当前位置:文档之家› 中考压轴冲刺二 动态几何定值问题解析

中考压轴冲刺二 动态几何定值问题解析

中考压轴冲刺二  动态几何定值问题解析
中考压轴冲刺二  动态几何定值问题解析

中考压轴冲刺二动态几何定值问题解析

类型一【线段及线段的和差为定值】

例1、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.

(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.

①写出旋转角α的度数;

②求证:EA′+EC=EF;

(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB,求线段

P A+PF的最小值.(结果保留根号)

【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.

②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.

∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,

∴∠CEA′=120°,

∵FE平分∠CEA′,

∴∠CEF=∠FEA′=60°,

∵∠FCO=180°﹣45°﹣75°=60°,

∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,

∴△FOC∽△A′OE,

∴OF

A O'

OC

OE

∴OF

OC

A O

OE

'

∵∠COE=∠FOA′,

∴△COE∽△FOA′,

∴∠F A′O=∠OEC=60°,

∴△A′CF是等边三角形,

∴CF=CA′=A′F,

∵EM=EC,∠CEM=60°,

∴△CEM是等边三角形,

∠ECM=60°,CM=CE,

∵∠FCA′=∠MCE=60°,

∴∠FCM=∠A′CE,

∴△FCM≌△A′CE(SAS),

∴FM=A′E,

∴CE+A′E=EM+FM=EF.

(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.

由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,

∴△A′EF≌△A′EB′,

∴EF=EB′,

∴B′,F关于A′E对称,

∴PF=PB′,

∴P A+PF=P A+PB′≥AB′,

在Rt △CB ′M 中,CB ′=BC AB =2,∠MCB ′=30°,

∴B ′M =

1

2

CB ′=1,CM

∴AB ′2

∴P A +PF

类型二 【线段的积或商为定值】

例2、如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至

PC 处时,MPN ∠的旋转随即停止.

(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ?是否与PCD ?相似?并说明理由;

(2)类比探究:如图③,在旋转过程中,PE

PF

的值是否为定值?若是,请求出该定值;若不是,请说明理由;

(3)拓展延伸:设AE t =时,EPF ?的面积为S ,试用含t 的代数式表示S ; ①在旋转过程中,若1t =时,求对应的EPF ?的面积; ②在旋转过程中,当EPF ?的面积为4.2时,求对应的t 的值.

【详解】(1)相似

理由:∵090BAP BPA ∠+∠=,090CPD BPA ∠+∠=, ∴BAP CPD ∠=∠, 又∵090ABP PCD ∠=∠=, ∴ABP PCD ??:; (2)

在旋转过程中

PE

PF

的值为定值, 理由如下:过点F 作FG BC ⊥于点G ,∵BEP GPF ∠=∠,

90EBP PGF ∠=∠=,∴EBP PGF ??:,∴

PE BP

PF GF

=, ∵四边形ABCD 为矩形,∴四边形ABGF 为矩形, ∴2,1FG AB BP === ∴

1

2

PE PF = 即在旋转过程中,PE PF 的值为定值,

1

2

PE PF =; (3)由(2)知:EBP PGF ??:,∴

1

2

BE PE PG PF ==, 又∵,2AE t BE t ==-,

∴()2242PB t t =-=-,()14252BG AF BP PG t t ==+=+-=-, ∴EPF AEF BEP PFG ABGF S S S S S ????=---矩形

()()()()2111

252521224245222

t t t t t t t =--?--??--??-=-+

即:245S t t =-+;

①当1t =时,EPF ?的面积214152S =-?+=, ②当 4.2EPF S ?=时,∴245 4.2t t -+=

解得:12t =-

,22t =(舍去)

∴当EPF ?的面积为4.2时,25

t =-

; 类型三 【角及角的和差定值】

例3、如图,在△ABC 中,∠ABC >60°,∠BAC <60°,以AB 为边作等边△ABD (点C 、D 在边AB 的同

侧),连接CD.

(1)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;

(2)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(3)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.

【详解】(1)∵△ABD为等边三角形,

∴∠BAD=∠ABD=60°,AB=AD,

又∵∠BAC=30°,

∴AC平分∠BAD,

∴AC垂直平分BD,

∴CD=BC,

∴∠BDC=∠DBC=∠ABC-∠ABD=90°-60°=30°;

(2)△ABC是等腰三角形,

理由:设∠BDC=x,则∠BAC=2x,

有∠CAD=60°-2x,∠ADC=60°+x,

∴∠ACD=180°-∠CAD-∠ADC=60°+x,

∴∠ACD=∠ADC,

∴AC=AD,

又∵AB=AD,

∴AB=AC,

即△ABC是等腰三角形;

(3)当∠BCD=150°时,∠BAC=2∠BDC恒成立,

如图,作等边△BCE,连接DE,

∴BC=EC,∠BCE=60°.

∵∠BCD=150°,

∴∠ECD=360°-∠BCD-∠BCE=150°,

∴∠DCE=∠DCB.

又∵CD=CD,

∴△BCD≌△ECD.

∴∠BDC=∠EDC,

即∠BDE=2∠BDC.

又∵△ABD为等边三角形,

∴AB=BD,∠ABD=∠CBE=60°,

∴∠ABC=∠DBE=60°+∠DBC.

又∵BC=BE,

∴△BDE≌△BAC.

∴∠BAC=∠BDE,

∴∠BAC=2∠BDC.

类型四【三角形的周长为定值】

例4、如图,现有一张边长为的正方形ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP,BH.

∠=∠;

(1)求证:EPB EBP

∠=∠;

(2)求证:APB BPH

(3)当点P在边AD上移动时,△PDH的周长是否发生变化?不变化,求出周长,若变化,说明理由;(4)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式.

【详解】(1)证明:∵四边形EPGF由四边形EFCB折叠而来,EB与EP重叠

∴EP = EB

∴∠EPB = ∠EBP

(2)证明∵四边形EPGF由四边形EFCB折叠而来,EB与EP重叠,PG与BC重叠

∴∠EPG = ∠EBC

又∵∠EPB = ∠EBP

∴∠EPG - ∠EPB = ∠EBC - ∠EBP,即

∠BPH = ∠PBC

∵AD∥BC,

∴∠APB = ∠PBC,

∴∠APB = ∠BPH

(3)解:△PDH的周长不发生变化.

如图所示,过点B作BQ丄PG于点Q.

在△BP A和△BPQ中,

APB QPB PB PB

A PQB

∠=∠

?

?

=

?

?∠=∠

?

∴()BPA BPQ ASA ?V V ∴ ,,PQ AP AB BQ == ∴BQ BC =

Rt BHQ V 和Rt BHC V ,

∵BQ BC

BH BH =??

=?

∴ ()Rt BHQ Rt BHC HL V V ≌ ∴QH =HC

∴△PDH

的周长为:PD DH PH PD AP DH HC AD l BC =++=+++=+=为固定值,固定不变.

如图,过点F 作FM 垂直AB 于点M .

∵90,90BEF ABP BEF MFE ??∠+∠=∠+∠=

∴MFE ABP ∠=∠ 在△ABP 和△MFE 中

∵,A EMF AB MF

ABP MFE ∠=∠??

=??∠=∠?

∴()ABP MFE ASA V V ≌ ∴ ME AP x ==

在△AEP 中,根据勾股定理,可得:

222(4)x BE BE +-=

解得:2

28

x BE =+

∴1

()2

EFCB S S CF BE BC ==

+?四边形 ,即 22

2

1224

288=282

x x S x x x ??=?-+++? ???-+ 即S 关于x 的关系式为:

2

282

x S x =-+

类型五 【三角形的面积及和差为定值】

例5、综合与实践:矩形的旋转 问题情境:

在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止,在此过程中开展探究活动. 操作发现:

(1)雄鹰小组初步发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,则线段AM 与CN 始终存在的数量关系是 .

(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN 为菱形,请你证明这个结论.

(3)雄鹰小组还发现在问题(2)中的四边形QMRN 中∠MQN 与旋转角∠AOE 存在着特定的数量关系,请你写出这一关系,并说明理由. 实践探究:

(4)在图3中,随着矩形纸片EFGH 的旋转,四边形QMRN

的面积会发生变化.若矩形纸片的长为

,请你帮助雄鹰小组探究当旋转角∠AOE 为多少度时,四边形QMRN 的面积最大?最大

面积是多少?(直接写出答案)

【详解】(1)结论:AM=CN.

理由:如图2中,设AB交EG于K,CD交EG于J.

∵四边形ABCD是矩形,四边形EFGH是矩形,

∴AB∥CD,EF∥EG,OA=OC=OE=OG,

∴∠MEK=∠JGN,∠OAK=∠OAJ,

∵∠AOK=∠AOJ,∴△AOK≌△AOJ(ASA),

∴OK=OJ,AK=CJ,∠AOK=∠AJO,∴EK=JG,

∵∠EKM=∠AKO,∠GJN=∠CJO,∴∠EKM=∠GJN,

∴△EKM≌△GJN(ASA),∴KM=JN,∴AM=AN.

(2)证明:过点Q作QK⊥EF,QL⊥CD,垂足分别为点K,L.

由题可知:矩形ABCD≌矩形EFGH,

∴AD=EH,AB∥CD,EF∥HG,

∴四边形QMRN为平行四边形,

∵QK⊥EF,QL⊥CD,∴QK=EH,QL=AD,∠QKM=∠QLN=90°,∴QK=QL,又∵AB∥CD,EF∥HG,∴∠KMQ=∠MQN,∠MQN=∠LNQ,

∴∠KMQ=∠LNQ,∴△QKM≌△QLN(AAS),

∴MQ=NQ∴四边形QMRN为菱形.

(3)结论:∠MQN=∠AOE.理由:如图3﹣1中,

∵∠QND=∠1+∠2,∠AOE=∠1+∠3,

又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,

∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.

(4)如图3﹣2中,连接BD,在DC上取一点J,使得DJ=AD,则AJ=2,

∵CD=,∴CJ=AJ=2,∴∠JCA=∠JAC,

∵∠AJD=45°=∠JCA+∠JAC,∴∠ACJ=22.5°,

∵OC=OD,∴∠OCD=∠ODC=22.5°,∴∠BOC=45°,

观察图象可知,当点F与点C重合或点G与点D重合时,四边形QMRN的面积最大,最大值=

∴∠AOE=45°或135°时,四边形QMRN面积最大为.

练习:

1.已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C 重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,

(1)如图1,当AE⊥BC时,求线段BE、CG的长度.

(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.

(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.

【详解】(1)∵四边形ABCD是平行四边形,

∴AD∥BC,AB∥CD,

∴∠BAD +∠B =180°, ∵∠BAD =120°, ∴∠B =60°, ∵AE ⊥BC 于E ,

在Rt △ABE 中,∠BAE =30°,AB =6,

∴BE =3,AE ∵EF ⊥AB , ∴∠BFE =90°,

在Rt △BEF 中,∠BEF =30°,

∴BF =

12BE =32,EF , ∵S ?ABCD =BC ×AE =AB ×FG ,

∴=6FG ,

∴FG

∴EG =FG ﹣EF ; (2)如图2,

过点A 作AH ⊥BC 于H , ∵∠B =60°,

∴BH =3,AH

∵∠AHB =∠BFE =90°,∠B =∠B , ∴△ABH ∽△EBF ,

AB BH AH

BE BF EF

==, 设BE =a ,

63a BF EF

==

, ∴BF =

12a ,EF

, ∵AB ∥CD , ∴△BEF ∽△CEG ,

∴BF BE EF CG CE

EG ==, ∴132210a a a CG a EG

==-, ∴CG =

12(10﹣a ),EG =2

(10﹣a ), ∴C △BEF +C △CEG =BE +BF +EF +CE +CG +EG =a +

12a +10﹣a +12(10﹣a )10﹣a )

(3)同(2)的方法得,EF ,CG =12(10﹣x ),

∴DG =CD +CG =6+5﹣

12x =11﹣1

2

x , ∴S △DEF =

12EF ×DG =12×2x ×(11﹣12x )=﹣8x 2+4

(0<x <10). 2.如图,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),过点P 作PF ⊥BC 于点F ,点D 、E 的坐标分别为(0,6),(﹣4,0),连接PD ,PE ,DE .

(1)求抛物线的解析式;

(2)小明探究点P的位置是发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判定该猜想是否正确,并说明理由;

(3)请直接写出△PDE周长的最大值和最小值.

【详解】(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,

∴C(0,8),A(﹣8,0),

设抛物线解析式为:y=ax2+c,

8

640 c

a c

=

?

?

+=

?

解得:

1

8

8

a

c

?

=-

?

?

?=

?

∴抛物线解析式为y=﹣1

8

x2+8.

(2)设P(x,﹣1

8

x2+8),则F(x,8),

则PF=8﹣(﹣1

8

x2+8)=

1

8

x2.

PD2=x2+[6﹣(﹣1

8

x2+8)]2=

1

64

x4+

1

2

x2+4=(

1

8

x2+2)2

∴PD=1

8

x2+2,

∴d=|PD﹣PF|=|1

8

x2+2﹣

1

8

x2|=2

∴d=|PD﹣PF|为定值2;

(3)如图,过点E作EF⊥x轴,交抛物线于点P,

由d=|PD﹣PF|为定值2,

得C△PDE=ED+PE+PD=ED+PE+PF+2=ED+2+(PE+PF),

又∵D(0,6),E(﹣4,0)

∴DE==

∴C△PDE=(PE+PF),

当PE和PF在同一直线时PE+PF最小,

得C△PDE最小值==2 .

设P为抛物线AC上异于点A的任意一点,过P作PM∥x轴,交AB于点M,连接ME,如图2.

由于E是AO的中点,易证得ME≥PE(当点P接近点A时,在△PME中,显然∠MPE是钝角,故ME≥PE,与A重合时,等号成立),而ME≤AE+AM,

所以PE≤AE+AM.

所以当P与A重合时,PE+PF最大,

AE=8﹣4=4,PD=10.

得C△PDE最大值==.

综上所述,△PDE周长的最大值是,最小值是.

3.如图,四边形ABCD中,AD∥BC,∠ABC=90°.

(1)直接填空:∠BAD=______°.

(2)点P在CD上,连结AP,AM平分∠DAP,AN平分∠P AB,AM、AN分别与射线BP交于点M、N.设∠DAM=α°.

①求∠BAN的度数(用含α的代数式表示).

②若AN⊥BM,试探究∠AMB的度数是否为定值?若为定值,请求出该定值;若不为定值,请用α的代数式表示它.

【详解】解:(1)∵AD∥BC,∠ABC=90°,

∴∠BAD=180°-90°=90°.

故答案为:90;

(2)①∵AM平分∠DAP,∠DAM=α°,

∴∠DAP=2α°,

∵∠BAD=90°,

∴∠BAP=(90-2α)°,

∵AN平分∠P AB,

∴∠BAN=1

2

(90-2α)°=(45-α)°;

②∵AM平分∠DAP,AN平分∠P AB,

∴∠P AM=1

2

∠P AD,∠P AN=

1

2

∠P AB,

∴∠MAN=∠MAP+∠P AN=1

2

∠P AD+∠

1

2

∠P AB=

1

2

90°=45°,

∵AN⊥BM,

∴∠ANM=90°,

∴∠AMB=180°-90°-45°=45°.

4.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.

(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)

(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)

(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),

S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)

【详解】(1)结论:S△ABC:S△ADE=定值.

理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.

∵∠BAE =∠CAD =90°,

∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG , ∵AB =AE =AD =AC ,

1

21

2

ABC AED

AB AC sin CAG S S AE AD sin DAE ???∠==???∠V V 1. (2)如图2中,S △ABC :S △ADE =定值.

理由:如图1中,作DH ⊥AE 于H ,CG ⊥BA 交BA 的延长线于G .

不妨设∠ADC =30°,则

AD =,AE =AB , ∵∠BAE =∠CAD =90°,

∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG ,

1

2132

ABC AED

AB AC sin CAG

S S AE AD sin DAE ???∠==???∠V V .

(3)如图3中,如图2中,S △ABC :S △ADE =定值.

理由:如图1中,作DH ⊥AE 于H ,CG ⊥BA 交BA 的延长线于G .

∵∠BAE =∠CAD =90°,

∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG ,

∵AB =a ,AE =b ,AC =m ,AD =n

1

21

2

ABC AED

AB AC sin CAG

S ma

S nb AE AD sin DAE ???∠==???∠V V . 5.(解决问题)如图1,在ABC ?中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .

(1)若3PE =,5PF =,则ABP ?的面积是______,CG =______. (2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.

几何定值问题-第6讲几何中的学生版

第六讲 几何中的定值问题 一、基础知识 定值问题一般包括两类:一类是定量问题(如定长、定角、定和、定差、定积、定比、平方和或倒数 和为定值等); 一类是定形问题(如定点、定线、定圆或弧、定方向等); 求解此类问题主要是抓住数学问题中的动与静、变与不变、特殊与一般间的相互关系,从中寻找不变 的量来联立求解. 二、例题部分 第一部分 隐含的定值问题 例1. 如图,△ABC 是⊙0的内接正三角形,弦PQ 同时平分AB 、AC ,则PQ BC 等于 ( ) A . 45 B .62 C .312+ D .52 例2. 如图,OA 、OB 为任意两条半径,从B 作BE ⊥OA 于E ,过E 作EP ⊥AB 于P ,若⊙O 的半径为R ,则2OP +2EP 等于 ( ) A .2R B .2R C .42R D .14 2R 例3. 如图,AB 是⊙0的直径,C 为圆上一点,过C 点作CD ⊥AB 于D ,且∠COB=θ,则 AD BD ·2tan 2 θ= .

例4. 如图,⊙O 的半径为2,A 、B 两点在⊙O 上,切线AQ 与BQ 相交于Q ,P 是AB 的延长线上任意一点, QS ⊥OP 于S ,则OP·OS= . 例5. 如图,⊙0与⊙O '内切于点A ,以大⊙0上一点P 向小⊙O '引切线PT ,连结PA 与 小⊙O '交于点B , 若⊙0与⊙O '的半径分别为R 和r ,则2 2PT PA = . 第二部分 变化量定值问题 例6. 如图,在△A BC 中,AB=AC ,若P 为BC 边上任意一点,则点P 到两边AB 、AC 距离之和为 ( ) A .随点 P 的变化而变化 B . 12 (AB+AC) C .定值 D .12(AB+BC) 例7. △A BC 是边长固定的正三角形。D 为BC 边上的动点,1O 和2O 分别为△ABD 和△ACD 的外心,1O 1E ⊥ BC 于1E ,2O 2E ⊥BC 于2E .则1O 2E +2O 2E 的值为 .

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

初中平面几何中的定值问题

平面几何中的定值问题 开场白:同学们,动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综合分析和解决问题的能力。这类问题中就有一类是定值问题,下面我们来看几道题: 【问题1】已知一等腰直角三角形的两直角 边AB=AC=1,P 是斜边BC 上的一动点,过 P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF= 。 方法1:特殊值法:把P 点放在特殊的B 点或C 点或 BC 中点。此种方法只适合小题。 方法2:等量转化法:这是绝大部分同学能够想到的 方法,PF=AE,PE=BE,所以PE+PF=BE+AE 。 方法3:等面积法:连接AP ,ABC ABP APC S S S AB AC AB PE AC PF ???=+??=?+? AB PE PF ?=+ 总结语:这虽然是一道动态几何问题,难吗?不难,在解决过程中(方法2抓住了边长AB 的 不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。 设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自己讲掉。此题可叫差生或中等偏下的学生回答(赛比艳,艾科) (设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。) 过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的等腰三角形,问题有没有变化,又该如何解决?请看: 【变式1】若把问题1中的等腰直角三角形改为 等腰三角形,且两腰AB=AC=5,底边BC=6, 过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF 还是定值吗?若是,是多少? 若不是,为什么? 方法1:三角形相似进行量的转化 ABM PBE PCF ???,AM PE PF AM PB AM PC PE PF AB PB PC AB AB ???==?== ()4624 55 AM PB PC AM BC PE PF AB AB +???+==== (板书) (M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线的 长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静) 方法2:等面积法: ABC ABP APC S S S BC AM AB PE AC PF ???=+??=?+? 6424 55 BC AM PE PF AB ???+= ==(M 为BC 中点) (板书) (解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段 有关的量的常用方法。)

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

人教版八年级下册数学专题19:动态几何之定值问题探讨

【中考攻略】专题19:动态几何之定值问题探讨 动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。 结合全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。 一、线段(和差)为定值问题: 典型例题: 例1:(黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R . (1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 5 12(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想. 【答案】解:(2)图2中结论PR +PQ=12 5 仍成立。证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。 ∵四边形ABCD 为矩形,∴∠BCD=90°。 又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。 ∵S △BCD =12BC?CD=12BD?CK ,∴3×4=5CK ,∴CK=125 。

九年级数学平面几何中的定值问题例题讲解

九年级数学平面几何中的定值问题例题讲解 知识点,重点,难点 所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的某种几何量却始终保持不变(或几何元素间的某种几何性质或位置关系不变)。 平面几何定值一般可分为两类:一类是定量问题(如定长度、定角、定比、平方和或倒数和为定值等);一类是定形问题(如定点、定线、定圆或弧、定方向等),它们有共同的基本特点,即给定条件中一般由固定条件和变动条件两部分组成。 一般来说,求解定值问题的方法有: 图形分析法。画出符合条件的图形后,分析图中几何元素的数量关系及位置关系,直接寻求出定值并证明。 特殊位置法。不论图形如何变动,定值这一共性始终不变,因此可选择图形的特殊位置(如极限位置、临界位置)加以探求。 参数计算法。图形运动中,选取其中的变量(如线段长、角度、面积等)作为参数,将要求的定值用参数表出,然后消去参数即得定值。 例题精讲 例1:如图,已知⊙O 及弦AB ,P 为⊙O 上任一点,PA 、PB 分别交AB 中垂线于E 、F ,求证:OE ·OF 为定值。 分析 若在⊙O 上的点P 运动到特殊位置点Q ,则点E ,点F 都和Q 点重合,于是得到OE ·OF =OQ 2,由此可推 想,该定值可能为⊙O 半径的平方。 证明 因为OE 是弦AB 的中垂线,所以 AQ BQ =,所以∠AOE=∠BOE , 所以 1.2m AOE AB ∠=又因为 1,2m PAB BP ∠= 1,2 m PBA AP ∠=∠EPB =∠PAB +∠ABP ,所以∠AOE = ∠EPB ,所以A 、O 、F 、P 四点共圆,所以∠OFB =∠OAE .又因为∠FOB =∠AOE ,所以△FOB ∽△OAE ,所以,OF OB OA OE =即OE ·OF =OA ·OB .因为OA =OB ,所以OE ·OF =OA 2(定值)。 例2:如图,设AB 、CD 是圆O 的两条定直径,P 是圆周上的任一点, 过P 作AB 垂线,过P 作CD 的垂线,其垂足分别为Q 、 R ,DT ⊥AB ,垂足为T ,求证:QR 是定长。 分析 把点P 沿⊙O 运动到特殊的点D 的位置,不难发现QR =DT ,那么当P 是圆周上的任一点时,只要证明QR =DT . 证明 设圆的半径为r ,作RS ⊥AB ,连结OP .因为PQ ⊥AB ,PR ⊥CD ,所以P 、O 、Q 、R 四点共圆,所以∠RQS =QR RS RS

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

中考压轴冲刺二 动态几何定值问题解析

中考压轴冲刺二动态几何定值问题解析 类型一【线段及线段的和差为定值】 例1、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E. (1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F. ①写出旋转角α的度数; ②求证:EA′+EC=EF; (2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB,求线段 P A+PF的最小值.(结果保留根号) 【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°. ②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM. ∵∠CED=∠A′CE+∠CA′E=45°+15°=60°, ∴∠CEA′=120°, ∵FE平分∠CEA′, ∴∠CEF=∠FEA′=60°, ∵∠FCO=180°﹣45°﹣75°=60°, ∴∠FCO=∠A′EO,∵∠FOC=∠A′OE, ∴△FOC∽△A′OE,

∴OF A O' = OC OE , ∴OF OC = A O OE ' , ∵∠COE=∠FOA′, ∴△COE∽△FOA′, ∴∠F A′O=∠OEC=60°, ∴△A′CF是等边三角形, ∴CF=CA′=A′F, ∵EM=EC,∠CEM=60°, ∴△CEM是等边三角形, ∠ECM=60°,CM=CE, ∵∠FCA′=∠MCE=60°, ∴∠FCM=∠A′CE, ∴△FCM≌△A′CE(SAS), ∴FM=A′E, ∴CE+A′E=EM+FM=EF. (2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M. 由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′, ∴△A′EF≌△A′EB′, ∴EF=EB′, ∴B′,F关于A′E对称, ∴PF=PB′, ∴P A+PF=P A+PB′≥AB′,

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

解析几何中的定点、定值问题(含答案)

解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不 变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0) 【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出. 令4400x y -=??=? 得定点(1,0). 2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ?=______________. 【答案】-2 【解析】设00(,),(,)P x y A x y ,则(,)Q x y -- 220001222 000y y y y y y k k x x x x x x -+-?=?=-+-, 又由A 、P 均在椭圆上,故有:22 0022 21 21 x y x y ?+=??+=??,

两式相减得2 2 2 2 002()()0x x y y -+-= ,22 0122 2 02y y k k x x -?==-- 3,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24 e 【解析】 设直线AB 斜率为k ,则直线方程为()3y k x =-, 与椭圆方程联立消去y 整理可得() 22223424361080k x k x k +-+-=, 则22121222 2436108 ,3434k k x x x x k k -+== ++, 所以122 1834k y y k -+= +, 则AB 中点为222129,3434k k k k ?? - ?++?? . 所以AB 中垂线方程为22291123434k k y x k k k ?? +=-- ?++??, 令0y =,则2 2334k x k =+,即22 3,034k N k ?? ?+?? , 所以2222 39(1) 33434k k NF k k +=-=++. () 22 36134k AB k += =+,所以14 NF AB =. F A ,是其左顶点和左焦点,P 是圆222b y x =+ 上的动点,若PA PF =常数,则此椭圆的离心率是

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

解析几何中定值与定点问题

解析几何中定值与定点问题 【探究问题解决的技巧、方法】 (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的. (2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究. 【实例探究】 题型1:定值问题: 例1:已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的 焦点,离心率等于 (Ⅰ)求椭圆C的标准方程; (Ⅱ)过椭圆C的右焦点作直线l交椭圆C于A、B两点,交y轴于M点,若 为定值. 解:(I)设椭圆C的方程为,则由题意知b= 1. ∴椭圆C的方程为 (II)方法一:设A、B、M点的坐标分别为 易知F点的坐标为(2,0). 将A点坐标代入到椭圆方程中,得

去分母整理得 方法二:设A、B、M点的坐标分别为 又易知F点的坐标为(2,0). 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是 将直线l的方程代入到椭圆C的方程中,消去y并整理得 又 例2.已知椭圆C经过点A(1,3/2),两个焦点为(-1,0),(1,0). 1)求椭圆方程 2)E、F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明:直线EF的斜率为定值,并求出这个定值 (1)a2-b2=c2 =1 设椭圆方程为x2/(b2+1)+y2/b2=1 将(1,3/2)代入整理得4b^4-9b2-9=0 解得b2=3 (另一值舍) 所以椭圆方程为x2/4+y2/3=1 (2) 设AE斜率为k 则AE方程为y-(3/2)=k(x-1)①

2020各地中考几何综合压轴题汇总

2020各地中考几何综合压轴题汇总 一.解答题(共50小题) 1.(2020?天水)性质探究 如图(1),在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为. 理解运用 (1)若顶角为120°的等腰三角形的周长为4+2 ,则它的面积为; (2)如图(2),在四边形EFGH中,EF=EG=EH,在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=20,求线段MN的长. 类比拓展 顶角为2α的等腰三角形的底边与一腰的长度之比为.(用含α的式子表示) 2.(2020?青海)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G. 特例感知: (1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明. 猜想论证: (2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC 于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想. 联系拓展: (3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

3.(2020?河北)如图1和图2,在△ABC中,AB=AC,BC=8,tan C .点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B. (1)当点P在BC上时,求点P与点A的最短距离; (2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长; (3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x的式子表示); (4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK ,请直接写出点K被扫描到的总时长. 4.(2020?襄阳)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图1,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=°; (2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当 时,过点D作AE的垂线,交AE于点P,交AC 于点K,若CK ,求DF的长. 5.(2020?牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC,交射线CA于点F.请解答下列问题:

初中九年级数学专题复习教案:动态几何之定值问题探讨

【2013年中考攻略】专题3:动态几何之定值问题探讨 动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和存在性问题等。前面我们已经对最值问题、面积问题、和差问题进行了探讨,本专题对定值问题进行探讨。 结合2011年和2012年全国各地中考的实例,我们从三方面进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)其它定值问题。 一、线段(和差)为定值问题: 典型例题:例1:(2012黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE=BC ,AB=3,BC=4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R . (1)如图1,当点P 为线段EC 中点时,易证:PR+PQ= 512(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由. (3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想. 【答案】解:(2)图2中结论PR +PQ=125 仍成立。证明如下: 连接BP ,过C 点作CK ⊥BD 于点K 。 ∵四边形ABCD 为矩形,∴∠BCD=90°。 又∵CD=AB=3,BC=4,∴2 2 22BD CD BC 345=+=+=。 ∵S △BCD =12BC?CD=12BD?CK ,∴3×4=5CK ,∴CK=125 。

解析几何中定点、定值、定直线问题

解析几何中定点、定值、定直线问题

解析几何中定点定值问题 2 例1已知椭圆 —=1(2)的上顶点为M( 0, 1),过M a 的两条动弦MA MB 满足MAL MB 对于给定的实数a(a 1), 证明:直线AB 过定点。 解:由MA MB =0知MA_MB ,从而直线MA 与坐标轴不垂直, 故可 设直线MA 的方程为y 二kx 1,直线MB 的方程为 1 y x 1 k 将y 二kx1代入椭圆C 的方程,整理得 (1 a 2 k 2 )x 2 2a 2 k=x 0 例3已知椭圆的中心为坐标原点 O ,焦点在x 轴上, 斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点, OA OB 与 a =(3,-1) 共线. (1) 求椭圆的离心率; 解得x=0或 -2a 2 k 1 a 2k 2 故点A 的坐标为 -2a 2 k 1 a 2k 2 2 2 1-a k ) 1 a k 同理,点B 的坐标为 2 2 2 (2a k k -a ) k a k a 知直线l 的斜率为 k 2 - a 2 1 -a 2k 2 k 2 a 2 1 a 2k 2 = k _1 2a k _ -2a k (a 2 1)k ~T2 2 ^~2 k a 1 a k 直线l 的方程为 k 2 -1 2 (a 2 - (x- 2a 2k k 2 a 2 k 2 a 2 k 2 -1 a 2 -1 2 (a 2 - a 2 1 -直线l 过定点0, a 2 -1 a 2 1

化简得(a 2 b 2 )x 2 —2a 2 cx a 2c 2 -a 2b 2 令 A(x i ,y i ), B(X 2 , y 2), 2 贝 y X i X 2 |a -c ^,x i x 2 a +b 2 2 a c 2 2 a b a 2 b 2 由OA OB =(为 X 2 ,% y 2 ), a =(3,- 1),OA OB 与a 共线,得 3(% y 2)(x i X 2) =0. y i =Xi -cy 7 -c, 3( x 2 -2c)区 x 2) = 0, 3c 2 . 二至,所以a 2 =3b 2. X-| x 2 2a 2c a 2 b 2 2 2 16a c = a 「b , 3 I 故离心率e = c —. (II )证明:由(I )知a 2 =3b 2 ,所以椭圆 2 2 0 y__ a 2 b 2 x 2 3y 2 =3b 2 . 设OM =(x,y),由已知得(x,y) = (Xi,y );; ■丄化 小), x =檢1 + %, 「? J y =环卡%. (2)设M 为椭圆上任意一点,且OM 「OA .OB(.i R), 证明,」为定值. 2 2 笃与=1(a b ■ 0), F(c,0), a b 2 2 则直线AB 的方程为y=x —c,代入笃吕 a b (I )解:设椭圆方程为

中考数学几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1) 求证:DC=BC; (2) E 是梯形内一点,F 是梯形外一点,且∠E DC=∠F BC ,DE=BF ,试判断△E CF 的形 状,并证明你的结论; (3) 在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. [解析] (1)过A 作DC 的垂线AM 交DC 于M, 则AM=BC=2. 又tan ∠ADC=2,所以2 12 DM ==.即DC=BC. (2)等腰三角形. 证明:因为,,DE DF EDC FBC DC BC =∠=∠=. 所以,△DEC ≌△BFC 所以,,CE CF ECD BCF =∠=∠. 所以,90ECF BCF BCE ECD BCE BCD ∠=∠+∠=∠+∠=∠=? 即△ECF 是等腰直角三角形. (3)设BE k =,则2CE CF k ==,所以EF =. 因为135BEC ∠=?,又45CEF ∠=?,所以90BEF ∠=?. E B F C D A

所以22(22)3BF k k k = += 所以1sin 33 k BFE k ∠= =. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD 是平行四边形, ∴∠1=∠C ,AD =CB ,AB =CD . ∵点E 、F 分别是AB 、CD 的中点, ∴AE = 21AB ,CF =2 1 CD . ∴AE =CF ∴△ADE ≌△CBF . (2)当四边形BEDF 是菱形时, 四边形 AGBD 是矩形. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∵AG ∥BD , ∴四边形 AGBD 是平行四边形.

动态几何中的定值问题

动态几何中的定值问题 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综 合分析和解决问题的能力。这类问题中就有一类是定值问题,下面通过例题来探究这类问题 的解答方法。 【问题1】已知一等腰直角三角形的两直角 边AB=AC=1,P 是斜边BC 上的一动点,过 P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF= 。 方法1:特殊值法:把P 点放在特殊的B 点或C 点或BC 中 点。此种方法只适合小题。 方法2:等量转化法:这是绝大部分同学能够想到的方法, PF=AE,PE=BE,所以PE+PF=BE+AE 。 方法3:等面积法:连接AP ,ABC ABP APC S S S AB AC AB PE AC PF ???=+??=?+? AB PE PF ?=+ 总结语:这虽然是一道动态几何问题,难吗?不难,在解决过程中(方法2抓住了边长AB 的不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。 设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自 己讲掉。此题可叫差生或中等偏下的学生回答。 (设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。) 过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的 等腰三角形,问题有没有变化,又该如何解决?请看: 【变式1】若把问题1中的等腰直角三角形改为 等腰三角形,且两腰AB=AC=5,底边BC=6, 过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则 PE+PF 还是定值吗?若是,是多少? 若不是,为什么? 方法1:三角形相似进行量的转化 ABM PBE PCF ??? ,AM PE PF AM PB AM PC PE PF AB PB PC AB AB ??? ==?== ()462455AM PB PC AM BC PE PF AB AB +???+==== (板书) (M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线 的长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静) 方法2:等面积法: ABC ABP APC S S S BC AM AB PE AC PF ???=+??=?+? 642455 BC AM PE PF AB ???+===(M 为BC 中点) (板书) (解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段 有关的量的常用方法。) (若学生想不到,可提示:在此题中,不变的东西是什么?不变的这个量和变量PE,PF 之间

解析几何中的定值问题

解析几何中的定值问题 1、(2014安徽高考)如图,已知两条抛物线22 111222:2(0),:2(0)E y p x p E y p x p =>=>, 过点O 的三条直线1l 、2l 和3l . 1l 与1E 和2E 分别交于12,A A 两点,2l 与1E 和2E 分别交于 12,B B ,3l 与1E 和2E 分别交于21,C C . 记111222,A B C A B C ??的面积分别为1S 与2S ,求证 1 2 S S 的值为定值. 证明:设直线321,,l l l 的方程分别为 x k y x k y x k y 321,,===. 把直线与抛物线联立求解得: )2,2(),2,2(122122112111k p k p A k p k p A , )2,2(),2,2(222222212211k p k p B k p k p B , )2,2(),2,2( 3 2 2322312311k p k p C k p k p C . 由三角形三顶点坐标面积公式得: ))1 1(1)11(1)11(1( )2(323231312121211k k k k k k k k k k k k p S -+-+-=, ))1 1(1)11(1)11(1( )2(3 23231312121222k k k k k k k k k k k k p S -+-+-=, 所以 1 2 S S =221)(p p 为定值. 注:(1)设?ABC 三顶点的坐标分别为),(),,(),,(332211y x y x y x ,则 |)()()()(|231232232231x x y x x y y y x y y x S ABC ---+---=?; (2) 原解答包含一个重要结论,111222,A B C A B C ??三边对应平行,进而,

相关主题
文本预览
相关文档 最新文档