当前位置:文档之家› 专题八分子动理论、热和功及气体状态参量考点例析

专题八分子动理论、热和功及气体状态参量考点例析

专题八分子动理论、热和功及气体状态参量考点例析
专题八分子动理论、热和功及气体状态参量考点例析

专题八:分子动理论、热和功及气体状态参量考点例析

本部分主要包括分子动理论、内能、热力学第一定律、热力学第二定律、气体的状态参量及定性关系。在高考中多以选择题、填空题的形式出现,理科综合一般只考一道选择题,占分比例较小,试题难度属于容易题或中档题,因此只要能识记和理解相关知识点,得到本部分试题的分数并不困难。

一、夯实基础知识

1、理解并识记分子动理论的三个观点

描述热现象的一个基本概念是温度。凡是跟温度有关的现象都叫做热现象。分子动理论是从物质微观结构的观点来研究热现象的理论。它的基本内容是:物体是由大量分子组成的;分子永不停息地做无规则运动;分子间存在着相互作用力。

2、了解分子永不停息地做无规则运动的实验事实

物体里的分子永不停息地做无规则运动,这种运动跟温度有关,所以通常把分子的这种运动叫做热运动。

(1)扩散现象和布朗运动都可以很好地证明分子的热运动。

(2)布朗运动是指悬浮在液体中的固体微粒的无规则运动。关于布朗运动,要注意以下几点:①形成条件是:只要微粒足够小。②温度越高,布朗运动越激烈。③观察到的是固体微粒(不是液体,不是固体分子)的无规则运动,反映的是液体分子运动的无规则性。④实验中描绘出的是某固体微粒每隔30秒的位置的连线,不是该微粒的运动轨迹。

3、了解分子力的特点

分子力有如下几个特点:①分子间同时存在引力和斥力;②引力和斥力都随着距离的增大而减小;③斥力比引力变化得快。

4、深刻理解物体内能的概念

⑴做热运动的分子具有的动能叫分子动能。温度是物体分子热运动的平均动能的标志。温度越高,分子做热运动的平均动能越大。

⑵由分子间相对位置决定的势能叫分子势能。分子力做正功时分子势能减小;分子力作负功时分子势能增大。(所有势能都有同样结论:重力做正功重力势能减小、电场力做正功电势能减小。)

由上面的分析可以得出:当r=r0即分子处于平衡位置时分子势能最小。不论r从r0增大还是减小,分子势能都将增大。分子势能与物体的体积有关。体积变化,分子势能也变化。

⑶物体中所有分子做热运动的动能和分子势能的总和叫做物体的内能。

5、掌握热力学第一定律

做功和热传递都能改变物体的内能。也就是说,做功和热传递对改变物体的内能是等效的。但从能量转化和守恒的观点看又是有区别的:做功是其他能和内能之间的转化,功是内能转化的量度;而热传递是内能间的转移,热量是内能转移的量度。

外界对物体所做的功W加上物体从外界吸收的热量Q等于物体内能的增加ΔU,即ΔU=Q+W这叫做热力学第一定律。

在这个表达式中,当外界对物体做功时W取正,物体克服外力做功时W取负;当物体从外界吸热时Q取正,物体向外界放热时Q取负;ΔU为正表示物体内能增加,ΔU 为负表示物体内能减小。

6、掌握热力学第二定律

(1)热传导的方向性。热传导的过程是有方向性的,这个过程可以向一个方向自发地进行(热量会自发地从高温物体传给低温物体),但是向相反的方向却不能自发地进行。

(2)第二类永动机不可能制成。我们把没有冷凝器,只有单一热源,从单一热源吸收热量全部用来做功,而不引起其它变化的热机称为第二类永动机。这表明机械能和内能的转化过程具有方向性:机械能可以全部转化成内能,内能却不能全部转化成机械能。

(3)热力学第二定律的表述:①不可能使热量由低温物体传递到高温物体,而不引起其他变化(按热传导的方向性表述)。②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化(按机械能和内能转化过程的方向性表述)。③第二类永动机是不可能制成的。

热力学第二定律使人们认识到:自然界各种进行的涉及热现象的宏观过程都具有方向性。它揭示了有大量分子参与的宏观过程的方向性,使得它成为独立于热力学第一定律的一个重要的自然规律。

(4)能量耗散。自然界的能量是守恒的,但是有的能量便于利用,有些能量不便于利用。很多事例证明,我们无法把流散的内能重新收集起来加以利用。这种现象叫做能量的耗散。它从能量转化的角度反映出自然界中的宏观现象具有方向性。

8、掌握气体的状态参量

(1)温度:温度在宏观上表示物体的冷热程度;在微观上是分子平均动能的标志。

热力学温度是国际单位制中的基本量之一,符号T,单位K(开尔文);摄氏温度是导出单位,符号t,单位℃(摄氏度)。关系是t=T-T0,其中T0=273.15K,摄氏度不再采用过去的定义。

两种温度间的关系可以表示为:T = t+273.15K和ΔT =Δt,要注意两种单位制下每一度的间隔是相同的。

0K是低温的极限,它表示所有分子都停止了热运动。可以无限接近,但永远不能达到。

(2)体积。气体总是充满它所在的容器,所以气体的体积总是等于盛装气体的容器的容积。

(3)压强。气体的压强是由于气体分子频繁碰撞器壁而产生的。(绝不能用气体分子间的斥力解释!)

一般情况下不考虑气体本身的重力,所以同一容器内气体的压强处处相等。但大气压在宏观上可以看成是大气受地球吸引而产生的重力而引起的。

压强的国际单位是帕,符号Pa,常用的单位还有标准大气压(atm)和毫米汞柱(mmHg)。它们间的关系是:1 atm=1.013×105Pa=760 mmHg;1 mmHg=133.3Pa。

9、气体的体积、压强、温度间的关系。

(1)一定质量的气体,在温度不变的情况下,体积减小,压强增大。

(2)一定质量的气体,在压强不变的情况下,温度升高,体积增大。

(3)一定质量的气体,在体积不变的情况下,温度升高,压强增大。

二、解析典型问题

问题1:应弄清分子运动与布朗运动的关系

布朗运动是大量液体分子对固体微粒撞击的集体行为的结果,个别分子对固体微粒的碰撞不会产生布朗运动。布朗运动的激烈程度与固体微粒的大小、液体的温度等有关。固体微粒越小,液体分子对它各部分碰撞的不均匀性越明显;质量越小,它的惯性越小,越容易改变运动状态,所以运动越激烈。液体温度越高,固体微粒周围的液体分子运动越不规则,对微粒碰撞的不均匀性越明显,布朗运动越激烈。但要注意布朗运动是悬浮的固体微粒的运动,不是单个分子的运动,但布朗运动证实了周围液体分子的无规则运动。

例1、下列关于布朗运动的说法中正确的是( )

A.布朗运动是指在显微镜下观察到的组成悬浮颗粒的固体分子的无规则运动;

B.布朗运动是指在显微镜下观察到的悬浮固体颗粒的无规则运动;

C.布朗运动是指液体分子的无规则运动;

D.布朗运动是指在显微镜下直接观察到的液体分子的无规则运动。

显然正确答案为B。

问题2:应弄清分子力与分子引力和斥力的关系。

分子之间虽然有空隙,大量分子却能聚集在一起形成固体或液体,说明分子之间存在着引力。分子间有引力,而分子间有空隙,没有紧紧吸在一起,说明分子间还存在着斥力。分子间同时存在着引力和斥力。分子之间同时存在着引力和斥力,都随分子之间距离的变化而变化。但是,由于斥力比引力变化得快,便出现了“斥力大于引力”、“斥力和引力恰好相等”、“引力大于斥力”的情况;当r很大时,可以认为引力和斥力均“等于零”等情况。而分子力是指分子引力和斥力的合力,分子间距离为r0时分子力为零,并不是分子间无引力和斥力。

例2、若把处于平衡状态时相邻分子间的距离记为r0,则下列关于分子间的相互作用力的说法中正确的是 ( )

A.当分子间距离小于r0时,分子间作用力表现为斥力;

B.当分子间距离大于r0时,分子间作用力表现为引力;

C.当分子间距离从r0逐渐增大时,分子间的引力增大;

D.当分子间距离小于r0时,随着距离的增大分子力是减小的

显然正确答案为A、B。

问题3:应弄清分子力做功与分子势能变化的关系

与重力、弹力相似,分子力做功与路径无关,可以引进分子势能的概念。分子间所具有的势能由它们的相对位置所决定。分子力做正功时分子势能减小,分子力做负功时分子势能增加。通常选取无穷远处(分子间距离r>r0处)分子势能为零。当两分子逐渐移近时(r>r0),分子力做正功,分子势能减小;当分子距离r=r0时,分子势能最小(且为负值);当两分子再靠近时(r

例3、分子甲和乙相距较远时,它们之间的分子力可忽略。现让分子甲固定不动,将分子乙由较远处逐渐向甲靠近直到不能再靠近,在这一过程中()

A、分子力总是对乙做正功;

B、分子乙总是克服分子力做功;

C、先是分子力对乙做正功,然后是分子乙克服分子力做功;

D、分子力先对乙做正功,再对乙做负功,最后又对乙做正功。

显然正确答案为C。

问题4:应弄清温度与分子动能的关系

物质分子由于不停地运动而具有的能叫分子动能。分子的运动是杂乱的。同一物体内各个分子的速度大小和方向是不同的。从大量分子的总体来看,速率很大和速率很小的分子数比较少,具有中等速率的分子数比较多。在研究热现象时,有意义的不是一个分子的动能,而是大量分子的平均动能。从分子动理论观点来看,温度是物体分子热运动平均动能的标志,温度越高,分子的平均动能就越大;反之亦然。注意同一温度下,不同物质分子的平均动能都相同,但由于不同物质的分子质量不尽相同,所以分子运动的平均速率不尽相同。

例4、质量相同、温度相同的氢气和氧气,它们的()

A.分子数相同; B.内能相同;

C.分子平均速度相同; D.分子的平均动能相同。

显然正确答案为D。

例5、关于温度的概念,下列说法中正确的是()

A.温度是分子平均动能的标志,物体温度高,则物体的分子平均动能大;

B.物体温度高,则物体每一个分子的动能都大;

C.某物体内能增大时,其温度一定升高;

D.甲物体温度比乙物体温度高,则甲物体的分子平均速率比乙物体大.

显然正确答案为A。

问题5:应弄清物体的内能与状态参量的关系

物体的内能是指组成物体的所有分子热运动的动能与分子势能的总和。由于温度越高,分子平均动能越大,所以物体的内能与物体的温度有关;由于分子势能与分子间距离有关,分子间距离又与物体的体积有关,所以物体的内能与物体的体积有关;由于物体的摩尔数不同,物体包含的分子数目就不同,分子热运动的总动能与分子势能的总和也会不同,所以物体的内能与物体的摩尔数有关。总之,物体内能的多少与物体的温度、体积和摩尔数有关。

对于理想气体来说,由于分子之间没有相互作用力,就不存在分子势能。因此,理想气体的内能就是气体所有分子热运动的动能的总和。理想气体的内能只跟理想气体的质量、温度有关,而与理想气体的体积无关。即理想气体的质量和温度保持不变,其内能就保持不变。

例6、关于物体内能,下列说法中正确的是

A.相同质量的两个物体,升高相同的温度内能增量一定相同;

B.在一定条件下,一定量00C的水结成00C的冰,内能一定减小;

C.一定量的气体体积增大,但既不吸热也不放热,内能一定减小;

D.一定量气体吸收热量而保持体积不变,内能一定减小。

分析与解:升高相同的温度,分子的平均动能增量相同,而物体的内能是物体内所有的分子的动能和势能的总和。分子的平均动能增量相同,分子数不同,分子的势能也不

一定相同,所以内能增量一定相等是不正确的,即A 错。00C 水变成00

C 冰,需放出热量,因温度不变,所以分子的动能不变,分子的势能就必须减少,因而内能就一定减少,即B 正确。一定质量的气体体积增大,气体对外做功,又因不吸热不放热,所以,内能一定减少,即C 正确。对一定量气体吸热但体积不变,即不对外做功,外界也不对气体做功,内能一定增加,即

D 错。

问题6:应弄清物体的内能的变化与做功、热传递的关系

改变物体的内能的途经就是改变物体的分子动能和分子势能,最终达到改变物体的内能。能够改变物体内能的物理过程有两种:做功和热传递。

做功使物体的内能发生变化的时候,内能的变化可以用功的数值来量度。外界对物体做多少功,物体的内能就增加多少;物体对外界做多少功,物体的内能就减少多少。

热传递使物体的内能发生变化的时候,内能的变化是用热量来量度的。外界传递物体多少热量,或者说物体吸收了多少热量,物体的内能就增加多少;物体传递给外界多少热量,或者说物体放出了多少热量,物体的内能就减小多少。

做功和热传递对改变物体的内能是等效的。功和热量都可以用来量度内能的变化。它们的区别是:做功是其它形式的能(如:电能、机械能……)和内能之间的转化;热传递是物体之间内能的转移。

例7、如图1所示,固定容器及可动活塞P 都是绝热的,中间有一导热的固定隔板B ,B 的两边分别盛有气体甲和乙。现将活塞P 缓慢地向B 移动一段距离,已知气体的温度随其内能的增加而升高。则在移动P 的过程中

A .外力对乙做功;甲的内能不变;

B .外力对乙做功;乙的内能不变;

C .乙传递热量给甲; 乙的内能增加 ;

D .乙的内能增加;甲的内能不变。

分析与解:在移动P 的过程中,外界对乙气体做功,乙的内能要增加,所以乙的温度要升高.乙的温度升高后,甲、乙两部分气体就存在温度差,乙的温度较高,这样乙传递热量给甲。所以正确答案为C 。

例8、有关物体内能,以下说法中正确的是:

A .1g00c 水的内能比1g00c 冰的内能大;

B .电流通过电阻后电阻发热切,它的内能增加是通过“热传递”方式实现的;

C .气体膨胀,它的内能一定减少;

D .橡皮筋被拉伸时,分子间热能增加。

分析与解:00c 的水和00c 的冰分子平均动能相同,但内能并不相同,水结成冰必然放出热量,说明相同质量的水的内能大,A 选项对。电阻发热是由于电流做功而不是热传递,B 选项错。气体膨胀,对外做功,但可能吸收更多的热量,C 选项不对。橡皮筋被子拉伸时,分子克服分子力做功,所以分子间势能增加,D 选项对。

所以本题正确答案为AD 。

1

问题7:会计算液体产生的压强

计算液体产生压强的步骤是:○1选取假想的一个液体薄片(其自重不计)为研究对象;○

2分析液片两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两侧的压强平衡方

程;○

3解方程,求得气体压强。 例9、如图2所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。已知h 1=15cm,h 2=12cm,外界大气压强p 0=76cmHg,求空气柱1和2的压强。

分析与解:设空气柱1和2的压强分别为P 1和P 2,选水银柱h 1

和下端管内与水银槽内水银面相平的液片a 为究对象,根据帕斯卡

定律,气柱1的压强P 1通过水银柱h 1传递到液片a 上,同时水银柱h 1由于自重在a 处产生的压强为h 1cmHg,从而知液片a 受到向下的压力为(P 1+h 1)S,S 为液片a 的面积。液片a 很薄,自重不计。液片

受到向上的压强是大气压强通过水银槽中水银传递到液片a 的,故

液片a 受到向上的压力为P 0S.因整个水银柱h 1处于静止状态,故液

片a 所受上、下压力相等,即:(P 1+h 1).S=P 0S 故气柱1的压强为P 1=61cmHg.

通过气柱2上端画等高线AB ,则由连通器原理可知P B =P A =P 1。

再以水银柱h 2的下端面的液片b 为研究对象,可求得空气柱2的压强为P 2=73cmHg. 例10、图3中竖直圆筒是固定不动的,粗筒横截面积是细筒的4倍,细筒足够长,粗筒中A 、B 两轻质活塞间封有空气,气柱长L=20cm 。活塞A 上方的水银深H=10cm ,两活塞与筒壁间的摩擦不计,用外力向上托住活塞B ,使之处于平衡状态,水银

面与粗筒上端相平。现使活塞B 缓慢上移,直到水银的一半被推入细筒中,

求此时气体的压强。大气压强p 0相当于75cm 高的水银柱产生的压强。

分析与解:使活塞B 缓慢上移,当水银的一半被推入细筒中时,水银

柱的高度为H 、=25cm,所以此时气体的压强为P 2=P 0+ρgH 、=100cmHg.

问题8:会计算固体活塞产生的压强

用固体(如活塞等)封闭在静止容器内的气体压强,应对固体(如活

塞等)进行受力分析,然后根据平衡条件求解。

例11、如图4所示,一个横截面积为S 的圆筒形容器竖直放置。金

属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为

θ,圆板的质量为M ,不计圆板与容器壁之间的摩擦,若大气压强为P 0,

则被封闭在容器内的气体的压强P 等于( ) A .P 0 + S

Mg θcos B .θcos 0p + θcos S Mg C .P 0 + S

Mg θ2cos D .P 0 + S Mg 。 分析与解:设金属圆板下表面的面积为S 、,则S 、=S/cos θ;

被封闭 2 图2

3

4

气体对圆板下表面的压力为PS 、,方向垂直下表面向上。

以圆板为研究对象,它受重力Mg 、大气压力P 0S 、封闭气体的压力N 1= PS 、、容器右

壁的压力N 2(注意:容器左壁对圆板无压力),如图5所示。

因圆板处于平衡状态,所受合力为零,在竖直方向上

的合力也为零,即

0cos 01=--S P Mg N θ

因为PS N =θcos 1 所以S Mg P P +=0 故应选D 。 若选A 和部分气体为研究对象,则该题的解答非常简单,受力图如

图6所示。由平衡条件可得P=S

Mg P +0,计算过程非常简单. 例12、如图7,气缸由两个横截面不同的圆筒连接而成.活塞

A 、

B 被轻刚性细杆连接在一起,可无摩擦移动.A 、B 的质量分别

为m A =12kg ,m B =8.0kg ,横截面积分别为S A =4.0×10-2m 2,S B =

2.0×10-2m 2.一定质量的理想气体被封闭在两活塞之间.活塞外

侧大气压强P 0=1.0×105Pa . (1)气缸水平放置达到如图7所示的平衡状态,求气体的压强.

(2)现将气缸竖直放置,达到平衡后如图8所示.求此时气体的压强.取重力加速度g=10m/s 2.

分析与解:(1)气缸处于图7位置时,设气缸内气体压强为P 1,对于活塞和杆,据力的平衡条件有:

p 0S A +p 1S B =p 1S A +p 0S B

解得 p 1=p 0=1.0×105Pa

(2)气缸处于图8位置时,设气缸内气体压强为P 2,对于活塞和杆,据力的平衡条件有:

P 0S A +(m A +m B )g+P 2S B =P 2S A +P 0S B

图8

0图6

解得 P 2=Pa S S g m m P B

A B A 50101.1)(?=-++. 问题9:会根据热力学第二定律判定热学过程的可能性

例13、根据热力学第二定律,可知下列说法中正确的有:

A .热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体;

B .热量能够从高温物体传到低温物体,也可能从低温物体传到高温物体;

C .机械能可以全部转化为热量,但热量不可能全部转化为机械能;

D .机械能可以全部转化为热量,热量也可能全部转化为机械能。

分析与解:根据热传递的规律可知热量能够从高温物体传到低温物体;当外界对系统做功时,可以使系统从低温物体吸取热量传到高温物体上去,致冷机(如冰箱和空调)就是这样的装置。但是热量不能自发地从低温物体传到高温物体。选项A 错误,B 正确。

一个运动的物体,克服摩擦阻力做功,最终停止;在这个过程中机械能全部转化为热量。外界条件发生变化时,热量也可以全部转化为机械能;如在等温膨胀过程中,系统吸收的热量全部转化为对外界做的功,选项C 错误,D 正确。

综上所述,该题的正确答案是B 、D 。

例14、关于第二类永动机,下列说法正确的是:

A .没有冷凝器,只有单一的热源,能将从单一热源吸收的热量全部用来做功,而不引起其他变化的热机叫做第二类永动机;

B .第二类永动机违反了能量守恒定律,所以不可能制成;

C .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能;

D .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能,同时不引起其他变化。

分析与解:根据第二类永动机的定义可A 正确,第二类永动机不违反了能量守恒定律,是违反第二定律,所以B 选项错误。机械能可以全部转化为内能,内能在引起其他变化时是可能全部转化为机械能,所以C 错误,D 选项正确。

问题10:会根据能量守恒定律分析求解问题

例15、如图9所示,直立容器内部有被隔板隔开的A 、B 体积相同两部分气体,A 的密度小,B 的密度大,抽去隔板,加热气体使两部分气体均

匀混合,设在此过程气体吸热Q ,气体的内能增加为E ?,则( )

A .Q E =?;

B .Q E

C .Q E >?; D.无法比较。

分析与解:A 、B 气体开始的合重心在中线下,混合均匀后在中线,

所以系统重力势能增大,由能量守恒有,吸收热量一部分增加气体内

能,一部分增加重力势能。所以正确答案是B.

例16、如图10所示的A 、B

是两个管状容器,除了管较粗的部分

图10

高低不同之外,其他一切全同。将此两容器抽成真空,再同时分别插入两个水银池中,当水银柱停止运动时,问二管中水银的温度是否相同?为什么?设水银与外界没有热交换。

分析与解:不同。A 管中水银的温度略高于B 管中水银的温度。两管插入水银池时,大气压强均为P 0,进入管中的水银的体积均为V ,所以大气压力对两池中水银所做的功相同,但两装置中水银重力势能的增量不同,所以两者内能改变量也不同。由图可知,A 管中水银的重力势能较小,所以A 管中水银的内能增量较多,其温度应略高。

问题11:会求解力热综合问题

例17、如图11所示,在质量为M 的细玻璃管中盛有少量乙醚液体,用质量为m 的软木塞将管口封闭。加热玻璃管使软木塞在乙醚蒸气的压力下水平飞出,玻璃管悬于长为L 的轻杆上,细杆可绕上端O 轴无摩擦转动。欲使玻璃管在竖直平面内做圆

周运动,在忽略热量损失的条件下,乙醚最少要消耗多少内能?

分析与解:

设活塞冲开瞬间,软木塞和细玻璃管的速度分别为V 1、V 2,则据动量守恒定律可得:MV 2-mV 1=0,

玻璃管在竖直平面内做圆周运动至少要达到最高点,此时速度V 3=0. 对玻璃管根据机械能守恒定律可得:MgL MV 22

122=。 根据能量守恒得乙醚最少要消耗的内能为:

m

gL m M M MV mV E )(221212221+=+=。 问题12:会分析求解联系实际的问题

例18、如图12所示,钢瓶内装有高压氧气。打开阀门氧气迅速从瓶口喷出,当内外气压相等时立即关闭阀门。过一段时间后再打开阀门,会不会再有氧

气逸出?

分析与解:第一次打开阀门氧气“迅速”喷出,是一个绝热过程

Q =0,同时氧气体积膨胀对外做功W <0,由热力学第一定律ΔU <0,即关闭阀门时瓶内氧气温度必然低于外界温度,而压强等于外界大气

压;“过一段时间”经过热交换,钢瓶内氧气的温度又和外界温度相同了,由于体积未变,所以瓶内氧气压强将增大,即大于大气压,因此再次打开阀门,将会有氧气逸出。

例19、 如图13为医院为病人输液的部分装置,图中A 为输液瓶,B 为滴壶,C 为进气管,与大气相通。则在输液过程中(瓶A 中尚有液体),下列说法正确的是:①瓶A 中上方气体的压强随液面的下降而增大;②瓶A 中液面下降,但A 中上方气

体的压强不变;③滴壶B 中的气体压强随A 中液面的下降而减小;④在瓶

中药液输完以前,滴壶B 中的气体压强保持不变

A.①③

B.①④

C.②③

D.②④

分析与解:进气管C 端的压强始终是大气压p 0,设输液瓶A 内的压

强为p A ,可以得到p A = p 0-ρgh ,因此p A 将随着h 的减小而增大。滴壶B

的上液面与进气管C 端的高度差不受输液瓶A

内液面变化的影响,因此

M m 图

11 图12

图13

压强不变。选B 。

三、警示易错试题

典型错误之一:忽视大气压对弹簧秤示数的影响。

例20、如图14所示,两根同样的薄壁玻璃管A 、B ,管内分别有一

段长为h 1、h 2的水银柱(h 1

簧秤的读数分别为F 1和F 2,则关于F 1、F 2的大小情况说法正确的是( )

A .F 1=F 2; B.若温度升高,但两弹簧秤的读数都不变。. C.F 1

错解:本题容易错选BC 。

分析纠错:可以证明:F 1=P 0S+ρh 1gS 和F 2=P 0S+ρh 2gS ,所以有F 1

若温度升高,玻璃管中封闭有少量气体的压强增大,所以h 1和h 2都减小,

也就是两弹簧秤的读数都减小;若外界大气压强增大,则h 1和h 2都增大,

所以两弹簧秤的读数都增大。综上所述,正确答案是C.

典型错误之二:误把布朗微粒运动的折线图当作轨迹。

例21、在观察布朗运动时,从微粒在a 点开始计时,间 隔30 s 记下微粒的一个位置得到b 、c 、d 、e 、f 、g 等点,然后用直线依次连接,如图15所示,则下列说法正确的是:

A .微粒在75s 末时的位置一定在cd 的中点;

B .微粒在75s 末时的位置可能在cd 的连线上,但不可

能在cd 中点; C .微粒在前30s 内的路程一定等于ab 的长度;

D .微粒在前30s 内的位移大小一定等于ab 的长度。 错解:本题容易错选CD. 分析纠错:b 、c 、d 、e 、f 、g 等分别粒子在t=30s 、60s 、

90s 、120s 、150s 、180s 时的位置,但并不一定沿着折线abcdefg

运动,所以正确答案只能是D.

典型错误之三:误把自由膨胀当作等压膨胀。

例22、如图16所示的绝热容器,把隔板抽掉,让左侧理想气体自由膨胀到右侧直至平衡,则下列说法正确的是( )

A .气体对外做功,内能减少,温度降低;

B .气体对外做功,内能不变,温度不变;

C .气体不做功,内能不变,温度不变,压强减小;

D .气体不做功,内能减少,压强减小。

错解:认为气体体积变大就对外做功,压强减小,温度降低,内

能减少,错选A 。

分析纠错:因为气体自由膨胀,所以不对外做功,因此内能不变,

温度不变;由于体积增大,所以压强减小。正确答案应选C 。

图14 a b c d e f g 图

15 图16

四、如临高考测试

1、一定质量的理想气体处于某一平衡状态,此时其压强为P 0,有人设计了四种途径,使气体经过每种途经后压强仍为P 0。这四种途径是( )

①先保持体积不变,降低压强,再保持温度不变,压缩体积

②先保持体积不变,使气体升温,再保持温度不变,让体积膨胀

③先保持温度不变,使体积膨胀,再保持体积不变,使气体升温

④先保持温度不变,压缩气体,再保持体积不变,使气体降温

可以断定,

A. ①、②不可能

B. ③、④不可能

C. ①、③不可能

D. ①、②、③、④都可能

2、一定量的气体吸收热量,体积膨胀并对外做功,则此过程的末态与初态相比,( )

A .气体内能一定增加

B .气体内能一定减小

C .气体内能一定不变

D .气体内能是增是减不能确定

3、若以μ表示水的摩尔质量,v 表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水蒸气的密度,N A 为阿伏加德罗常数,m 、△分别表示每个水分子的质量和体积,下面是四个关系式:

①m v N A ρ= ②?=A N μρ ③A

N m μ= ④A N v =? 其中( )

A .①和②都是正确的;

B .①和③都是正确的;

C .②和④都是正确的;

D .①和④都是正确的。

4、 下列说法正确的是( )

A . 热量不能由低温物体传递到高温物体;

B . 外界对物体做功,物体的内能必定增加;

C . 第二类永动机不可能制成,是因为违反了能量守恒定律;

D . 不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。

5、甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为p 甲、p 乙,且p 甲

A. 甲容器中气体的温度高于乙容器中气体的温度;

B. 甲容器中气体的温度低于乙容器中气体的温度;

C. 甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能;

D. 甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能。

6、下列说法哪些是正确的( )

A .水的体积很难被压缩,这是分子间存在斥力的宏观表现;

B .气体总是很容易充满容器,这是分子间存在斥力的宏观表现;

C .两个相同的半球壳吻合接触,中间抽成真空(马德堡半球),用力很难拉开,这是分子间存在吸引力的宏观表现;

D .用力拉铁棒的两端,铁棒没有断,这是分子间存在吸引力的宏观

表现。

7、下列说法正确的是()

A.外界对一物体做功,此物体的内能一定增加;

B.机械能完全转化成内能是不可能的;

C.将热量传给一个物体,此物体的内能一定改变;

D.一定量气体对外做功,气体的内能不一定减少。

8、如图18所示,密闭绝热的具有一定质量的活塞,活塞的上部封闭着气体,下部为真空,活塞与器壁的摩擦忽略不计,置于真空中的轻弹簧的一端固定于容器的底部.另一端固定在

E(弹簧处于自然长度时的弹性势活塞上,弹簧被压缩后用绳扎紧,此时弹簧的弹性势能为

P

能为零),现绳突然断开,弹簧推动活塞向上运动,经过多次往复运动后活塞静止,气体达到平衡态,经过此过程()

E全部转换为气体的内能;

A.

P

E一部分转换成活塞的重力势能,其余部分仍为弹簧的弹性势能;

B.

P

E全部转换成活塞的重力势能和气体的内能;

C.

P

E一部分转换成活塞的重力势能,一部分转换为气体的内能,其余部分仍为弹簧的D.

P

弹性势能。

9、下列说法正确的是()

A.外界对气体做功,气体的内能一定增大;

B.气体从外界只收热量,气体的内能一定增大;

C.气体的温度越低,气体分子无规则运动的平均动能越大;

D.气体的温度越高,气体分子无规则运动的平均动能越大.

10、分子间有相互作用势能,规定两分子相距无穷远时两分子间的势能为零。设分子a固定不动,分子b以某一初速度从无穷远处向a运动,直至它们之间的距离最小。在此过程中, a、b之间的势能()

A.先减小,后增大,最后小于零B.先减小,后增大,最后大于零

C.先增大,后减小,最后小于零D.先增大,后减小,最后大于零

11、一定质量的理想气体,从某一状态开始,经过系列变化后又回一开始的状态,用W1表示外界对气体做的功,W2表示气体对外界做的功,Q1表示气体吸收的热量,Q2表示气体放出的热量,则在整个过程中一定有()

A.Q1—Q2=W2—W1B.Q1=Q2

C.W1=W2D.Q1>Q2

12、一个带活塞的气缸内盛有一定量的气体。若此气体的温度随其内能的增大而升高,则()

A将热量传给气体,其温度必升高

B .压缩气体,其温度必升高

C .压缩气体,同时气体向外界放热,其温度必不变

D .压缩气体,同时将热量传给气体,其温度必升高

13、有一段12cm 长汞柱,在均匀玻璃管中封住了一定质量的气体。如图19所示。若管中向上将玻璃管放置在一个倾角为300的光滑斜面上。在下滑过程中被封闭气体的压强(设大气压强为P 0=76cmHg )为( )

A .76cmHg

B .82cmHg

C .88cmHg

D .70cmHg 。

14、如图20所示,若在湖水里固定一细长圆管,管下端未触及湖底,

管内有一不漏气的活塞,它的下端位于水面上。活塞的底面积为S=1.0cm 2,

质量不计,水面上的大气压强为P 0=1.0×105P a ,现把活塞缓慢地提高H=15m,

则拉力对活塞做的功为 J ,大气压力对做的功为 J 。

15、质量为M 的木块静止于光滑的水平桌面上,另有一质量为m 的

子弹,以水平初速度V 0向木块射来,与木块发生相互作用后,子弹最后停

留在木块中。设此过程中机械能损失的有30%转化为子弹的内能增加,并

知道子弹的比热为C ,试求子弹的温度升高Δt 。

(参考答案见下期讲座)

专题七:机械振动和机械波考点例析如临高考测试参考答案:

1.C;

2. A;

3.C;

4.B;

5.AB;

6.BD;

7.AD;

8.B;

9.A; 10.A; 11.R T T h 0

?=

; 12.0.8s; 13.F=24N; 14.0.47s,大于340m/s; 15.70次/分。

图20

气体动理论汇总

有关概念: 热运动:分子做不停的无规则运动 热现象:物质中大量分子的热运动的宏观表现(如:热传导、扩散、液化、凝固、溶解、汽化等都是热现象)。 分子物理学与热力学的研究对象:热现象 微观量:描述单个分子运动的物理量。(如:分子质量、速度、能量等) 宏观量:描述大量分子热运动集体特征的物理量。(如:气体体积、压力、温度等)统计方法: 对个别分子运动用力学规律,然后对大量分子求微观两的统计平均值。 分子物理学研究方法: 建立宏观量与微观量统计平均值的关系从微观角度来说明 宏观现象的本质。分子物理学是一种微观理论。 热力学研究方法: 实验定律为基础,从能量观点出发,研究热现象的宏观规律。它是 一种宏观理论。 一、热学的基本概念 热学是物理学的一个重要分支学科,它研究的是热现象的宏观特征及其微观本质。热学研究的对象是大量粒子(如原子、分子)组成的物质体系,称为热力学系统或简称系统。 二、分子运动的基本概念 从微观上看,热现象是组成系统的大量粒子热运动的集体表现,热运动也称为分子运动、分子热运动。它是不同于机械运动的一种更加复杂的物质运动形式。因此,对于大量粒子的无规则热运动,不可能像力学中那样,对每个粒子的运动进行逐个的描述,而只能探索它的群体运动规律。就单个粒子而言,由于受到其它粒子的复杂作用,其具体的运动过程可以变化万千,具有极大的偶然性;但在总体上,运动却在一定条件下遵循确定的规律,如分子的速率分布,平均碰撞频率等,正是这种特点,使得统计方法在研究热运动时得到广泛应用,从而形成了统计物理学。统计物理学是从物质的微观结构出发,依据每个粒子所遵循的力学规律,用统计的方法来推求宏观量与微观量统计平均值之间的关系,解释与揭示系统宏观热现象及其有关规律的微观本质。 三、相关的一些概念 通常我们把描述单个粒子运动状态的物理量称为微观量,如粒子的质量、位置、动量、能量等,相应的用系统中各粒子的微观量描述的系统状态,称为微观态;描述系统整体特性的可观测物理量称为宏观量,如温度、压强、热容等,相应的用一组宏观量描述的系统状态,称为宏观态。 四、热学相关内容的分类 按研究角度和研究方法的不同,热学可分成热力学和气体动理论两个组成部分。热力学不涉及物质的微观结构,只是根据由观察和实验所总结得到的热力学规律,用严密的逻辑推理方法,着重分析研究系统在物态变化过程中有关热功转换等关系和实

高三物理《理想气态的方程及气体分子动理论》教案

理想气态的方程及气体分子动理论 一、学习目标 1、知道什么是理想气体,能够由气体的实验定律推出理想气体状态方程。 2、掌握理想气体状态方程,并能用来分析计算有关问题。 3、知道理想气体状态方程的适用条件。 4、掌握克拉珀龙方程并能利用方程计算有关问题。 5、明确摩尔气体常量,R是一个热学的重要常数,其重要性与阿伏加德罗常数是一样的。 6、应用克拉珀龙方程解题时,由于R=8.31J/(mol· K)=0.082atm·L/(mol· K)。因此p、 V的单位必须与选用的R的单位相对应。 7、明确p-V, p-T, V-T图线的意义。 8、能够在相应的坐标中表达系统的变化过程。 二、重点难点及考点 1、这一节的内容重点在于能够知道用理想气体状态方程解决问题的基本思路和方法,并 能解决有关具体问题,还要注意到计算时要统一单位,难点在于用理想气体状态方程 解题时有时压强比较难找。 2、本节重点是克拉珀珑方程的应用,应用克拉珀龙方程可以解决很多气体问题,如果把 它学习好,对学生的学习气体这一节会有很大帮助,本节难点是对克拉珀龙方程的应用,但本节在高考中所占比例并不是特别大,因为这一节为现行教材中的新增长率加 内容。 3、本节重点是把气体的三个状态量用分子动理论来描述清楚,难点是用分子动理论解释 气体三定律,要从逻辑严谨的理相气体模型出发解释每个气体定律,本节在高考中涉 及的题目不多但出曾出现过。

三、例题分析 第一阶段 [例1]在密闭的容器里装有氧气100g,压强为10×106Pa,温度为37oC,经一段时间后温度 降为27oC,由于漏气,压强降为6.0×105Pa,求该容器的容积和漏掉气的质量。 思路分析: 本题研究的是变质量气体问题,由于容器的容积和气体种类(设氧气摩尔质量为M)仍未变,只是质量变为m2,再由克拉珀龙方程列出一个方程,联解两个方程,即可求得容器的容积和漏掉的氧气,抓住状态和过程分析是解题的关键。根据题意可得: ①② 方程①可得: 将V代入②可求: 所以漏掉的氧气质量△m=m1-m2=38g 答案:该容器的容积8.05×10-3m3,漏掉气的质量是38g, [例2]一个横截面积为S=50cm2竖直放置的气缸,活塞的质量为80kg,活塞下面装有质量m=5g的NH3,现对NH3加热,当NH3的温度升高△T=100oC时,求活塞上升的高度为多少?设大气压强为75cmHg,活塞与气缸无摩擦。 思路分析:本题研究的是定质量气体问题,首先确定定研究对象HN3,确认初态压强与末态压强相等,由于温度升高,NH3变化过程是等压膨胀,体积发生变化。由克拉珀龙方程可列两个状态下的方程,求出体积变化。再由体积变化和横截面积求出活塞上升的高度。确认等压膨胀是解本题的关键。 根据题意:根据克拉珀龙方程得: 所以活塞上升高度

大学物理第七章气体动理论

第七章 气体动理论 一.选择题 1[ C ]两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为: (A) n 不同,(E K /V )不同,ρ 不同. (B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同. (D) n 相同,(E K /V )相同,ρ 相同. 解答:1. ∵nkT p =,由题意,T ,p 相同∴n 相同; 2. ∵kT n V kT N V E k 2 323==,而n ,T 均相同∴V E k 相同 3. 由RT M m pV =得RT pM V M ==ρ,∵不同种类气体M 不同∴ρ不同 2[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分 子的平均速率为 (A) ?2 1d )(v v v v v f . (B) 2 1 ()d v v v vf v v ?. (C) ? 2 1 d )(v v v v v f /?2 1 d )(v v v v f . (D) ? 2 1 d )(v v v v v f /0 ()d f v v ∞ ? . 解答:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以 ? 2 1 d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而 2 1 ()d v v Nf v v ? 表示速率分布在v 1~v 2区间内的分子数总和,因此 ? 2 1 d )(v v v v v f / ? 2 1 d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。 3[ B ]一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是: (A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大. 解答:n d Z 22π= ,n d 2 21πλ= ,在温度不变的条件下,当体积增大时,n 减小,所以 Z 减小而λ增大。 4[ B ]若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了

06气体动理论习题解答课件

第六章 气体动理论 一 选择题 1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。 A. pV /m B. pV /(kT ) C. pV /(RT ) D. pV /(mT ) 解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kT pV N = 。 故本题答案为B 。 2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( ) A. 3p 1 B. 4p 1 C. 5p 1 D. 6p 1 解 根据nkT p =,321n n n n ++=,得到 1132166)(p kT n kT n n n p ==++= 故本题答案为D 。 3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B. 2 5pV C. 3pV D.27pV 解 理想气体的内能RT i U ν2 =,物态方程RT pV ν=,刚性三原子分子自由度i =6, 因此pV pV RT i U 326 2===ν。 因此答案选C 。 4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同 解:单位体积内的气体质量即为密度,气体密度RT Mp V m ==ρ(式中m 是气体分子

(完整word版)大学物理气体动理论热力学基础复习题及答案详解

第12章 气体动理论 一、 填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的 压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的 温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均 距离为 。(设分子均匀等距排列) 4、星际空间温度可达 2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率 为 。 5、在压强为51.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强 为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的 平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、21 21121.6910 1.8310 1.5010m s m s m s ---?????? 图12-1

气体动理论剖析

1
质量为 m 摩尔质量为 M 的理想气体,在平衡态下,压强 p、体积 V 和热力学温度 T 的关系 式是
?
A、pV=(M/m)RT B、pT=(M/m)RV C、pV=(m/M)RT D、VT=(m/M)Rp
?
?
?
正确答案: C 我的答案:C 得分: 9.1 分
2
一定量某理想气体按
=恒量的规律膨胀,则膨胀后理想气体的温度
?
A、将降低 B、将升高 C、保持不变 D、升高还是降低,不能确定
?
?
?
正确答案: A 我的答案:A 得分: 9.1 分
3
在标准状态下,任何理想气体每立方米中含有的分子数都等于

? A、
? ? B、
? ? C、
? ? D、
?
正确答案: C 我的答案:A 得分: 0.0 分
4
有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有 0.1 kg 某一温度的氢气, 为了使活塞停留在圆筒的正中央, 则另一边应装入同一温度的氧气的质量 为
?
A、0.16 kg B、0.8 kg
?

?
C、1.6 kg D、3.2 kg
?
正确答案: C 我的答案:C 得分: 9.1 分
5
若理想气体的体积为 V,压强为 p,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常量, R 为普适气体常量,则该理想气体的分子数为
?
A、pV / m B、pV / (kT) C、pV / (RT) D、pV / (mT)
?
?
?
正确答案: B 我的答案:C 得分: 0.0 分
6
一定量的理想气体在平衡态态下,气体压强 p、体积 V 和热力学温度 T 的关系式是
? A、
? ? B、

气体动理论

气体动理论 一、选择题 1.按照气体分子运动论,气体压强的形成是由于 ( ) (A )气体分子之间不断发生碰撞; (B )气体分子的扩散; (C )气体分子不断碰撞器壁; (D )理想气体的热胀冷缩现象. 2.理想气体中仅由温度决定其大小的物理量是( ) (A )气体的压强 (B )气体分子的平均速率 (C )气体的内能 (D )气体分子的平均平动动能 3. 在一个容积不变的封闭容器内理想气体分子平均速率若提高为原来的2倍,则( ) A .温度和压强都提高为原来的2倍 B .温度为原来的2倍,压强为原来的4倍 C .温度为原来的4倍,压强为原来的2倍 D .温度和压强都为原来的4倍 4.关于温度的意义,下列几种说法中错误的是:( ) A .气体的温度是分子平均平动动能的量度. B .气体的温度是大量气体分子热运动的集体表现,具有统计意义. C .温度的高低反映物质内部分子运动剧烈程度的不同. D .从微观上看,气体的温度表示每个气体分子的冷热程度. 5.容积为V 的容器中,贮有1N 个氧分子、2N 个氮分子和M kg 氩气的混合气体,则混合 气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)[ ] (A )kT V N 1 (B )kT V N 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ ++ 6.一瓶氦气和一瓶氮气(均为理想气体)都处于平衡状态,质量密度相同,分子平均平动动 能相同,则它们( ) A 、温度相同、压强相同; B 、温度相同,但氦气的压强大于氮气的压强; C 、温度、压强都不相同; D 、温度相同,但氦气的压强小于氮气的压强 7.压强、温度相同的氩气和氮气,它们的分子平均平动动能k ε和平均动能ε的关系为 ( ) (A )和k ε都相等 (B )和k ε都不相等 (C )k ε相等,而 ε不相等 (D )ε相等,而k ε不相等 8.mol 2的刚性分子理想气体甲烷,温度为T ,其内能可表示为:( ) A 、kT 5; B 、kT 6; C 、RT 5; D 、RT 6.

高中物理人教版选修气体分子动理论单元测试题

物理同步测试—分子运动理论能量守恒气体 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的) 1.下列说法中正确的是() A. 物质是由大量分子组成的,分子直径的数量级是10-10m B. 物质分子在不停地做无规则运动,布朗运动就是分子的运动 C. 在任何情况下,分子间的引力和斥力是同时存在的 D. 1kg的任何物质含有的微粒数相同,都是6.02×1023个,这个数叫阿伏加德罗常数 2.关于布朗运动,下列说法正确的是( ) A.布朗运动是在显微镜中看到的液体分子的无规则运动 B.布朗运动是液体分子无规则运动的反映 C.悬浮在液体中的微粒越小,液体温度越高,布朗运动越显着 D.布朗运动的无规则性反映了小颗粒内部分子运动的无规则性 3.以下说法中正确的是( ) A.分子的热运动是指物体的整体运动和物体内部分子的无规则运动的总和 B.分子的热运动是指物体内部分子的无规则运动 C.分子的热运动与温度有关:温度越高,分子的热运动越激烈 D.在同一温度下,不同质量的同种液体的每个分子运动的激烈程度可能是不相同的

4.在一杯清水中滴一滴墨汁,经过一段时间后墨汁均匀地分布在水中,只是由于() A.水分子和碳分子间引力与斥力的不平衡造成的 B.碳分子的无规则运动造成的 C.水分子的无规则运动造成的 D.水分子间空隙较大造成的 5.下列关于布朗运动的说法中正确的是() A.将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映 B.布朗运动是否显着与悬浮在液体中的颗粒大小无关 C.布朗运动的激烈程度与温度有关 D.微粒的布朗运动的无规则性,反映了液体内部分子运动的无规则性 6.下面证明分子间存在引力和斥力的试验,错误的是() A.两块铅压紧以后能连成一块,说明存在引力 B.一般固体、液体很难被压缩,说明存在着相互排斥力 C.拉断一根绳子需要一定大小的力说明存在着相互吸引力 D.碎玻璃不能拼在一起,是由于分子间存在着斥力 7.下列叙述正确的是()A.悬浮在液体中的固体微粒越大,布朗运动就越明显B.物体的温度越高,分子热运动的平均动能越大 C.当分子间的距离增大时,分子间的引力变大而斥力减小

9 气体动理论习题详解

习题九 一、选择题 1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ] (A )0 ()Nf v dv ∞ ? ; (B ) 20 1 ()2 mv f v dv ∞? ; (C )20 1 ()2 mv Nf v dv ∞? ; (D )0 1 ()2 mvf v dv ∞? 。 答案:B 解:根据速率分布函数()f v 的统计意义即可得出。()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。 2.下列对最概然速率p v 的表述中,不正确的是 [ ] (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。 3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ] (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A rms v =222222221 ,16 H O H H H O O O T T T M M M T M ===,所以答案A 正确。 4.如下图所示,若在某个过程中,一定量的理想气体的 热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ] (A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。 答案:C

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

气体动理论知识点总结

气体动理论知识点总结 注意:本章所有用到的温度指热力学温度,国际单位开尔文。 T=273.15+t 物态方程 A N PV NkT P kT nkT V m PV NkT PV vN kT vRT RT M =→= =' =→===(常用) 一、 压强公式 11()33 P mn mn = =ρρ=22v v 二、 自由度 *单原子分子: 平均能量=平均平动动能=(3/2)kT *刚性双原子分子: 平均能量=平均平动动能+平均平动动能=325222 kT kT kT += *刚性多原子分子: 平均能量=平均平动动能+平均平动动能=3 332 2 kT kT kT +=

能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2 k i kT ε= 气体的内能为k E N =ε 1 mol 气体的内能22 k A i i E N N kT RT =ε== 四、三种速率 p = ≈v = ≈v = ≈ 三、 平均自由程和平均碰撞次数 平均碰撞次数:2Z d n =v 平均自由程: z λ= =v 根据物态方程:p p nkT n kT =?= 平均自由程: z λ==v

练习一 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子热运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。 3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT = 211227315 0.9627327N T N T +===+ 1210.04N N N N ?=-= 则此时室内的分子数减少了4%. 4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A ) (A )两种气体分子的平均平动动能相等。 (B )两种气体分子的平均动能相等。 (C )两种气体分子的平均速率相等。 (D )两种气体的内能相等。 任何气体分子的平均平动动能都是(3/2)kT ,刚性双原子分子: 平均能量=平均平动动能+平均平动动能=3 252 2 2 kT kT kT +=

大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第12章 气体动理论

第十二章 气体动理论 12-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子? 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 12-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的 数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 12-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。 分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。 解:(1)由分析知氢气分子的最概然速率为

第七章 气体分子动理论

第七章气体动理论 研究对象:由大量分子(原子)组成的系统。分子视为刚性小球,分子间作弹性碰撞。 研究方法:由于分子的数量极其庞大,彼此之间的相互作用又非常频繁,而且还具有偶然性,所以只能用统计的方法进行处理。研究微观量(m,v,p,f)集体表现出来的宏观特征。 §7-1 物质的微观模型统计规律性 1. 分子的数密度和线度:单位体积内的分子数叫分子数密度。气体(n氮=2.47*1019/cm3)、液体(n水=3.3*1022/cm3)、固体(n =7.3*1022/cm3)。不同种类的分子大小不等,小分子约为10-铜 10m的数量级。实验表明:标准状态下,气体分子间距为分子直 径的10倍。 2.分子力:当rr0时,分子力主要表现为吸引力,并 且随r的增加而逐渐减小(当r约为10-9m)时,可以忽略)。 3.分子热运动的无序性及统计规律性 (1)系统由大量分子(原子)组成的。由于分子的数量极其庞大,彼此之间的相互作用又非常频繁(标准状态下, 气体分子平均每秒钟要经历109次碰撞),在总体上表现 为热运动中所具有的无序性。 (2)物质内的分子在分子力的作用下欲使分子聚集在一起,形成有序的排列;而分子的热运动则要使分子尽量分 开;这样一来,分子的聚合将决定于环境的温度和压 强,从而导至物质形成气、液、固、等离子态等不同的 集合体。 (3)个别分子的运动具有偶然性,大量分子的整体表现具有规律性。称其为统计规律性。 §7-2 理想气体的压强公式 1.理想气体的微观模型 (1)气体分子看成是质点 (2)除碰撞外,分子间作用力可以忽略不计 (3)分子间以及分子与器壁间的碰撞可以看成是完全弹性碰撞 2.理想气体的压强公式 (1)定义:压强为单位面积上,大量气体分子无规则运动撞

气体动理论(复习)

第六章气体动理论 §6-1 气体状态方程 【基本内容】 热力学系统:由大量分子组成的物质(气体、液体、固体)称为热力学系统,系统以外其它物体称为外界。 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、气体状态方程 1、宏观量与微观量 宏观量:表征大量分子集体性质的物理量(如P、V、T、C等)。 微观量:表征个别分子状况的物理量(如分子的大小、质量、速度等)。 2、热力学过程、平衡态与平衡过程 热力学过程:是系统状态经过一系列变化到另一状态的经历。 平衡态:是热力学系统在不受外界影响的条件下,宏观热力学性质(如P、V、T)不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、理想气体的状态方程 (1)理想气体的状态方程 是理想气体在任一平衡态下,各状态参量之间的函数关系: (2)气体压强与温度的关系 P=nkT 玻尔兹曼常数k=R/N A=1.38×10-23J/K,啊伏加德罗常数N A =6.028×1023/mol。 ρ=nm 分子数密度n=N/V,ρ——气体质量密度,m——气体分子质量。 1/ 7

2 / 7 二、理想气体的压强 1、理想气体的微观假设 关于分子个体力学性质的假设:(a )分子本身的大小比起它们之间的距离可忽略不计。(b )除了分子碰撞瞬间外,分子之间的相互作用以忽略。(c )分子之间以及分子与器壁间的碰撞是完全弹性的。关于分子集体之间性质的假设——统计假设:(a )分子按位置的分布是均匀的,即分子沿空间各个方向运动的数目相等。(b )分子按速度方向的分布是均匀的,即分子沿空间各个方向运动的机会相等。2、理想气体的压强公式 分子的平均平动动能:22 1v m t =ε 3、压强的统计意义 P 是统计平均值,是对时间、对大量分子、对面积求平均的效果。 三、理想气体的温度 1、分子平均平动动能与温度的关系 温度的意义:气体的温度是分子平均平动动能的量度;温度标志物质内部分子无规则运动的剧烈程度。 2、方均根速率2v 方均根速率:是气体分子热运动时,速度的平均值。 四、分子间的碰撞 1、平均碰撞频率 是一个分子在单位时间内与其它分子碰撞的平均次数。 d :分子有效直径,v :分子平均速率,n :分子数密度。 2、平均自由程 是一个分子在连续两次碰撞之间,自由运动路程的平均值。 五、能量均分定律 1、自由度 决定物体在空间位置所需要独立坐标的数目,称为该物体的自由度。 i=t+r t :平动自由度,i :转动自由度。 单原子分子t=3、r=0、i=3;刚性双原子分子t=3、r=2、i=5;刚性多原子分子t=3、r=3、i=62、能量均分定律

气体动理论

一、选择题 [ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量的关系为: (A) n 不同,(E K /V )不同,不同. (B) n 不同,(E K /V )不同,相同. (C) n 相同,(E K /V )相同,不同. (D) n 相同,(E K /V )相同,相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同; ② ∵kT n V kT N V E k 2 3 23==,而n ,T 均相同,∴V E k 相同; ③ RT M M pV mol =→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。 [ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子 的速率分布曲线;令() 2 O p v 和() 2 H p v 分别表示氧气和氢气的 最概然速率,则 (A) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. (B) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (C) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (D) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. 【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线; ②23 ,3210(/)mol O M kg mol -=?, 23 ,210(/)mol H M kg mol -=?, 得 ()() 2 2 O v v p p H 14 = [ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2

大学物理同步训练第10章气体动理论

第八章 气体动理论 一、选择题 1. 一定量的氢气(视为刚性分子的理想气体),若温度每升高1 K ,其内能增加20.8 J ,则该氢气的质量为(普适气体常量R =8.31 J ?mol ?1?K ?1) (A )1.0×10?3 kg (B )2.0×10?3 kg (C )3.0×10?3 kg (D )4.0×10?3 kg 答案:B 分析:内能公式E =ν?iRT 2?(式中ν为物质的量,i 为自由度;物质的量可由气体质量和气体摩尔质量算出,常见气体氢气2 g ?mol ?1、氦气4 g ?mol ?1、氮气28 g ?mol ?1、氧气32 g ?mol ?1、甲烷16 g ?mol ?1、水蒸气18 g ?mol ?1;单原子分子即惰性气体自由度i =3,双原子分子i =5,多原子分子如甲烷、水蒸气i =6)。由题可得?E =ν?5R?T 2?,代入可得物质的量ν=2×20.8(5×8.31)?≈1 mol ,故质量为2 g ,即B 选项。 2. 有一瓶质量为m 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均动能为 (A )3kT 2? (B )5kT 2? (C )3RT 2? (D )5RT 2? 答案:B 分析:气体分子的平均动能为ε?=ikT 2?(式中i 为气体分子自由度,见选择题1)。 3. 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的 (A )1/2倍 (B )2/3倍 (C )5/3倍 (D )2倍 答案:C 分析:由物态方程pV =νRT 可知两瓶气体的物质的量ν相同。由内能公式(见选择题1)可得 E H 2E He =v ?5RT 2?v ?3RT 2?=53 4. A 、B 、C 3个容器中皆装有理想气体,它们的分子数密度之比为n A :n B :n C =4:2:1,而分子的平均平动动能之比为w ?A :w ?B :w ?C =1:2:4,则它们的压强之比p A :p B :p C 为

气体动理论习题解答

习题 8-1 设想太阳是由氢原子组成的理想气体,其密度可当成是均匀的。若此理想气体的压强为1.35×1014 Pa 。试估计太阳的温度。(已知氢原子的质量m = 1.67×10-27 kg ,太阳半径R = 6.96×108 m ,太阳质量M = 1.99×1030 kg ) 解:m R M Vm M m n 3π)3/4(== = ρ 8-2 目前已可获得1.013×10-10 Pa 的高真空,在此压强下温度为27℃的1cm 3体积内有多少个气体分子? 解:3 4623 10/cm 1045.210300 1038.110013.1?=????===---V kT p nV N 8-3 容积V =1 m 3的容器内混有N 1=1.0×1023个氢气分子和N 2=4.0×1023个氧气分子,混合气体的温度为 400 K ,求: (1) 气体分子的平动动能总和;(2)混合气体的压强。 解:(1) J 1014.41054001038.12 3)(23 3232321?=?????=+=-∑N N kT t ε (2)Pa kT n p i 323231076.21054001038.1?=????==-∑ 8-4 储有1mol 氧气、容积为1 m 3的容器以v =10 m/s 的速率运动。设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。问气体的温度及压强各升高多少?(将氧气分子视为刚性分

子) 解:1mol 氧气的质量kg 10323-?=M ,5=i 由题意得 T R Mv ?=?ν2 5 %80212K 102.62-?=??T 8-5 一个具有活塞的容器中盛有一定量的氧气,压强为 1 atm 。如果压缩气体并对它加热,使温度从27 ℃上升到177 ℃,体积减少一半,则气体的压强变化多少?气体分子的平均平动动能变化多少?分子的方均根速率变化多少? 解:已知 K 300atm 111==T p 、 根据RT pV ν=? 2 2 2111T V p T V p =?atm 3312==p p 8-6 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1 eV ,气体的温度需多高? 解:(1)J 1065.515.2731038.12 32 3212311--?=???==kT t ε (2)kT 2 3 J 101.6ev 1t 19-==?=ε 8-7 一容积为10 cm 3的电子管,当温度为300 K 时,用真空泵把管内空气抽成压强为5×10-4 mmHg 的高真空,问此时(1)管内有多少空气分子?(2)这些空气分子的平均平动动能的总和是多少?(3)平均转动动能的总和是多少?(4)平均动能的总和是多少?(将空气分子视为刚性双原子分子,760mmHg = 1.013×105 Pa )

气体动理论

7-4 一个能量为12 10ev 的宇宙射线粒子,射入一氖气管中,氖管中含有氦气0.10mol,如果宇宙射线粒子的能量全部被氖气分子所吸收而变为热运动能量,问氖气的温度升高了多少? 分析 对确定的理想气体,其分子能量是温度的单值函数,因此能量的变化对应着温度的变化。由能量守恒求解氖气的温度变化。 解: 依题意可得: 23 12193 0.1 6.0210 k T 10 1.6102 -??? ?=?? 7 71.610 1.28100.1 6.02 1.5 1.38 T K -=??= =???? 7-5 容器内贮有1摩尔某种气体。今自外界输入2 2.0910?焦耳热量,测得气体温度升高10K.求该气体分子的自由度。 分析 理想气体分子能量只与自由度和温度有关。 解: ,2A i E N k T ?=?222 2.091056.02 1.3810 A E i N k T ???∴===??? 7-7 温度为27C ?时,1mol 氢气分子具有多少平动动能?多少转动动能? 分析 气体的能量为单个分子能量的总合。 解:2323333 6.0210 1.3810300 3.741022t A E N kT J -==?????=? 23233 226.0210 1.3810300 2.491022 r A E N kT J -==?????=? 7-8有33210 m ?刚性双原子分子理想气体,其内能为26.7510 J ?。(1) 试求气体的压强; (2) 设分子总数为 225.410 ?个,求分子的平均平动动能及气体的温度. 分析 将能量公式2i E N kT =结合物态方程N P kT V =求解气体的压强。由能量公式2 i E N kT =求解气体的温度。再由气体的能量为单个分子能量的总合求解单个分子的平均平动动能。 解:(1) 设分子数为N 。 2i N E N kT P kT V ==据 及 52 1.3510E P pa iV = =?得 (2) 3252 kt kT E N kT ε=由

大学物理 气体动理论习题

第十一章气体动理论 一、基本要求 1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。 2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。 3.理解自由度和内能的概念,掌握能量按自由度均分定理。掌握理想气体的内能公式并能熟练应用。 4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。 5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。 二、基本概念 1 平衡态 系统在不受外界的影响下,宏观性质不随时间变化的状态。 2 物态参量 描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度 宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。 4 自由度 确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。 5 内能 理想气体的内能就是气体内所有分子的动能之和,即 6 最概然速率

速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。 7 平均速率 各个分子速率的统计平均值,用表示, 8 方均根速率 各个分子速率的平方平均值的算术平方根,用表示, 9 平均碰撞频率和平均自由程 平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或 三、基本规律 1 理想气体的物态方程 pV RT ν=或'm pV RT M = pV NkT =或p nkT = 2 理想气体的压强公式 3 理想气体的温度公式 4 能量按自由度均分定理 在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12 kT 5 麦克斯韦气体分子速率分布律 (1)速率分布函数 ()dN f Nd υυ = 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。

相关主题
文本预览
相关文档 最新文档