化热、改善混凝土的和易性、提高耐久性、降低成本。

4. 水泥中掺入混合材料,是为了:一:提高水泥的产量。二:为了某些工程需要,如降低水化热,提高密实度等。三:节能减排。

掺合料

addition

混合材

定义:制造水泥或拌制混凝土和砂浆时,为改善性能、节省水泥、降低成本而掺加的矿物质粉状材料。

应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);

建筑材料(水利)(三级学科)

掺合料 extender

混凝土掺合料是在混凝土拌合时掺入的能改善混凝土性能的粉状物质。

掺合料可分为活性掺合料和非活性掺合料。

活性掺合料在掺有减水剂的情况下,能增加新拌混凝土的流动性、粘聚性、保水性、改善混凝土的可泵性。并能提高硬化混凝土的强度和耐久性。

常用的混凝土掺合料有粉煤灰、粒化高炉矿渣、火山灰类物质。尤其是粉煤灰、超细粒化电炉矿渣、硅灰等应用效果良好。

工程实践中常采用“双掺”技术,即在掺入粉煤灰的同时再掺入减水剂。以此配制的普通、高强、高性能混凝土,可节约水泥,提高混凝土工

作性、强度、耐久性并可显著降低大体积混凝土水化热,能满足不同工程的施工技术要求。

什么是水泥产品的混合料

一、水泥的定义

凡细磨成粉末状,加入适量水后,可成为塑性浆体,既能在空气中硬化,又能在水中继续硬化,并能将砂、石等材料胶结在一起的水硬性胶凝材料,通称为水泥。

二、水泥的分类

水泥按其用途和性能可分为三类:

1、通用水泥:用于一般土木建筑工程的水泥。

通用水泥以水泥的主要水硬性矿物名称冠以混合材料名称或其他适当名称命名。包括:硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥、石灰石硅酸盐水泥等。

2、专用水泥:专门用途的水泥。

专用水泥以其用途命名,并可冠以不同型号。例如A级油井水泥、砌筑水泥等。

3、特性水泥:某种性能比较突出的水泥。

特性水泥以水泥的主要水硬性矿物名称冠以水泥的主要特性命名,并可冠以不同型号或混合材料名称。如快硬硅酸盐水泥、低热矿渣硅酸盐水泥、膨胀硫铝酸盐水泥等。

三、水泥生产工艺简述

水泥的生产过程通常概括为二磨一烧,分为三个阶段:石灰质原料、粘土质原料与少量校正原料经破碎后,按一定比例配合、磨细并调配为成分合适、质量均匀的生料,称为生料制备;生料在水泥窑内煅烧至部分熔融所得到的以硅酸钙为主要成分的硅酸盐水泥熟料的过程,称为熟料煅烧;熟料加适量石膏、混合材料或外加剂共同磨细为水泥,并包装或散装出厂,称为水泥粉磨及出厂。

四、水泥产品的选购和使用

1、用户选购水泥依据

用户在购买水泥前,应了解各水泥品种的特性、技术要求和适用范围,根据工程的实际需要选择适当的水泥品种,进一步掌握该品种水泥的性能和使用方法。确定所购标号时,应在保证混凝土强度的前提下,提高经济效益,避免浪费。可从以下几方面考察生产厂家的产品质量、管理水平和检测能力:

一产品的实物质量

①出厂水泥各项指标应达到国家标准和《水泥企业质量管理规程》的要求,近期无不合格水泥出厂。出厂水泥28天抗压强度应留足富裕强度,切忌品质指标擦边球。

②产品的均匀性和稳定程度。主要用变异系数和保证系数来衡量。变异系数越小,且保证系数大于3%时,说明该厂产品质量均匀、可靠,无大起大落的现象。

③袋重、包装物质量及包装标志。水泥20袋总重不得少于1000公斤,包装袋必须符合GB9774-2002《水泥包装袋》要求,以降低破包损失,提高防潮性能。包装标志清晰、完整,纸袋上应标明生产企业名称、商标、生产许可证编号、水泥品种、标号、编号、包装日期等。

二质量管理水平

企业应建立质量管理制度,有专职出厂水泥管理员,用科学方法检测28天强度,接受上级质量管理部门的监督检查,化验室能够提供所有质量数据。

三检测能力

企业化验室应有上级质量管理部门颁发的合格证,检验人员持证上岗。定期与上级质量检验机构进行品质指标对比,且对比情况较好。实验室检验设备齐全,环境符合规定要求。

四当工程需要使用外加剂时,应查询水泥对外加剂的适用性等方面的情况。

2、为什么有的水泥施工后出现“起砂”现象?如何防止?水泥施工后出现“起砂”现象,一般见于矿渣水泥、火山灰质水泥和无熟料水泥。因为这些水泥中的熟料成分较少或没有熟料成分,因而在水化时其液相中的氢氧化钙浓度比硅酸盐水泥或普通水泥低,这些水泥浇制的混凝土和砂浆表面层的氢氧化钙浓度甚至低到在碱性激发作用后不能使表层硬化,在构件硬化后就会引起构件表面“起砂”,严重时还会导致构件“脱皮”;水泥水化时空气中的二氧化碳与凝胶中的氢氧化钙作用生成碳酸钙,从而使混凝土和砂浆表面碱度降低,是水泥不能很好地硬化;此外,混凝土和砂浆用水量过多而发生泌水现象,加之养护不当,成型后过早浇水也会引起“起砂”现象。已硬化的砂浆和混凝土经常受到风吹日晒、干湿循环和碳化作用等也会造成“起砂”。

为了避免或减轻表面“起砂现象”,除合理选择好水泥品种以外,应严格控制施工工艺,注意加强养护并在凝结前后进行二次压面以提高其表面密实度。

3、水泥起霜的原因和预防措施

水泥,特别是双掺水泥(在硅酸盐水泥熟料中加入一定量的矿渣、石灰石和石膏制成的水泥)常常出现起霜现象。即这种水泥凝结时间正常,主要力学性能符合国家标准,但使用它制成的混凝土表面、抹平的地面或墙壁,常常出现一层白色物质(白霜)。除去这层白霜后,出现许多针尖大小的微孔,表面不光滑,影响建筑物的美观,降低混凝土的抗腐蚀性能和使用寿命。

水泥起霜的主要原因是水泥产物氢氧化钙与大气中的二氧化碳反应,生成碳酸钙沉积在混凝土制品表面上;或是:水化产物氢氧化钙溶液中,当水蒸发后,氢氧化钙在混凝土缝隙中析晶并聚集在它的表面上。另外,石灰石或建房用砂中,含有一定量的可溶含碱的有机物,由它们形成的氢氧化物、碳酸盐或其他碱盐溶液比较容易地、迅速地在混凝土表面渗出“霜盐”而结霜。

预防起霜的措施:凡是能够降低水泥化产物氢氧化钙浓度的物质,就应该可以降低起霜程度。粉煤灰做混合材有一定效果。外掺一定防霜剂效果也不错。

4、施工时,对水泥混凝土泌水性可采取哪些相应措施?

针对水泥泌水性,无论采取什么措施,其总的目标是:提高混凝土的密实度,改善孔径分布。为此,必须正确设计混凝土的配合比,保证足够用水量,适当降低水灰比,仔细选择集料级配,提高施工质量。具体方法有:使用木质素磺酸钙、WF减水剂、建1减水剂等减水剂,可降低混凝土孔隙孔径,使其形成大量分散极细的气孔;相应采取尽快排除泌出水分的措施,如吸水模板、真空作业或离心成型等工艺;在泌水过程临近结束时,使用二次捣实的办法,则可使实际的水灰比降低,相应提高强度,而且混凝土的密实性、均匀性也将得到改善。

5、建筑工程对配置混凝土的材料质量有何要求?

施工过程中,混凝土的搅拌、成型、养护等工艺因素影响混凝土的质量,但其主要作用的是组成材料的品质及其配合比。

①集料:应洁净,质地较密,具有足够的强度,表面粗糙,有棱角的较好。

②砂:应清洗干净,粗细程度和颗粒级配应恰当。通过试验,找出最佳砂率。

③水:PH值不得低于4,含有油类、糖、酸或其它污蚀物质的水,会影响水泥的正常凝结与硬化,不能使用。海水含有大量的氯化物和硫酸盐,不得使用。

④浇筑混凝土时,必须限制物料高度和速度,使之均匀落入,避免分离现象,然后均匀捣实。

掺合料

admixture

减少用水量和水泥用量,从而降低了混凝土的水泥水化热温升,对防止混凝土温度裂缝十分有利。③混凝土中砂粒之间的空隙是靠水泥浆液填充的,掺合料能替代一部分水泥浆液的体积,减少混凝土的用水量,使混凝土的密实性和抗渗性显著提高。活性及微活性的掺合料是节约水泥,特别是节约高标号水泥的重要途径。④火山灰质接合料能加强混凝土在硫酸盐质水中的抗化学侵蚀性,提高混凝土抵抗浸析作用的抗水性,能抑制碱活性骨料反应(见混凝土甘料),防止混凝土开裂。质t要求各种掺合料的料源选择、开采、加工、运翰、保钾、检验以及掺用工艺等都应符合质量要求,其中最基本的是材料自身质量及其掺量。主要有以下几方面:①活性水硬性掺合料的活性指标,是以19掺

合料的氧化钙(CaO)吸收量(mg)表示,分为高活性、中活性和低活性3级.便用时应做材料试验鉴定。②磨细度一般与所用水泥的细度相同。③对混凝土有

害的有机杂质,其烧失量不得大于规定的限值。④掺合料中的硫酸和亚硫酸化合物的含量,换算成三氧化硫(503)不应超过规定的限值。⑤非活性掺合料代替混凝土中的水泥量应按混凝土设计要求规定的限值,其28d龄期的混凝土抗压强度降低的百分数不应超过限定值。⑥非活性掺合料的掺量,应根据混凝土设计要求,限定需水量增加的百分数和坍落度减少的百分数。掺合料的使用渗合料使用的原则是质量合格,性能适应,使用方便,成本较低等。掺用部位及最优掺t应通过试验决定。世界上有些国家主张在现场掺粉煤灰。粉煤灰是火电厂燃烧煤粉由烟道中排出的废弃粉末。其活性好,功能高,资源丰富,使用方便,是效益较优的一种接合料。粒化高炉矿渣加工困难、资源较紧缺,多数是在水泥工厂生产水泥时掺人。猫土类非活性掺合料存在需水量高、强度低、干缩量大等缺点,在水工泥凝土和钢筋混凝土中较少掺用。然而它的料源最广、价格较低,所以在要求低的或临时性工程中使用是适宜的。Chonhe}Joo 掺合料(admixture)混凝土中掺人的磨细矿物材料或粉状工业废料。它是水泥的辅助材料或混凝土的填充料,可以改善混凝土性能,提高混凝土质量并节约水泥。它可以在水泥工厂粉磨水泥时掺入,如水利水电工程中广泛使用的矿渣硅酸盐水泥和火山灰质硅酸盐水泥等,就是用矿渣、火山灰、石灰石等配制的。它也可在现场拌制混凝土时掺人。掺合料的分类分活性与非活性两类。活性掺合

料水化后本身不能硬化或硬化很微弱.但可与水泥中析出的氧化钙作用,能加速混凝土凝结硬化并提高强度,粒化高炉矿渣、火山灰质材料和粉煤灰、硅粉、凝灰岩、硅藻土等都属这一类。非活性掺合料,基本上不与水泥发生化学反应,如石灰石、勃土等。使用掺合料的目的①在粉磨水泥时掺人磨细矿物等掺合料.可大量减少水泥中的熟料量,扩大了水泥料源,降低水泥价格。②使用掺合料能改善水泥性能,增加混凝土拌和物的和易性,增加内聚力,减少离析。

第七章 混凝土掺合料

7.1混凝土掺合料的定义及分类 7.1.1定义 混凝土生产中为改善其某些性能、调节混凝土强度等级、节约水泥材料,而加入的人造或工业废料以及天然矿物材料,称为混凝土掺合料。 7.1.2分类 混凝土用掺合料可分为活性掺合料和非活性掺合料。 7.2掺合料的技术指标 7.2.1粉煤灰是由电厂煤粉炉排出的烟气收集到的灰白色颗粒粉未,因电厂除尘方式不同,分湿排灰和干排灰两种。湿排除尘的粉煤灰与炉渣混合排出,颗粒较粗,烧失量较大,质量差;静电除尘收集的干灰其细度较细、烧失量小,质量较好。粉煤灰是一种火山灰质混合材料,它表面光滑呈球形,密度 1.95~2.40g/cm3,干灰堆积密度550~800g/cm3。粉煤灰的成分与高铝粘土相接近,主要以玻璃体状态存在,另一部分为莫来石、α石英、方解石及β硅酸二钙等少量晶体矿物。其主要化学成分为SiO2占45%~60%;Al2O3占20%~30%;Fe2O3占5%~10%,以及少量的氧化钙、氧化镁、氧化钾、三氧化硫等。粉煤灰的活性,主要取决于玻璃体的含量,以及无定形的氧化铝和氧化硅的含量,而粉煤灰的细度、需水量比也是影响活性的两个主要物理因素,因此粉煤灰应有严格的质量控制。 7.2.2 矿粉是炼铁高炉排渣时通过水淬(急冷)成粒后,再经磨细而得,主要化学成分有SiO2,Al2O3,CaO与MgO等,根据活性指标的大小把矿粉分为80级、100级与120级三个等级,指标越大,等级越高,表示活性越高。磨细矿渣粉应选用品质稳定均匀、来源固定的产品,其品质应满足表7-3的要求。 硅粉(S.F):是生产硅铁,电收尘所得废料。主要成分是SiO2=86~95%,无定形物质,活性极高。表观密度250~300kg/m3,密度2.2,空隙率高达90%以上,为细小球=0.1~0.2μm,比表面积S=18~22m2/g,是水泥的20~30倍,需水量比高达134%,状颗粒d 平 SF取代水泥每增加1%(约5kg),需水量增加7kg,SF取代水泥每增加1%,减水剂增加0.05%。品质标准应符合表7-4的要求。SiO2≥85%,W≤3%,烧失量≤6% 火山灰活性指数≥90%,细度45μm筛余≤10%,比表面积S>15m2/g均匀性指标,密度与均值偏差≤5%,细度与均值偏差≤5%。掺量:以7~9%最佳,适宜量5~15%,极限量10~20%,超过20%不经济,作用不大。磨细矿渣比普通矿渣优越,掺入混凝土中可以取代部分水泥,可提高流动度,降低泌水性,早强相当,但后强高耐久性好,掺30%时,可提高强度22%左右,试验表明,磨细矿渣的最佳掺量是30~50%,最大掺量可到70%,此时水化热可降低,自身收缩也可减小。 表7-1粉煤灰技术指标

最新外加剂与水泥掺合料不相适应的原因

外加剂与水泥掺合料不相适应的原因

摘要:外加剂与水泥/掺合料之间有时出现的不相适应性问题长期以来影响着实际工程对外加剂/掺合料的应用,并受到材料科学研究人员的高度重视。本文首先对混凝土外加剂与水泥/掺合料之间的适应性进行定义,并从混凝土外加剂、水泥和掺合料三个方面讨论导致商品混凝土中外加剂与水泥/掺合料不相适应的原因和机理进行研究和分析。 关键词:外加剂水泥掺合料适应性影响因素 改革开放以来,我国商品混凝土发展十分迅速。从1979年我国建立第一家预拌混凝土搅拌站开始,商品混凝土搅拌站如雨后春笋般成长。1990年,我国已建成100家商品混凝土搅拌站,到2002年,我国商品混凝土搅拌站数量更是高达1039家,实际年产量为13914m3,与2002年相比,2003年商品混凝土年产量的增加幅度超过30%。混凝土商品化进程的实施在提高混凝土质量、满足结构工程实际需要、节约资源、节省能源、保护环境和文明施工等方面都发挥了巨大作用。然而,我国东、西部及沿海地区的经济、技术发展不均衡,混凝土商品化步伐和商品混凝土技术水平差别也很大。我国个别发达城市,如上海、北京、广州等,混凝土商品化供应比例已大于80%,而边远地区(有些甚至是省会城市),其混凝土商品化程度却不足20%。为进一步提高混凝土商品化程度,加速混凝土商品化进程,2003年10月16日,我国商务部、公安部、建设部和交通部联合发布“关于限制禁止在城市城区现场搅拌混凝土的通知”。通知规定:从2003年12月31日起,北京等124个城市禁止现场搅拌混凝土;其它城市从2005年12月31日起禁止现场搅拌混凝土。可见,我国混凝土商品化步伐将急速加快。

粉煤灰掺合料对混凝土的影响

粉煤灰掺合料对混凝土的影响 发表时间:2012-03-30T17:07:55.123Z 来源:《时代报告》2012年第1月(上)供稿作者:彭明1高虎2 [导读] 在混凝土的中掺入矿粉、粉煤灰等矿物掺合料,已经成为我公司较为成熟的技术。 彭明1高虎2 无锡建邦混凝土有限公司江苏省无锡 214142 中图分类号:TU528文献标识码:A 文章编号:41-1413(2012)01-0000-01 摘要:在混凝土的中掺入矿粉、粉煤灰等矿物掺合料,已经成为我公司较为成熟的技术。在混凝土生产中,掺入矿粉和粉煤灰等矿物掺合料,可以改善混凝土的工作性、内部结构和后期强度等,并能很好地抑制混凝土的碱-集料反应。本文主要介绍了在混凝土中掺入粉灰对混凝土的工作性及耐久性的影响。同时,讨论混凝土中粉煤灰的最大与最佳掺量,以期更好地做到节约资源保护环境的目的。 关键词:混凝土;粉煤灰;混凝土性能 1 前言 混凝土是当今世界上用量最大的人造材料,由于其原料丰富、价格低廉、制备简单、相对耐久性好等不可取代的优点,在今后相当长的时间里,仍将是最主要的建筑材料。我国在2003年,水泥产量已高达8.25亿吨,混凝土用量达15亿方,已是世界首位。目前,我国每年用在建造房屋和铁路、桥梁等基础建设上的混凝土就要40亿方。相应地,我国水泥产量逐年增长,在2007年就已占世界水泥总量的50%以上。世界范围来看,建筑业消耗了世界资源近40%。这些,给我国和世界的资源和生态都带来了巨大的压力和负担。 另外,我国每年的生产的粉煤灰达2.5亿t。粉煤灰这样的工业副产品中含有少量的重金属。大量的粉煤灰如果得不到有效的利用,将会造成土地、空气和地下水污染。而在混凝土中掺入粉煤灰,可以钳制粉煤灰中绝大多数的有害金属,使之安全地与水泥水化产物结合。 所以,在保证混凝土性能――甚至有可能的话,提高混凝土的一些性能――的前提下,在混凝土的生产中,合理地掺入工业生产中的矿物废弃物作为混凝土中的矿物掺合料,替代原生产中的水泥,无论是对社会还是对生态,都有着积极意义。 1982年,英国Sarwick机场的停机坪扩建工程在两条相邻的道面上对掺与不掺粉煤灰的混凝土进行了对比。所用粉煤灰混凝土中粉煤灰掺量达到了46%。该工程经运行4年后所拍的照片清楚地显示出:与纯硅酸盐水泥混凝土相对照,掺粉煤灰混凝土道面表面层抗滑构造基本完好,而前者已坑坑点点,受到一定的破坏。 这一实例有力地说明了,在混凝土中掺入一定量的粉煤灰,不仅可以减少混凝土中水泥的使用,节约成本,保护环境;更是能够提高混凝土如耐久性等的一些性能。 2 粉煤灰的性质 2.1 粉煤灰的化学成分 查阅了相关资料后发现,不同国家,不同地区的粉煤灰的化学成分的差别很大。(表2-1) 表2-1 一些国家粉煤灰的氧化物[] 但是,粉煤灰的化学成分对粉煤灰的品质影响并不大,重要的是矿物成分和颗粒形貌(粒径和形状),它们决定着粉煤灰对混凝土性能的影响。 2.2 粉煤灰的矿物成分 粉煤灰的火山灰活性主要取决于玻璃相的数量和组成。经过超高温处理后的粉煤灰通常含有60%~90%的下玻璃体,而玻璃体的化学成分和活性又主要取决于钙的含量。 由烟煤产生的低钙粉煤灰中主要的晶体矿物是石英、莫来石、硅线石等,这些矿物不具备任何的火山灰活性。高钙粉煤灰中的晶体矿物主要是石英、铝酸三钙、硫铝酸钙、硬石膏、游离氧化钙等。所以高钙粉煤灰会具有较高的活性。 2.3粉煤灰的颗粒特性 一般来说,在机理上,粉煤灰掺合料对新拌混凝土和硬化混凝土性能的影响主要取决于颗粒的形貌,而不是化学成份。 相对于高炉矿渣等其他掺合料,粉煤灰为球形颗粒,这对于减少混凝土拌合物的需水量和提高混凝土拌合物的工作性具有积极作用。 另外,粉煤灰的火山灰活性通常与小于10μm的颗粒含量呈正比,而大于45μmr的粉煤灰颗粒很小或不具备火山灰活性。 3 粉煤灰掺合料对混凝土性能的影响

水泥混合材和混凝土掺合料的区别

水泥混合材和混凝土掺合料的区别 在水泥生产过程中,为改善水泥某些性能、调节水泥标号及增加产量而加到水泥中的矿物质材料,称之为水泥混合材料,简称水泥混合材。在水泥中掺加混合材料可以调节水泥标号与品种,增加水泥产量,降低生产成本;在一定程度上改善水泥的某些性能,满足建筑工程中对水泥的特殊技术要求;可以综合利用大量工业废渣,具有环保和节能的重要意义。 混凝土掺合料一般是指在混凝土制备过程中掺入的,与硅酸盐水泥或普通硅酸盐水泥共同组成胶凝材料,以硅、铝、钙等一种或多种氧化物为主要成分,在混凝土中可以取代部分水泥,具有规定细度和凝结性能、能改善混凝土拌合物工作性能和混凝土强度的具有火山灰活性或潜在水硬性的粉体材料,其掺量一般不小于胶凝材料用量的5%。其主要作用是改善混凝土的工作性、稳定性、耐久性、抗蚀性。 尽管水泥混合材和混凝土掺和料有交集,混凝土掺和料理论上说都可以做水泥的混合材,但是,水泥混合材即使是活性混合材料还是不能代替混凝土掺和料,具体理由如下: 1.从工程实践来看,混凝土掺合料一般具有一定的潜在活性,其发挥火山灰效应、形态效应、微集料效应和界面效应可以取代10%~50%的常规普通硅酸盐水泥,用量最大的掺和料主要有粉煤灰、矿渣微粉,其次是钢渣粉、硅灰等。

2.工程实践中,混凝土掺合料也可以在混凝土中起充填效应,起调节混凝土或砂浆强度等级的作用。典型案例是:混凝土掺合料在硫铝酸盐水泥或铁铝酸盐水泥基砂浆或混凝土中就主要起充填效应。 3.混凝土掺合料的细度比水泥混合材的细度要细。混凝土掺合料比表面积一般在400~450 m2/kg及以上,甚至更高(比如硅灰);水泥混合材由于通常与水泥孰料、石膏一起粉磨,其比表面积一般在330~380 m2/kg左右,细度相对比较粗一些。 4.各种成熟的混凝土掺和料目前都有自己的国家标准或行业标准,是可以市售的商品;而水泥混合材,其地位只能说是水泥粉磨时的原材料,二者地位相差很大。因为只有当掺合料或者混合材达到一定的细度,才可以发挥火山灰效应、形态效应、微集料效应和界面效应,才有利于混凝土密实度的改善和耐久性的提高。从混凝土材料体系上来说,水泥混合材不能取代混凝土掺合料,反之,混凝土掺合料倒可以取代大部分的水泥混合材。 5.混凝土的基本理论表明,混凝土掺合料在混凝土中可以发挥火山灰效应、形态效应、微集料效应和界面效应,是当代高性能混凝土的第六大必需组份,是一种“高大上”的产品。 用于水泥和混凝土中的粉煤灰GB/T1596-2005、用于水泥和混凝土中的粒化高炉矿渣粉GB/T18046-2008、石灰石粉在混凝土中应用技术规程JGJ/T 318-2014、用于水泥和混凝土中的粒化电炉磷渣粉GB/T 26751-2011、用于水泥和混凝土中的钢渣粉GB/T 20491-2006、用于水泥和混凝土中的锂渣粉YB/T 4230-2010及混凝土用复合掺合料JG/T486-2015

矿物质掺合料对混凝土耐久性的影响

矿物质掺合料对混凝土耐久性的影响 【摘要】混凝土耐久性主要是指其抵抗物理和化学侵蚀,如冻结、高温、碳化、侵蚀等能力,混凝土耐久性不满足要求是导致铁路不能达到设计寿命和寿命降低的主要原因,本文针对高性能混凝土所使用的粉煤灰、矿渣粉等矿物质掺合料对混凝土抗渗性、抗冻性、抗裂性、抗腐蚀及抗氯离子渗透及抑制碱骨料反应等方面做出了一系列的分析和研究。 【关键词】粉煤灰;矿渣粉;混凝土;耐久性 1.前言 近年来,随着高性能混凝土在建筑行业的日益盛行,高性能混凝土所使用的矿物掺合料已得以广泛使用,粉煤灰、矿渣粉是目前铁路建设中不可缺少的矿物质材料,在我国已建和在建的铁路中得以全面使用,粉煤灰、矿渣粉等矿物质的使用不仅可以减少水泥使用量,降低成本,改善和提高混凝土工作性能和力学性能,同时能够提高混凝土耐久性,如混凝土的抗冻性、抗渗性、抗蚀性及抗碳化能力等,混凝土结构耐久性满足设计与否直接影响着铁路的质量、安全及使用寿命,是铁路混凝土结构的核心。 2.粉煤灰、矿渣粉对混凝土抗渗性能的影响 2.1粉煤灰对混凝土抗渗性能的影响 抗渗性与混凝土耐久性的关系十分密切,因为一切破坏作用的因素总是随液体或气体进人混凝土。粉煤灰在混凝土具有充填行为和致密作用,粉煤灰的致密作用是粉煤灰在混凝土中活性充填行为的综合结果,在新拌混凝土阶段,粉煤灰充填于水泥颗粒之间,使水泥颗粒解絮扩散,改善了和易性,增加浇筑密实性,从而使混凝土初始结构致密化;在硬化发展阶段,主要发挥了物理充填料的作用;在硬化后期,又发挥了活性充填料的作用,粉煤灰的活性物质在混凝土中会发生二次水化反应,使粉煤灰具有一定胶凝性,填充了水泥水化后微小孔隙,使混凝土密实度得以提高,使混凝土的抗渗性能得以大大提高,但若要最大功效地发挥粉煤灰在混凝土的抗渗功能,其在胶凝在材料中的掺量控制尤为重要,目前,在铁路桥梁施工中粉煤灰在胶材中的取代率在12%~20%为宜。 2.2矿渣粉对混凝土抗渗性能的影响 矿渣粉的主要成分为SiO2和Al2O3,具有超高活性,将其作为掺合料掺入水泥混凝土中,这些活性的SiO2和Al2O3即可与水泥的C2S水化产生反应,进一步形成水化硅酸钙产物,大幅度提高水泥混凝土的致密性,从而改善孔结构,减少孔隙率和最大孔径尺寸,使混凝土形成密实填充结构和细观层次的自紧密堆积体系,达到提高混凝土抗渗性能,使混凝土的水渗透系数得到明显降低,同时防止产生泌水和离析现象的发生。研究表明,采用粉煤灰与矿物掺合料双掺,同

混凝土用复合掺合料

混凝土用复合掺合料 1 范围 文件规定了混凝土用复合矿物掺合料的术语和定义、组分与材料、分类与标记、要求、试验方法、检验规则、标志、包装、运输与贮存。 文件适用于混凝土用复合矿物掺合料的生产和检验。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件,凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 175通用硅酸盐水泥 GB/T 176 水泥化学分析方法 GB/T203 用于水泥中的粒化高炉矿渣 GB/T 750水泥压蒸安定性试验方法 GB/T 1345 水泥细度检验方法筛析法 GB/T 1346水泥标准稠度用水量、凝结时间、安定性检验方法 GB/T 1596 用于水泥和混凝土中粉煤灰 GB/T 2419 水泥胶砂流动度测定方法 GB/T 5483天然石膏 GB 6566 建筑材料放射性核素限量 GB/T 6645用于水泥中的粒化电炉磷渣 GB 9774 水泥包装袋 GB 12573 水泥取样方法 GB/T 17671 水泥胶砂强度检验方法(ISO法) GB/T 18046 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 20491用于水泥和混凝土中的钢渣粉 GB/T 21371 用于水泥中的工业副产石膏 GB/T 26748水泥助磨剂 GB/T 27690砂浆和混凝土用硅灰 GB/T 30190石灰石粉混凝土 GB/T 30435电热干燥箱及电热鼓风干燥箱 GSB14-1510强度检验用水泥标准样品 JG/T 315 水泥砂浆和混凝土用天然火山灰质材料 JG/T 317 混凝土用粒化电炉磷渣粉 YB/T 022用于水泥中的钢渣 3 术语和定义 下列术语和定义适用于本文件。 3.1 矿物掺合料mineral admixture 以硅、铝、钙等一种或多种氧化物为主要成分,具有规定细度,掺入混凝土中能改善混凝土性能的粉体材料,可分为活性矿物掺合料和惰性矿物掺合料。 3.2 复合矿物掺合料compound mineral admixtures

混凝土掺合料(粉煤灰)

一、施工准备 1、材料 ⑴从煤粉炉烟道气体中收集的粉未称为粉煤灰,其质量指标见表(5─31) ⑵粉煤灰用于混凝土工程可根据等级,按下列规定应用: 1)Ⅰ级粉煤灰适用于钢筋混凝土和跨度小于6m的预应力钢筋混凝土。 2)Ⅱ级粉煤灰适用于钢筋混凝土和无筋混凝土。 3)Ⅲ级煤灰主要用于无筋混凝土。 对设计强度等级C30及以上的无筋粉煤灰混凝土,宜采用Ⅰ、Ⅱ级粉煤灰。 4)用于预应力钢筋混凝土,钢筋混凝土及设计强度等级C30及以上的无筋混凝土的粉煤灰等级,如经试验论证,可采用比上列三款规定低一级的粉煤灰。 ⑶配制泵送混凝土,大体积、坑渗、地下工程,水下工程等混凝土,宜掺用粉煤灰。 ⑷根据各类工程和各种施工条件的不同要求,粉煤灰可与各类外加剂同时使用。外加剂的适应性及合理掺量应由试验确定。 ⑸超量取代法:混凝土中掺用粉煤灰采用等量取代法(大体积混凝土),外加法(主要为改善混凝土和易性),和超量取代法(配制普通混凝土、节约水泥)。 1)超量取代法是因为粉煤灰的活性低于水泥的活性,而粉煤灰的活性又必须靠水泥来激发,同时粉煤灰的比重小于水泥的比重,因此用超量的粉煤灰取代水泥,也同时代替一部分砂子。 2)粉煤灰的超量系量如下: 粉煤灰等级超量系数 Ⅰ 1.1~1.4 Ⅱ 1.3~1.7 Ⅲ 1.5~2.0 3)粉煤灰取代水泥的最大限量见表5─32。

2、作业条件 ⑴按工程特点和进场的水泥品种确定掺入粉煤灰等级。 ⑵必须经过试配确定粉煤灰用量。 ⑶施工前对班组进行技术操作交底。 ⑷指定专人计量工作进行监督。 二、操作工艺 1、散装粉煤灰的存放与散装水泥相同。包装粉煤灰的储存与包 装水泥相同。 2、按照配合比每盘(槽)的粉煤灰用量,由专人提前称量存放,或用专用量具计量投料。 3、粉煤灰掺入混凝土中的方式,可采用干掺或湿掺。但均以干态重量计量,称量误差不得超过2%,粉煤灰中的含水量应在拌合水中扣除。 4、投料时,与水泥、砂、石、水等材料一起加入搅拌机中进行搅拌。 5、粉煤灰混凝土拌合物搅拌均匀,其搅拌时间应比基准混凝土(不掺粉煤灰的同一强度等级的混凝土)延长10~30s。 6、粉煤灰混凝土浇筑时,不得漏振或过振,振捣后的粉煤灰混凝土表面不得出现明显的粉煤灰浮浆层。 三、施工注意事项 1、进场的粉煤灰要有出厂合格证或检验报告,其质量指标必须符合《粉煤灰混凝土应用技术规范》GBJ146─90)。 2、粉煤灰色泽和细度与水泥相似,所以现场储存应挂牌标记,并尽量与水泥分仓,以防用错。 3、粉煤灰宜与各类外加剂同时使用,这样既可提高混凝土的早期强度,又能进一步发挥节约水泥效能。 4、粉煤灰比重约2:1比水泥小1/3,不易拌和均匀,因此宜用强制式混凝土搅拌机搅拌。 5、粉煤灰混凝土表面宜加遮盖养护,暴露面的潮湿养护时间不得少于14天,干燥或炎热气候条件下的潮湿养护时间不得少于21天。 6、粉煤灰混凝土在低温条件下施工时,应加强表面保温,表面的最低温度不得低于5°C。寒潮冲击情况下,日降温幅度大于8°C时。应加强混凝土表面

掺合料对混凝土力学性能的影响机理

第45卷第5期2017年5月 硅酸盐学报Vol. 45,No. 5 May,2017 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.doczj.com/doc/2211926113.html, DOI:10.14062/j.issn.0454-5648.2017.05.00 掺合料对混凝土力学性能的影响机理 吴凯1,施惠生1,徐玲琳1,高云2,叶光3 (1. 同济大学材料科学与工程学院,上海 201804; 2. 东南大学材料科学与工程学院,南京 211189; 3. Faculty of Civil Engineering and Geosciences, TU Delft, 2628 CN Delft, The Netherlands) 摘要:系统测试了利用石灰石粉、矿粉及不同集料体积掺量、粒径分布配制试件的抗压强度与动弹模量,采用压汞法对相应试件孔径分布特征进行对比分析,研究掺合料对基体与界面过渡区(ITZ)孔结构的分别作用,深入分析掺合料调控ITZ微结构对混凝土力学性能的影响机理。结果表明:掺加5%石灰石粉可细化样品孔结构,使总孔隙率及10nm以上孔的含量有所降低;掺加10%石灰石粉则会提高总孔隙率和10nm~100nm这一区间孔体积,但降低100nm以上孔的含量;掺加35%矿粉虽然减少了试件的总孔隙率及10nm以上孔的含量,但会提高10nm以下孔的体积;在大掺量矿粉时(70%),大于10nm的毛细孔有所减少,而小于10nm的微孔含量显著增加;掺加5%石灰石粉或35%矿粉,试件56d抗压强度、动弹模量略有增加,且增加幅度随集料体积掺量增加或集料平均粒径的减小而增大;对比添加掺合料后不同区间孔的体积变化后发现,混凝土力学性能的改善主要取决于100nm以上区间即界面过渡区孔结构的优化。 关键词:界面过渡区;力学性能;压汞;掺合料;微结构 中图分类号:TQ172 文献标志码:A 文章编号:0454–5648(2017)05–0000–08 网络出版时间:网络出版地址: Effect of Mineral Admixture on Mechanical Properties of Concrete WU Kai1, SHI Huisheng1, XU Linglin1, GAO Yun2, YE Guang3 (1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China; 2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; 3. Faculty of Civil Engineering and Geosciences, TU Delft, 2628 CN Delft, The Netherlands) Abstract: The compressive strength and elastic modulus of concrete with slag, limestone powder, and aggregate were determined. The effect of the mineral admixture on the porosity features of cement matrix and interfacial transition zone (ITZ) was investigated, and the improved mechanism for the mechanical properties was analyzed from the ITZ microstructure point of view. The results show that 5% addition of limestone powder is able to refine the pore structure by reducing the total pore volume and the volume of pores of > 10 nm. Increasing the limestone powder replacement level to 10% can increase the total pore volume and the volume of pores between 10 and 100 nm, and reduce the volume of pores of > 100 nm. Replacing 35% of cement by slag can reduce the total porosity and the volume of pores of > 10 nm. However, the addition of large amount of slag (70%) can increase the volume of pores of < 10 nm, while the volume of pores of > 10 nm decreases. Moreover, 5% addition of limestone powder or 35% addition of slag increase the compressive strength and elastic modulus of samples cured after 56 d. This increment is more remarkable as the aggregate volume content increases or the mean aggregate size decreases. Comparing the pore volume in a specific range with those of the reference, we find that the modification of mechanical properties is more related to the variation of pores in the range of > 100 nm. Keywords: interfacial transition zone; mechanical properties; mercury intrusion porosimetry; mineral admixture; microstructure 收稿日期:2016–07–01。修订日期:2016–08–29。 基金项目:国家自然科学基金项目(51378390, 51402216, 51608382)。第一作者:吴凯(1987—),男,博士,助理教授。Received date:2016–07–01. Revised date: 2016–08–29. First author: WU Kai (1987–), male, Ph.D. E-mail: wukai@https://www.doczj.com/doc/2211926113.html,

高性能混凝土掺合料生产技术

B0205、高性能混凝土掺合料 高活性补偿收缩矿物掺合料,它由钢渣、矿渣、硫铝酸盐水泥熟料和石膏混合而成,其各组份质量配比为:钢渣∶矿渣∶硫铝酸盐水泥熟料∶石膏=0,各组份之和为100%;钢渣、矿渣、硫铝酸盐水泥熟料和石膏经混合、粉磨,得到勃氏比表面积为400~500m↑[2]/kg的干粉状具有高活性和补偿收缩功能的高活性补偿收缩矿物掺合料。本发明即具有高活性又具有补偿收缩功能;该高活性补偿收缩矿物掺合料的活性指数和膨胀率指标可分别达到:活性指数≥80%(强度比值);28d膨胀率:0.03~0.05%;180d膨胀率0.01~0.03%。 2.[ 200510039176 ]- 无氯无碱多功能复合混凝土矿渣掺合料及其生产方法 无氯无碱多功能复合混凝土矿渣掺合料,组分重量比为:无机工业废料0%;有机原料0%。无机工业废料选自:锂矿渣粉、亚钙渣粉、磷石膏渣、萤石尾矿、硅灰和稀土废料的复合物;有机原料选自:有机硅烷、碳纤维、甲基乙烯基硅橡胶、聚环氧磺酸盐、聚羧酸盐、低聚甘油、二乙烯三胺类缩合物和酒石酸的复合物。其生产方法包括以下步骤:将无机工业废料按配比混合并粉磨至0.08mm孔筛筛余在5%以下的细粉;有机原料粉磨至1μm以下粒径;按无机工业废料90~95%的重量比例加入5~10%的有机原料。本发明的抑制碱集料反应和改变凝胶膨胀特性的组分,可使混凝土的密实性提高并具有抗氯离子腐蚀和防冻融破坏性能。 3.[ 200510033273 ]- 用于高抗冲击水泥与混凝土的复合掺合料 涉及一种用于高抗冲击水泥与混凝土的复合掺合料,由硅酸盐水泥熟料、高炉矿渣、粉煤灰、烧稻壳粉、石膏制成,其制备方法包括先将硅酸盐水泥、高炉矿渣、石膏分别破碎、烘干,粉磨至细度为80微米方孔筛筛余<1%、颗粒粒径为25~33微米;用这种掺合料与普通水泥配合可制成高抗冲击水泥和混凝土,可以达到不同工程的要求。 4.[ 200510020330 ]- 高钛高炉矿渣混凝土掺合料及其生产方法 一种高钛高炉矿渣混凝土掺合料及其生产方法。该混凝土掺合料按重量百分比含有以下组分:高钛高炉矿渣微粉0%、激发剂0%,其中高钛高炉矿渣微粉的比表面积>400m<sup>2</sup>/Kg。本发明的有益效果是,使高钛高炉矿渣能象普通高炉矿渣和粉煤灰一样用做混凝士掺合料,等量取代20~30%水泥,能配制出完全符合标准的C30以上的普通混凝土和C50以上的高强混凝土。混凝土除强度能满足相应的标准要求外,其抗硫酸盐性、抗冻性、收缩性、和抗碳化性均良好。使以前基本上无法利用的高钛高炉矿渣得以大量利用,实现了工业固体废弃物的再利用。 5.[ 200410040828 ]- 混凝土矿物外加剂——磷渣微粉及其生产方法 一种混凝土矿物外加剂及其生产方法,涉及用电炉黄磷废渣生产混凝土矿物外加剂——磷渣微粉的方法,磷渣微粉是以磷渣为原料制成的粒径≤80μm、比表面积为300~600m#+[2]/kg的具有活性的细微粉体。磷渣微粉可显著改善和提高混凝土的性能,是生产高强、高性能混凝土不可或缺的掺合料;本方法为磷渣的利用寻找到一条新途径,有利于改善环境。 6.[ 200410016148 ]- 利用复合钢渣微粉制备高性能混凝土掺合料的方法 涉及一种配制高强、超高强混凝土用的掺合料,进一步涉及由几种材料复合而成的掺合料的组成及其生产方法。将钢渣微粉与矿渣微粉按照一定比例相互掺合,作为高性能混凝土的掺合料并等量替代20~90%的水泥;所述钢渣微粉与矿渣微粉的比表面积为450~600m#+[2]/kg。利用钢渣粉和矿渣粉的耦合性,发挥其各自的优势,起到优势叠加的效应,使混凝土的综合性能得到提高。经复掺后的高性能混凝土,其强度和耐久性大幅度提高,材料的密实性和抗渗透能力明显增强。

水泥中的混合料和混凝土的掺合料

1. 水泥由水泥熟料和混合材料组成,熟料主要含硅酸钙、铝酸钙和铁酸钙,混合材料种类较多,如粉煤灰等。我们常用的普通硅酸盐水泥(PO)混合材料大概在5%-15%之间,复合硅酸盐水泥(PC)混合材料15%-50%。 混凝土掺合料主要是一些外加剂,改变混凝土的一些性质,比如木质纤维素、建筑胶粉、缓凝剂等。 2. 混凝土掺合料是在混凝土拌合时掺入的能改善混凝土性能的粉状物质。在加入混凝土掺合料后,可以提高混凝土的各项性能,如和易性,粘聚性,可泵性;降低混凝土的坍落度损失;降低混凝土内部早期干燥收缩,使硬化后的混凝土结构更密实,混凝土早期和后期强度都能得到提高,抗渗、抗冻及耐化学腐蚀能力会有显著的改善 3. 掺合料是用于混凝土改善其性能或降低成本的掺量大于5%的粉末材料。掺合料包括:矿粉(钢渣粉)、粉煤灰、沸石粉、硅灰、过火煤矿石等几类。掺合料研究的重要性:降低水化热、改善混凝土的和易性、提高耐久性、降低成本。 4. 水泥中掺入混合材料,是为了:一:提高水泥的产量。二:为了某些工程需要,如降低水化热,提高密实度等。三:节能减排。 掺合料 addition 混合材 定义:制造水泥或拌制混凝土和砂浆时,为改善性能、节省水泥、降低成本而掺加的矿物质粉状材料。 应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科); 建筑材料(水利)(三级学科) 掺合料 extender 混凝土掺合料是在混凝土拌合时掺入的能改善混凝土性能的粉状物质。 掺合料可分为活性掺合料和非活性掺合料。 活性掺合料在掺有减水剂的情况下,能增加新拌混凝土的流动性、粘聚性、保水性、改善混凝土的可泵性。并能提高硬化混凝土的强度和耐久性。 常用的混凝土掺合料有粉煤灰、粒化高炉矿渣、火山灰类物质。尤其是粉煤灰、超细粒化电炉矿渣、硅灰等应用效果良好。 工程实践中常采用“双掺”技术,即在掺入粉煤灰的同时再掺入减水剂。以此配制的普通、高强、高性能混凝土,可节约水泥,提高混凝土工

复合掺合料对混凝土强度的影响

复合掺合料对混凝土强度的影响 摘要:近年来,随着工程建设项目的增多,混凝土制备技术的应用也逐步增多,混凝土的性能会直接影响整个工程的质量。因此,在混凝土制备中,往往会使用 一定量的复合掺合料来改善混凝土的各个性能指标,实现工程质量的控制。复合 掺合料对混凝土的强度有着直接的影响,在混凝土的制备过程中,必须要结合工 程建设中混凝土的强度要求,对复合掺合料的种类与用量进行选择与控制。基于此,本文分析了复合掺合料对混凝土强度的影响,有利于提高混凝土的整体水平。 关键词:复合掺合料;混凝土强度;影响 近年来,城市化与工业化的快速发展过程中,各种工业、民用与市政等建设 项目逐步增多,而这些项目中,混凝土都是不可或缺的重要材料。混凝土的性能 会影响整个建筑结构的稳定性与安全性,施工人员必须要进行混凝土配合比的科 学设计,以提高混凝土的强度等性能。相关研究表明,一些复合掺合料在混凝土 中的应用,能够改善混凝土的整体性能,对混凝土的强度指标有着一定的影响。 但是,由于复合掺合料类型的多样性,要实现混凝土的强度控制,需进行复合掺 合料种类的选择,并严格控制其用量。 1.材料和试验方法 1.1原材料 在本试验中,涉及的原材料主要包含了水泥、粉煤灰、石灰石粉、砂、碎石 与外加剂,这些材料都是混凝土的主要材料,根据工程的质量要求,各种材料的 相关性能如下: (1)水泥:南宁华润水泥厂生产的P.O42.5水泥,该水泥的初凝与终凝时间 分别为164min和238min,3天和28天强度分别为29.5MPa,55.3MPa;水泥标 准稠度为26.3%; (2)粉煤灰:粉煤灰的基本指标:细度为18%,需水量比达到100%,烧失 量为5.6%; (3)石灰石粉。该种石灰石粉属于超细石灰石粉,细度为9.8%,需水量比98%,烧失量33.45%; (4)砂。主要为干磨碎石人工砂,其中,砂的细度模数为2.8,含粉量为 9.5%,MB值为0.6; (5)碎石。5~20mm连续级配石灰石碎石。 (6)外加剂。聚羧酸减水剂,固含量6.5%,减水率15.2%。。 1.2试验方法 由于本次试验所检测的是复合掺合料对混凝土强度的影响,以抗压强度作为 试验检测指标。为达到检测目的,相关的试验人员需要制备尺寸为 100mm×100mm×100mm的混凝土试块,在混凝土养护拆模结束以后,检测人员 需重点分析在不同的复合掺合料比重下混凝土强度的具体变化。石灰石粉作为复 合掺合料,检测混凝土试块在3d、7d、28d不同龄期内的强度指标[1]。 2.石灰石复合超细矿物掺合料对混凝土强度的影响 在本试验研究中,混凝土中胶凝材料的用量相对固定,为480Kg/m3,此时, 通过分析矿物掺合料在胶凝材料中所占的不同比重,来获得石灰石粉、粉煤灰等 掺合料的用量对混凝土强度造成的直接影响。 2.1矿物掺合料占胶凝材料总量的30% 矿物掺合料用量为胶凝材料用量的30%,此时,不同石灰石粉掺量条件下混

混凝土掺合料

第四章混凝土掺合料 在混凝土拌和物制备时,为了节约水泥、改善混凝土性能、调节混凝土强度等级,而加人的天然的或者人造的矿物材料,统称为混凝土掺合料。 用于混凝土中的掺合料可分为活性矿物掺合料和非活性矿物掺合料两大类。非活性矿物掺合料一般与水泥组分不起化学作用,或化学作用很小,如磨细石英砂、石灰石、硬矿渣之类材料。活性矿物掺合料虽然本身不水化或水化速度很慢,但能与水泥水化生成的Ca(OH):反应,生成具有水硬性的胶凝材料。如粒化高炉矿渣,火山灰质材料、粉煤灰、硅灰等。 通常使用的掺合料多为活性矿物掺合料。由于它能够改善混凝土拌和物的和易性,或能够提高混凝土硬化后的密实性、抗渗性和强度等,因此目前较多的土木工程中都或多或少地应用混凝土活性掺合料。特别是随着预拌混凝土、泵送混凝土技术的发展应用,以及环境保护的要求,混凝土掺合料的使用将愈加广泛。 活性矿物掺合料依其来源可分为天然类、人工类和工业废料类(表4—1)。 本章着重介绍粉煤灰、沸石粉和硅粉等几种活性矿物掺合料。 第一节粉煤灰 粉煤灰是由燃烧煤粉的锅炉烟气中收集到的细粉末,其颗粒多呈球形,表面光滑。 粉煤灰有高钙粉煤灰和低钙粉煤灰之分,由褐煤燃烧形成的粉煤灰,其氧化钙含量较高(一般大于10%),呈褐黄色,称为高钙粉煤灰,它具有一定的水硬性;由烟煤和无烟煤燃烧形成的粉煤灰,其氧化钙含量很低(一般小于10%),呈灰色或深灰色,称为低钙粉煤灰,一般具有火山U灰活性。 低钙粉煤灰来源比较广泛,是当前国内外用量最大、使用范围最广的混凝土掺合料。用其做掺合料有两方面的效果。 (1)节约水泥。一般可节约水泥10%~15%,有显著的经济效益。 (2)改善和提高混凝土的下述技术性能:①改善混凝土拌和物的和易性、可泵性和抹 第63页 面性;②降低了混凝土水化热,是大体积混凝土的主要掺合料;③提高混凝土抗硫酸及硫酸盐侵蚀的性能;④提高混凝土抗渗性;⑤抑制碱集料反应。 一。化学成分及主要技术性能 (一)化学成分 粉煤灰的化学成分因煤的品种及燃烧的条件不同而存在一定的差异,但其主要的成分还是SiO2、A12O3和Fe2O,等,它们的总含量约占粉煤灰质量的75%以上。表4—2中给出了我国一些产煤地区煤种的粉煤灰化学成分及烧失量的统计指标。

掺合料新标准解读

第1题 水运工程中粉煤灰出厂检验评判的依据有()。 A.JTS 202-2011《水运工程混凝土施工规范》 B.JTS/T 236-2019《水运工程混凝土试验检测技术规范》 C.GB/T 1596-2017《用于水泥和混凝土的粉煤灰》 D.以上均不是 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 采用新水运工程试验方法标准(JTS/T 236-2019)与国标(GB/T 27690-2011)分别进行同一硅灰样品活性指数的测试,两者检测结果比较() A.GB/T 27690-2011测试的活性指数大 B.JTS/T 236-2019测试的活性指数大 C.一样大 D.没有可比性 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第3题 GB/T 27690-2011 《砂浆和混凝土用硅灰》中硅灰二氧化硅检测的试验方法标准()。 A.GB/T 18736-2017《高强高性能混凝土用矿物外加剂》 B.GB/T 27690-2011 《砂浆和混凝土用硅灰》 C.GB/T 18736-2002《高强高性能混凝土用矿物外加剂》 D.GB/T 176-2017《水泥化学分析方法》 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第4题 水运工程中粉煤灰进场检验评判的依据标准有()

A.JTS 202-2011《水运工程混凝土施工规范》 B.JTS/T 236-2019《水运工程混凝土试验检测技术规范》 C.GB/T 1596-2017《用于水泥和混凝土的粉煤灰》 D.以上均是 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第5题 水运工程粒化高炉矿渣粉的试验方法标准包括() A.GB/T 18046-2017 《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》 B.GB/T 8074-2008《水泥比表面积测定方法勃氏法》 C.JTS/T 236-2019《水运工程混凝土试验检测技术规范》 D.以上均是 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:7 此题得分:7.0 批注: 第6题 粉煤灰国标(GB/T 1596-2017)规定的II级灰技术指标包括()。 A.烧失量≤8.0% B.需水量比≤105 % C.45μm筛余细度≤25% D.活性指数≥70% 答案:A,B,D 您的答案:A,B,D 题目分数:7 此题得分:7.0 批注: 第7题 粉煤灰国标(GB/T 1596-2017)较旧标准增加的检测项目参数有()。 A.SIO2、Al2O3、Fe2O3总质量分数 B.密度 C.强度活性指数指标 D.放射性

矿物掺合料混凝土的应用正文

北京市地方标准 混凝土矿物掺合料应用技术规程 DBJ××-××-2002 1.总则 1.0.1为了科学、合理地在混凝土中应用矿物掺合料,规范各种掺合料的应用技术,达到改善混凝土性能、提高工程质量的目的,制定本规程。 1.0.2本规程适用于掺用粉煤灰、粒化高炉矿渣粉、硅灰、沸石粉和复合掺合料的各类预拌混凝土、现场搅拌混凝土和预制构件混凝土。 1.0.3应用矿物掺合料配制混凝土时,应符合本规程规定;本规程未作规定者,尚应符合国家现行的有关标准和技术规程的规定。 2.术语、符号 2.1术语 2.1.1普通混凝土:系指干密度为2000~2800kg/m3的水泥混凝土。 2.1.2基准混凝土:与掺矿物掺合料混凝土相对应的不掺矿物掺合料或外加剂的对比试验用的水泥混凝土。 2.1.3矿物掺合料:指以氧化硅、氧化铝为主要成分,在混凝土中可以代替部分水泥、改善混凝土性能,且掺量不小于5%的具有火山灰活性的粉体材料。 2.1.4粉煤灰:从电厂煤粉炉烟道气体中收集的粉末。 2.1.5粒化高炉矿渣粉:粒化高炉矿渣经干燥、粉磨(也可以添加少量石膏或助磨剂一起粉磨)达到规定细度并符合规定活性指数的粉体材料。 2.1.6硅灰:生产硅钢或硅金属时高纯度石英和煤在电弧炉中还原所得的一种超细粉末,从炉中排出废气中过滤收集而得。 2.1.7沸石粉:指天然斜发沸石岩和丝光沸石岩多孔结构的微晶矿物经破碎、磨细制成的粉体材料。 2.1.8复合掺合料:指采用两种或两种以上的矿物原料,单独粉磨至规定的细度后再按一定的比例复合、或者两种及两种以上的矿物原料按一定的比例混合后粉磨达到规定细度并符合规定活性指数的粉体材料。 2.1.9高钙粉煤灰:指氧化钙含量在8%以上或游离氧化钙含量大于1%的粉煤灰。

水泥(掺合料、细集料)表观密度试验作业指导书

十二、水泥(掺合料、细集料)表观密度试验 一、目的 检测水泥(掺合料、细集料)的表观密度,指导试验员按标准操作,确保检测结果科学、准确;指导配合比试验和进厂材料验收数量。 二、检测参数及执行标准 表观密度; 执行标准:GB/T 208—2014《水泥密度测定方法》; 三、适用范围 水泥、粉煤灰、矿渣粉、石灰石粉、油页岩粉、砂子(石子可打碎测)等表观密度检测。 四、职责 试验员必须执行国家标准,按照标准操作,边做试验边做好记录,编制检测报告,并对检测数据负责。 五、样本大小及抽样方法 以连续供应的500t相同等级的水泥为一批、掺合料200t为一批、细集料按500t为一批,不足时或需要检测时取一个样。 从运输工具、贮灰库或堆场中的不同部位取15份试样,每份试样1~3kg,混合拌匀,按四分法,缩取出比试验所需量大一倍的试样(称为平均样)。 六、仪器设备 1.李氏瓶 2.恒温水槽(控制在20±1℃)。 3.电子天平:精度0.01g。 4.温度计(0.1℃)。 5.蒸馏水(纯净饮用水)。 6.磁力棒、滤纸、小汤匙。 七、环境条件 操作室:20±2℃,相对湿度:不低于50%。 八、检测步骤及数据处理 1.水泥(掺合料、细集料)试样应预先通过0.90mm方孔筛,在110℃±5℃温度下烘干1h,并在干燥器内冷却至室温(20±1℃) 2.称取水泥(掺合料、细集料)70g、粉煤灰50g、砂子60g、石子60g、矿粉60g,精确至0.01g。可按实际情况增减称量材料质量,以便读取刻度值。 3.将蒸馏水(纯净饮用水)注入李氏瓶中至“0ml”到“1ml”之间刻度线后(选用磁力搅拌此时应加入磁力棒),盖上瓶塞放入恒温水槽内,使刻度部分浸入水中(水温应控 )。 制在20±1℃),恒温至少30min,记下蒸馏水的初始(第一次)读数(V 1 4.从恒温水槽中取出李氏瓶,用滤纸将李氏瓶细长颈内没有蒸馏水的部分仔细擦干净。

相关主题
文本预览
相关文档 最新文档