当前位置:文档之家› 大学基础物理学答案(习岗)第6章

大学基础物理学答案(习岗)第6章

大学基础物理学答案(习岗)第6章
大学基础物理学答案(习岗)第6章

第六章 稳恒磁场

本章提要

1. 磁感应强度

描述磁场力的属性的物理量是磁感应强度,常用B 来表示。其定义式为 qv

F B max

=

在SI 制中,B 的单位为特斯拉(T )。B 另一个单位为高斯(G),两者的换算关系为

1T=104G

2. 毕奥—萨伐尔定律

(1) 毕奥—萨伐尔定律

? 毕奥—萨伐尔定律的微分形式

电流元I d l 在真空中任一点P 所产生的磁感应强度d B 的大小与电流元的大小成正比,与电流元I d l 和r 的夹角的正弦成正比,与电流元到P 点的距离的平方 成反比。d B 的方向垂直于I d l 和r 所组成的平面,指向与矢积I d l ×0r 的方向相同,即

00

2d d 4I r l r B m p ′=

其中, 7-20410N A m p -=醋,称真空磁导率。

? 毕奥—萨伐尔定律的积分形式

00

2

d d 4l

l

I r μπ?==??

l r B B

(2)几种典型的磁场分布 ? 无限长直电流的磁场分布

02I

B r

m p =

? 载流长直螺线管内的磁场分布

0B nI m =

? 运动电荷的磁场分布

00

2

4q r v r B m p ′=

3. 磁高斯定理

? 磁通量

穿过磁场中某一面积S 的磁通量定义为

d B S m s

Φ=

? 磁高斯定理

通过空间中任意封闭曲面的磁通量必为零,即

d 0S

B S =蝌

g ò

4. 安培环路定理

在真空中的稳恒磁场内,磁感应强度B 的环流等于穿过积分回路的所有传导电流强度代数和的0μ倍,即

0in d L

I B r m ??ò

?

5. 安培力与洛仑兹力

(1)安培力

载流导线在磁场中受到的宏观力称安培力。安培力服从安培定律。 ? 安培定律的微分形式

放在磁场中任一点处的电流元d I l 所受到的磁场作用力d F 的大小与电流元d I l 的大小和该点的磁感应强度B 的大小成正比,还与电流元d I l 的方向和B 的方向之间的夹角θ的正弦成正比,d F 的方向为d I ?l B 所确定的方向。即

d d I =?F l B

? 安培定律的积分形式

对于任意载流导线,若将其视为由无数个电流元组成的,则其在磁场中所受的作用力为

d F l B l

I =??

(2)洛仑兹力

一个定向运动的电荷在磁场中所受的力即洛仑兹力,其满足的基本规律为

q =?f υB

洛仑兹力的几个重要应用: ? 质谱仪 ? 霍耳效应

6. 磁介质

(1) 磁介质及分类

能在磁场作用下发生变化,并且能够反过来影响磁场的介质称磁介质。一般用磁介质中的磁感应强度B 的大小与真空中的磁感应强度0B 的大小之比来描述磁介质被磁化后对原来外磁场的影响,即

r 0

B

B μ=

其中,r μ称磁介质的相对磁导率。按r μ值大小,磁介质可分为抗磁质(r 1m <)、 顺磁质(r 1m >)和铁磁质(r 1m ?)。 (2) 磁场强度 磁场强度的定义式为

μ

=

B

H

其中,0r μμμ=称绝对磁导率,简称磁导率。磁场强度的单位为A ·m -1。

(3) 磁介质中的安培环路定理

磁介质中的磁场强度H 沿任何闭合环路的线积分等于穿过以此积分环路为 周界的任意曲面的传导电流的代数和,即

0d i i

l

I ?=∑?H l

思考题

6-1 为什么不能简单地定义B 的方向就是作用在运动电荷上的磁力方向? 答:运动电荷磁力的方向不仅与磁感应强度B 的方向有关,还与电荷的运动方向、电荷的正负有关。如果电荷运动的方向与磁场方向在同一直线上,此时电荷受力为零,因此不能定义B 的方向就是作用在运动电荷上的磁力方向。

6-2 在电子仪器中,为了减小与电源相连的两条导线的磁场,通常总是把它们扭在一起。为什么?

答:可以将扭在一起的两条通电导线看成是交织在一起的两个螺线管。管外的磁场非常弱;因两个螺线管的通电电流大小相等、方向相反,而且匝数基本相当,管内的磁场基本上可以相互抵消。因此,与电源相连的两条导线,扭在一起时比平行放置时产生的磁场要小得多。

6-3 在无电流的空间区域,如果磁感应线是平行直线,则磁场一定是均匀 的。试证明之。

答:如图6-1,磁感应线是平行直线,作一个长方形闭合回路abcd 。因为空间区域无电流,由安培环路定理,有

0d =??l B

即120B ac B bd -=,则12B B =。

6-4 在什么条件下才能用安培环路定理求解载流体系的磁场。

答:

应用安培环路定理只能处理某些具有对称性的磁场分布情况。能否得出

图6-1

结果的关键技巧在于能否找出一个合适的闭合环路,得出B的环流。如果找不到这样的闭合环路,就不能够用安培环路定理来获得磁感应强度。

6-5 宇宙射线是高速带电的粒子流(基本上是质子),它们交叉来往于星际空间并从各个方向撞击着地球,为什么宇宙射线穿入地球磁场时接近两极比其它任何地方都容易?

答:较之地球表面的其他地方,地球两极附近的地磁场最弱。同时,粒子进入两极的方向与地磁场磁感应强度的方向平行,因而基本不受到磁场力的约束。因此宇宙射线穿入地球磁场时接近两极比其它任何地方都容易。

6-6 能否利用磁场对带电粒子的作用力来增大粒子的动能?

答:不能。由B

=q磁场对带电粒子的作用力与粒子运动的方向垂直,

f?

v

磁场力对带电粒子所做的功为零,粒子的动能也不会因此而增大。

6-7 飞机在天空水平向西飞行,哪边机翼上的电子较多?

答:飞机处于地磁场中,机翼上的电子水平向西运动,在由南向北的地磁场的作用下,电子沿垂直于水平面向上的方向偏移。因此,飞机下部的机翼上的电子较多。

6-8 若释放磁铁附近的小铁片,它会向磁铁运动,其动能从何而来?

答:磁铁附近存在磁场,磁场储存着磁场能。小铁片向着磁铁运动的动能是由磁场能转化而来。

6-9 磁感应强度B和磁场强度H有何区别?

答:磁感应强度B是描述磁场本身性质(强度和方向)的物理量。磁场强度H是在磁介质中出现束缚电流时,为描述的方便引入的一个辅助物理量,通过它可以得到磁感应强度。

6-10 顺磁质和铁磁质的磁导率明显地依赖于温度,而抗磁质的磁导率则几乎与温度无关,为什么?

答:顺磁质中分子处于热运动中,各分子磁距的取向是无规则的,随着温度的变化,分子运动的剧烈程度也发生变化。铁磁质的各个磁畴的排列方向是无序的,在不同的温度下,磁畴排列的混乱程度也不同。抗磁质的磁导率与电子轨道平面的进动有关,而温度是很难影响电子轨道平面的进动的。

练习题

6-1 长为L 的一根导线通有电流I ,在下列情况下求中心点的磁感应强度:(1)将导线弯成边长为L /4的正方形线圈;(2)将导线弯成周长为L 的圆线圈,比较哪一种情况下磁场更强。 解:在图6-2(a)中,由于正方形线圈电流沿顺时针方向,线圈的四边在中心处产生的磁场大小相等,方向都是垂直纸面向里。所以,正方形中心点的磁感应强度为四边直导线产生得磁感应强度的叠加。由教材例题6-1可知,其大小应为

0214(sin sin )4I

B r μββπ=-

将/8r L =,1/4βπ=-,2/4βπ=代入上式得

(

)0004

2sin 4 3.604I I I

B r L L

μμπππ=== 在图6-2(b)中,通电线圈中心处产生的磁场方向也是垂直纸面向里,大小由

教材例题6-2可知为

0'2I B R

μ=

其中,/2R L π=。则

00' 3.14I I B L L

μμπ==

比较得'B B >。

6-2 如图6-3所示,有两根导线沿半径方向接到铁环的a 、b 两点,并与很远处的电源相接。求环心O 处的磁场。

解:根据叠加原理,点O 的磁感应强度应为三段载流直导线以及起始点为ab 的

两段载流圆弧(包括优弧和劣弧)共同激发。

由于电源距离铁环较远,则电源所在的直线

电流对O 处的磁场贡献为零,而另两段通

电直线的延长线都通过点O ,在O 处激发的磁感应强度也为0。由于流过两个圆弧的电流分别为I 1和I 2,方向如图6-2所示,两个载流圆弧在O 点激发的磁场由毕奥-萨伐尔定律容易求出分别为

图6-3 (a) (b)

图6-2

011124I l B r μπ=

;022

2

2

4I l B r μπ= 其中,1l 和2l 分别是优弧和劣弧的弧长。

设弧长1l 的电阻为R 1,弧长2l 的电阻为R 2。由于两圆弧构成并联电路,两端电压相等,则应有

2211I R I R =

由电阻公式可知,导线电阻R 与弧长l 成正比,故由上式可得

1122

I l I l = 于是, O 点的合磁感强度为

011022

1222

044I l I l B B B r r

μμππ=-=

-=

6-3 高压输电线在地面上空25 m 处,通过的电流为1.8×103A ,问:(1) 在

地面上由该电流所产生的磁感应强度多大?(2)在上述地区,地磁场为0.6×10-4

T ,输电线产生的磁场与地磁场差多少? 解:(1)将高压输电线视为无限长,则高压电线上的电流在地面产生的磁感应强度为

73

50410 1.810 1.4410(T)2225

I B r μπππ--???===??

(2)在上述地区地磁场与输电线产生的磁场差为

55610(T)B B B .-=???-5-5地线-=610-1.4410=4

6-4 一个宽为a 的无限长导体薄板上通有电流I ,设电流在板上均匀分布。求薄板平面外距板的一边为a 处的磁感应强度。

解:将载流导体板视为由无数条长直载流导线组成,则导体板上

的电流产生的磁场就是这些无数

条长直载流导线产生的磁场的叠加。

取如图6-4所示的坐标系,在坐标x 处取宽为d x 的区域,该区域可视为无限长直载流导线,该区域的电流为

x a I I d d =

由无限长载流直导线的磁场规律可 知,该区域的电流在距板一边为a 的O 点处产生的磁场大小为

00d d d 22I I x B x ax

μμππ==

图6-4

其方向垂直纸面向里。于是,整个导体薄板在O 产生的总磁场为

20

0d d ln222a a I x I B B ax a

μμππ===??

6-5 在一个半径R = 1.0 cm 的无限长半圆柱形金属薄片中,自上而下地有I = 5.0 A 的电流通过,试求圆柱轴线上任一点的磁感应强度。

解:半圆柱形面电流分布可视为由无穷多个宽度为d l 的长直细线电流组成。某一个长直细线中的电流d d /I I l R π=,它在轴线上一点激发的磁感应强度的大小为

0d d 2B I R

μ

π=

其方向在平面Oxy 内,如图6-5所示。

由对称性可知,半圆柱面上各细线电流在轴线上产生的磁感强度叠加后,y 轴向分量为零,即

d cos 0y B B θ==?

x 轴向分量为

0020

d sin sin d 2x I

I B B R R R R ππ

μμθθ

θπππ===??

则轴线上总的磁感应强度的大小为

02x I

B B R

μπ==

B 的方向指向Ox 轴负向。

(a) (b) 图6-5 O O ’

6-6 从经典观点来看,氢原子可看作是一个电子绕核高速旋转的体系。已知电子以速度2.2×106 m/s 在半径r = 0.53×10-10 m 的圆轨道上运动,求电子在轨道中心所产生的磁感应强度和电子磁矩的大小。

解:对于一个具有速度v 、在半径为r 的轨道上作圆周运动的电子来说,其轨道磁距p m 大小为

22m e

p I r r T

ππ==

其中,e 为电子电量,T 为电子环绕一周所需要的时间(即周期)。由于2/T r v π=,将其代入上式得

2

m evr p =

带入数据可算出在氢原子内作圆周运动的电子磁距的大小为

2320.9310A m m p -=??

利用教材例题6-2的结果,运动电子在轨道中心产生的磁场为

0002

224I

ev

e

B r

r T r μμμπ=

=

?

=

代入数据得

719

602102410 1.610 2.210

12.5(T )

44(0.5310)

ev B r μπππ---????===?

6-7 安培秤是一种测量磁场的装置,其结构如图6-6所示。在天平的右臂挂有一个矩形的线圈,线圈共n 匝,线圈的下端处于待测磁场之中。假设磁场为匀强磁场,磁感应强度与线圈平面垂直。当线圈中通有如图所示的电流I 时,调节两个秤盘上的砝码使天平平衡,然后使电流反向,这时需在天平左盘上再加一个质量为m 的砝码才能使天平重新平衡。证明,线圈中所在的磁场为

nlI

mg B 2=

证:安培秤第一次平衡时,设左右两边秤盘上的砝码质量和右臂下端悬挂的矩形线圈质量分别为m 1、m 2、m 3。此时,矩形线圈受到竖直向上的磁场力,其大小为f ,则

123m g m g m g f +-=

再加一个质量为m 的砝码使天平重新平衡时,电流反向,矩形线圈受到竖直向下的磁场力,大小仍为f ,此时,按力的平衡条件由

123()m m g m g m g f +++=

联立上述两式,得到磁场力的大小

图6-6

2

由于载流导线在磁场中所受的安培力为

f nBIl =

将此式代入上式可解得线圈所在处磁场的磁感应强度大小为

2mg B nIl

=

6-8 如图6-7所示,在一根载有电流I 1 = 30 A 的无限长直导线产生的磁场中,一个矩形回路(l = 12 cm ,b = 8 cm)与I 1共面,回路中通有I 2 = 20 A 的电流,矩形回路的一边与I 1的距离d = 1.0 cm 。试求I 1产生的磁场作用在矩形回路上的合力。

解:矩形上、下两段导线所受安培力的大小相等,方向相反,两力的矢量和为零。对于矩形回路的左右两段导线,由于载流导线所在处的磁感应强度不相等,所受的安培力F 1和F 2的大小也不相

等,并且方向相反。因此,矩形回路所受的合力为这两个力

的合成。

由毕奥-萨伐尔定律和安培定律易知,矩形回路左右两边所受的安培力大小分别为

010*******I I I l

F B I l d d

μμππ=== 01

01222222()

2()

I I I l

F B I l I l d b d b μμππ==

=

++

合力大小为

0120121222()

I I l I I l

F F F d d b μμππ=-=

-+ 于是

0127311241030200.121

12 3.14

0.010.010.081.2810(N)

I I l F d d b μππ--??=- ?

+??

??????

=

-

??+??

=? 合力方向朝左。

6-9 如图6-8所示,载流导线段ab 与长直电流I 1共面,ab 段长为l ,通有电流I 2,方向与I 1垂直。a 端与I 1的距离为d 。求导线ab 所受磁场的作用力。

解:在图6-8中,由毕奥-萨伐尔定律易知,距离长直导线x 处的磁感应强度的大小为

I 2

图6-7

图6-8

2x

π方向垂直纸面向里。

根据安培定律,ab 段导线中线元d x 受到的磁场力的大小为

2d d F BI x =

则ab 段导线受到的磁场力的大小为

磁场力的方向向上。

6-10 在一个汽泡室内,磁场为20T 。一个高能质子垂直于磁场飞过时留下的圆弧轨迹的半径为3.5 m ,求该质子的动量和动能。

解:汽泡室内运动着的高能质子受到洛仑兹力的作用,其大小为

f qvB =

洛仑兹力提供了质子圆周运动的向心力,于是

2mv f r

=

由上述两式可得质子动量的大小为

1917

-1

20 1.61035 1.1210

k g m s

p m v B q r -===???=???-.() 动量的方向沿质子运动的速度方向。

质子的动能为

21728

27

(1.1210) 3.810()22 1.6710

k p E J m ---?===???

6-11 一个2cm 宽、0.1cm 厚的金属片,载有20A

的电流,处于磁感应强度为2.0T 的均匀磁场中,

如图6-9所示。测得霍尔电势差为4.27μV 。(1)

计算金属片中电子的漂移速度;(2)求电子的浓度;

(3)a 和b 哪点电势较高?(4) 如果用p 型半

导体代替该金属片,a 和b 哪点电势较高?

解:(1)在磁场力的作用下,电子的运动将向

b 点所在的侧面发生偏离,从而产生横向电场E H 。

当电子所受的电场力与其所受的磁场力平衡时,电

子的横向运动将停止,横向电场E H 保持不变,此时有

H E e Bev =

图6-9 012

012d ln 22d l d

I I I I d l F x x d

μμππ++==?

H E vB =

由于霍尔电压H H U E h =,所以金属片中电子的漂移速度为

64H 4.2710 1.0710(m /s)2.00.02

U v Bh --?===??

(2)电子恢复原来水平的漂移运动后,电流又重新恢复为恒定的电流,流经导体横截面()S S bh =的电流为

I jbh nevbh ==

其中,v 为载流子的漂移速度,n 为载流子浓度,即单位体积内载流子的数目。将电子漂移速度的表达式代入上式,可得金属片中电子的浓度为

283

1936

H 20 2.0 5.8510(m )1.610110 4.2710

IB n ebU ----?=

==?????? (3)金属片中载流子为自由电子,电子向b 点所在的侧面聚集,从而形成霍尔电压,a 点的电势高。

(4)对于p 型半导体材料,载流子为空穴,因而b 点的电势高。

6-12 用绝缘导线紧密排列绕成直径为1cm 的螺线管,共有100匝线圈。(1)当导线中通有2A 的电流时,求螺线管的磁矩;(2)将螺线管放在磁感应强度为4T 的均匀磁场中,求螺线管能受到的最大力矩。

解:(1)按定义,载流线圈的磁偶极距为

IS =m n p e

对于用100匝线圈紧密排列的螺线管,当导线中通有2A 的电流时,其磁矩的大小为

2221002(0.01/2) 1.5710(A m )m p nIS π-==??=??

方向沿线圈的法线方向。

(2)载流线圈在磁场中所受的力矩为

?m M =p B

当外加磁场的方向与载流线圈的法线方向垂直时,螺线管受到的力矩最大,其值为

max m M p B nISB ==

带入数据得

()2

2max 1002 3.140.01/24 6.2810(N m)M nISB -==????=??

6-13 螺绕环(见图6-10)中心周长 l = 10 cm ,环上线圈匝数N = 200,线圈中通有电流I = 100 mA 。求:(1)管内的磁场强度H 和磁感应强度0B ;(2)若

管内充满相对磁导率r μ= 4200的磁介质,则管内的H 和B 是多少?

解:(1)根据电流分布的对称性可知螺绕环共轴的圆周上各点的H 大小相等,方向沿圆周的切线方向。由磁介质中的安培环路定理

0d i

l

i

I

=∑?H l

可得

Hl NI =

于是,管内的磁场强度H 的大小为

-12000.1200(A m )0.1

NI H l ?===? 磁场强度的方向沿圆周的切线方向。

由磁场强度和磁感应强度的关系可知管内的磁感强度大小为

7400410200 2.5110(T)B H μπ--==??=?

(2)当管内充满相对磁导率r μ= 4200的磁介质时,管内的磁场强度不变,仍 为-1200(A m )H =?。但磁感应强度发生了变化,其大小为

00 1.06(T)r r B H H B μμμμ====

图6-10

大学物理教程 (上)课后习题 答案

物理部分课后习题答案(标有红色记号的为老师让看的题) 27页 1-2 1-4 1-12 1-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位, 求: (1) 质点的运动轨迹; (2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。 解:(1)由运动方程消去时间t 可得轨迹方程,将t = 代入,有 2 1) y =- 或 1= (2)将1t s =和2t s =代入,有 11r i = , 241r i j =+ 213r r r i j =-=- 位移的大小 r = = (3) 2x dx v t dt = = 2(1)y dy v t dt = =- 22(1)v ti t j =+- 2 x x dv a dt = =, 2y y dv a dt = = 22a i j =+ 当2t s =时,速度和加速度分别为 42/v i j m s =+ 22a i j =+ m/s 2 1-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+ ,式中的R 、ω均为常 量。求(1)质点的速度;(2)速率的变化率。

解 (1)质点的速度为 sin cos d r v R ti R t j dt ωωωω==-+ (2)质点的速率为 v R ω = = 速率的变化率为 0dv dt = 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。 解 由于 4d t d t θω= = 质点在t 时刻的法向加速度n a 的大小为 2 2 16n a R R t ω == 角加速度β的大小为 2 4/d ra d s d t ωβ== 77 页2-15, 2-30, 2-34, 2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用 下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。 解 由冲量的定义,有 2.0 2.0 2.02 (63)(33) 18I Fdt t dt t t N s = =+=+=? ? 2-21 飞机着陆后在跑道上滑行,若撤除牵引力后,飞机受到与速度成正比的阻力 (空气阻力和摩擦力)f kv =-(k 为常数)作用。设撤除牵引力时为0t =,初速度为0v ,求(1)滑行中速度v 与时间t 的关系;(2)0到t 时间内飞机所滑行的路程;(3)飞机停止前所滑行的路程。 解 (1)飞机在运动过程中只受到阻力作用,根据牛顿第二定律,有 dv f m kv dt ==- 即 d v k dt v m =- 两边积分,速度v 与时间t 的关系为 2-31 一质量为m 的人造地球卫星沿一圆形轨道运动,离开地面的高度等于地球

大学基础物理学答案(习岗)第4章

第四章 静电场 本章提要 1. 库仑定律 两个静止的点电荷之间的作用力满足库仑定律,库仑定律的数学表达式为 1212 002204q q q q k r r πε==F r r 其中 922910(N m /C )k =?? 122-1 -2 018.8510(C N m ) 4k επ -= =?? ? 2. 电场强度 ? 电场强度表示单位正电荷在静电场中所受的电场力。其定义式为 q = F E 其中,0q 为静止电荷。 ? 在点电荷q 的电场中,电场强度为 02 04q r πε= E r 3. 电场强度的计算 ? 点电荷系的电场 N 2101 4i i i i q r πε== ∑r 0E ? 电荷连续分布的带电体系的电场 2 01d 4q q r πε=?r E 0 其中的积分遍及q 电荷分布的空间。 4. 高斯定理

? 电通量 电场强度通量简称电通量。在电场强度为E 的某点附近取一个面元,规定S ?=?S n ,θ为E 与n 之间的夹角,通过S ?的电通量定义为 e cos E S θ?ψ=?=?E S 通过电场中某闭合曲面S 的电通量为 d e s ψ=??E S ? 高斯定理 在真空中,通过电场中任意封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε。即 i 0 1 d s q = ∑?? E S 内 ε 使用高斯定理可以方便地计算具有对称性的电场分布。 5. 电势 ? 电势能 电荷q 0在电场中某点a 所具有的电势能等于将q 0从该点移到无穷远处时电场力所作的功。即 0 d a a a W A q ∞ ∞==?E l ? 电势 电势是描述电场能的属性的物理量。电场中某点a 的电势定义为 0 d a a a U W q ∞ ==?E l ? 电势的计算 (1) 已知电场强度的分布,可通过电势的定义做场强的积分来计算电 势。 (2)若不知道电场强度的分布,可通过下述的求和或积分来计算电势: 点电荷系产生的电场中的电势为 N 104i a i i q U r πε==∑ 电荷连续分布的带电体系电场中的电势为 0d 4a q q U r πε=? 6. 静电场的环路定理 静电场的电场强度沿任意闭合路径的线积分为零,即 d l E l ?=?0 7. 静电场对导体的作用

大学物理第六章-恒定磁场习题解劝答

第6章 恒定磁场 1. 空间某点的磁感应强度B 的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C ) (A )小磁针北(N )极在该点的指向; (B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向; (D )载流线圈稳定平衡时,磁矩在该点的指向。 2. 下列关于磁感应线的描述,哪个是正确的? ( D ) (A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。 3. 磁场的高斯定理 0S d B 说明了下面的哪些叙述是正确的? ( A ) a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数; b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数; c 一根磁感应线可以终止在闭合曲面内; d 一根磁感应线可以完全处于闭合曲面内。 (A )ad ; (B )ac ; (C )cd ; (D )ab 。 4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量 和面上各点的磁感应强度B 将如何变化? ( D ) (A ) 增大,B 也增大; (B ) 不变,B 也不变; (C ) 增大,B 不变; (D ) 不变,B 增大。 5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C ) (A )0; (B )R I 2/0 ; (C )R I 2/20 ; (D )R I /0 。 6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A ) A 、等于零 B 、不一定等于零 C 、为μ0I D 、为 i n i q 1 1 7、一带电粒子垂直射入磁场B 后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B ) A 、 B /2 B 、2B C 、B D 、–B 8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。若匀强磁场磁感应强度大小为B ,导线质量为m , I

大学物理简明教程(吕金钟)第四章习题答案

第四章电磁学基础 静电学部分 4.2解:平衡状态下受力分析 +q受到的力为: 处于平衡状态: (1) 同理,4q 受到的力为: (2) 通过(1)和(2)联立,可得:, 4.3解:根据点电荷的电场公式: 点电荷到场点的距离为: 两个正电荷在P点产生的电场强度关于中垂线对称: 所以: 当与点电荷电场分布相似,在很远处,两个正电荷q组成的电荷系的电场分布,与带电量为2q的点电荷的电场分布一样。 4.4解:取一线元,在圆心处 产生场强: 分解,垂直x方向的分量抵消,沿x方向 的分量叠加: 方向:沿x正方向 4.5解:(1 (2)两电荷异号,电场强度为零的点在外侧。 4.7解:线密度为λ,分析半圆部分: 点电荷电场公式: + +

在本题中: 电场分布关于x 轴对称:, 进行积分处理,上限为,下限为: 方向沿x轴向右,正方向 分析两个半无限长: ,,, 两个半无限长,关于x轴对称,在y方向的分量为0,在x方向的分量: 在本题中,r为场点O到半无限长线的垂直距离。电场强度的方向沿x轴负方向,向左。那么大O点的电场强度为: 4.8解:E的方向与半球面的轴平行,那么 通过以R为半径圆周边线的任意曲面的 电通量相等。所以 通过S1和S2的电通量等效于通过以R为半 径圆面的电通量,即: 4.9解:均匀带电球面的场强分布: 球面 R 1 、R2的场强分布为: 根据叠加原理,整个空间分为三部分: 根据高斯定理,取高斯面求场强: 图4-94 习题4.8用图 S1 S2 R O

场强分布: 方向:沿径向向外 4.10解:(1)、这是个球对称的问题 当时,高斯面对包围电荷为Q 当,高斯面内包围电荷为q 方向沿径向 (2)、证明:设电荷体密度为 这是一个电荷非足够对称分布的带电体,不能直接用高斯定理求解。但可以把这一带电体看成半径为R、电荷体密度为ρ的均匀带电球体和半径为R`、电荷体密度为-ρ的均匀带电体球相叠加,相当于在原空腔同时补上电荷体密度为ρ和-ρ的球体。由电场 叠加原理,空腔内任一点P的电场强度为: 在电荷体密度为ρ球体内部某点电场为: 在电荷体密度为-ρ球体内部某点电场为: 所以 4.11解:利用高斯定理,把空间分成三部分

2017年秋季西南大学《大学物理基础》答案

单项选择题 1、 波长λ=5000?的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测的屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距f为 1.2m 2. 1m 3.0.5m 4.0.2m 2、 根据惠更斯—菲涅耳原理,若已知光在某时刻的阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的 1.振动振幅之和 2.光强之和 3.振动振幅之和的平方 4.振动的相干叠加 3、

在玻璃(折射率n3 =1.60)表面镀一层MgF2 (折射率n2=1.38)薄膜作为增透膜,为了使波长为5000?的光从空气(n1=1.00)正入射时尽可能少反射,MgF2薄膜的最少厚度应是() 1.1250? 2.1810? 3.2500? 4.906? 4、 在双缝干涉实验中,入涉光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处() 1.仍为明条纹 2.变为暗条纹 3.既非明纹也非暗纹 4.无法确定是明纹,还是暗纹 5、 以下不是几何光学的基本实验定律的是() 1.光在均匀介质中的直线传播定律 2.光通过两种介质分界面的反射定律和折射定律 3.发射的光的强弱满足基尔霍夫定律

4.光的独立传播定律 6、 对于温度,有以下几种说法 ①温度的高低反映了物质内部分子运动剧烈程度的不同 ②气体的温度是分子平均平动动能的量度 ③气体的温度是大量气体分子热运动的集体表现,具有统计意义 ④从微观上看,气体的温度表示每个气体分子的冷热程度 上述说法正确的是 1.①、②、④ 2.①、②、③ 3.②、③、④ 4.①、③、④ 7、 有两个容器,一个盛氢气,另一个盛氧气。如果这两种气体分子的方 均根速率相等,则表明()Array 1.氧气的温度比氢气高 2.氢气的温度比氧气高 3.两种气体的温度相同 4.两种气体的压强相同 8、

关于大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 故 q q 3 3 - =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=, dq 在带电圆环轴线上x 处产生的场强大小为 ) (42 20R x dq dE += πε 根据电荷分布的对称性知,0==z y E E z

式中:θ为dq 到场点的连线与x 轴负向的夹角。 下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为 方向沿x 轴正方向。 直线段受到的电场力大小为 方向沿x 轴正方向。 4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。求: (1)圆心处O 点的场强; (2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。 解:(1)在半圆环上取?λλRd l dq ==d ,它在O 点产生场强大小为 20π4R dq dE ε= ?ελ d R 0π4= ,方向沿半径向 外 根据电荷分布的对称性知,0=y E 故 R E E x 0π2ελ = =,方向沿x 轴正向。 (2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。 5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。 解:建立图示坐标系。在均匀带电细直杆上取dx L q dx dq ==λ,dq 在P 点产生的场强大小为 2 02044x dx x dq dE πελπε== ,方向沿x 轴负方向。

大学物理第六章练习答案

大学物理第六章练 习答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章 热力学基础 练 习 一 一. 选择题 1. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后( A ) (A) 温度不变,熵增加; (B) 温度升高,熵增加; (C) 温度降低,熵增加; (D) 温度不变,熵不变。 2. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作做的功三者均为负值。( C ) (A) 等容降压过程; (B) 等温膨胀过程; (C) 等压压缩过程; (D) 绝热膨胀过程。 3. 一定量的理想气体,分别经历如图 1(1)所示的abc 过程(图中虚线ac 为等温线)和图1(2)所示的def 过程(图中虚线df 为绝热线) 。 判断这两过程是吸热还是放热:( A ) (A) abc 过程吸热,def 过程放热; (B) abc 过程放热,def 过程吸热; (C) abc 过程def 过程都吸热; (D) abc 过程def 过程都放热。 4. 如图2,一定量的理想气体,由平衡状态A 变到平衡状态B(A p =B p ),则无论经过的是什么过程,系统必然( B ) (A) 对外做正功; (B) 内能增加; (C) 从外界吸热; (D) 向外界放热。 二.填空题 图.2 图1

1. 一定量的理想气体处于热动平衡状态时,此热力学系统不随时间变化的三个宏观量是P V T ,而随时间变化的微观量是每个分子的状态量。 2. 一定量的单原子分子理想气体在等温过程中,外界对它做功为200J ,则该过程中需吸热__-200__ ___J 。 3. 一定量的某种理想气体在某个热力学过程中,外界对系统做功240J ,气体向外界放热620J ,则气体的内能 减少,(填增加或减少),21E E -= -380 J 。 4. 处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸热416 J ,若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸热582 J ,所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所做的功为 582-416=166J 。 三.计算题 1. 一定量氢气在保持压强为4.00×510Pa 不变的情况下,温度由0 ℃ 升高到50.0℃时,吸收了6.0×104 J 的热量。 (1) 求氢气的摩尔数 (2) 氢气内能变化多少 (3) 氢气对外做了多少功 (4) 如果这氢气的体积保持不变而温度发生同样变化、它该吸收多少热量 解: (1)由,2 2 p m i Q vC T v R T +=?=? 得 4 22 6.01041.3(2)(52)8.3150 Q v mol i R T ??= ==+?+?? (2)4,5 41.38.3150 4.291022 V m i E vC T v R T J ?=?=??=???=? (3)44(6.0 4.29)10 1.7110A Q E J =-?=-?=? (4)44.2910Q E J =?=?

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学基础物理学课后习题答案_含思考题(1)

大学基础物理课后答案 主编:习岗高等教育出版社

第一章 思考题: <1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。对上液面应用拉普拉斯公式,得 A A R p p γ20= - 对下液面使用拉普拉斯公式,得 B B 02R p p γ= - 又因为 gh p p ρ+=A B 将三式联立求解可得 ??? ? ??-= B A 112R R g h ργ <1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。 <1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。 <1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。 练习题: <1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。 练习题1-6用图 d h d F

大学物理课程教学基本要求

大学物理课程教学基本 要求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它 的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他 自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世 界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社 会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。 一、课程的地位、作用和任务 以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门 重要的通识性必修基础课。该课程所教授的基本概念、基本理论和基本方法是 构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备 的。 大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的 世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意 识等方面,具有其他课程不能替代的重要作用。 通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基 本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。在大 学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和 解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知 识、能力、素质的协调发展。 二、教学内容基本要求(详见附表)

大学物理课程的教学内容分为A、B两类。其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。 1.力学 (A:7条,建议学时数14学时;B:5条) 2.振动和波 (A:9条,建议学时数14学时;B:4条) 3.热学 (A:10条,建议学时数14学时;B:4条) 4.电磁学 (A:20条,建议学时数40学时;B:8条) 5.光学 (A:14条,建议学时数18学时;B:9条) 6.狭义相对论力学基础 (A:4条,建议学时数6学时;B:3条) 7.量子物理基础 (A:10条,建议学时数20学时;B:4条) 8.分子与固体 (B:5条) 9.核物理与粒子物理 (B:6条)

大学物理课后习题答案第六章

x 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取 dq 1 dl , dq 在带 电圆环轴线上x 处产生的场强大小为 dE dq 4 (x R ) 根据电荷分布的对称性知, E y E z 0 dE x dE cos 1 xdq 4 (x 2 R 2)'2 第6章 真空中的静电场 习题及答案 1.电荷为 q 和 2q 的两个点电荷分别置于 x 1m 和x 1m 处。一试验电荷置于 x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 0位 于点电荷 q 的右侧,它受到的合力才可能为 0,所以 2qq o qq o 2 2 4 n o (x 1) 4 n o (x 1) 故 x 3 2 2 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问: (1)在这三角形的 中心放一个什么样的电荷,就可以使这四个电荷都达到平衡 (即每个电荷受其他三个电荷的 库仑力之和都为零)?(2这种平衡与三角形的边长有无关系 ? 解:(1)以A 处点电荷为研究对象,由力平衡知, q 为负电荷,所以 (2)与三角形边长无关。 3. 如图所示,半径为 R 、电荷线密度为 1的一个均 匀带电圆环,在其轴线上放一长为 I 、电荷线密度为 2的均匀带电直线段, 该线段的一端处于圆环中心处。 求该直线段受到的 电场力。 2 % cos30 a 1 qq a)2 4 n

E x sin d 4n 0R 2n 0R 式中: 为dq 到场点的连线与x 轴负向的夹角。 ---------------------------------- 3 dq 4 o (x 2 R 2) 2 x 1 2 R 1R x 4 0 (x 2 R 2)' 2 2 0 (x 2 R 2)'2 下面求直线段受到的电场力。在直线段上取 dq 2dx , dq 受到的电场力大小为 dF E x dq 1 2 只 ------- x ———dx 2 0 (x 2 R 2),2 方向沿x 轴正方向。 直线段受到的电场力大小为 F dF 1 2 R 1 R 2)严 2 0 2 (x 1 2 R 1 1 2 0 R 2 2 l 2 R 2 1/2 方向沿x 轴正方向。 4. 一个半径为R 的均匀带电半圆环,电荷线密度为 。求: (1) 圆心处0点的场强; (2) 将此带电 解:(1)在半圆环上取dq dl Rd ,它在0点产生场强大小为 dE dq 4 n 0 R 2 ,方向沿半径向外 根据电荷分布的对称性知, E y 0 dE x dEsin sin d 4 n 0R

大学物理课后习题答案第六章

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3 2 2 0) (41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

式中:θ为dq 到场点的连线与x 轴负向的夹角。 ?+= 2 32 2 0) (4dq R x x E x πε 2 32210)(24R x R x +?= πλπε2 32201)(2R x x R += ελ 下面求直线段受到的电场力。在直线段上取dx dq 2λ=,dq 受到的电场力大小为 dq E dF x =dx R x x R 2 3 22021)(2+= ελλ 方向沿x 轴正方向。 直线段受到的电场力大小为 ?=dF F dx R x x R l ?+= 02 3220 21)(ελλ2 ()?? ????+- = 2/1220211 1R l R R ελλ2 方向沿x 轴正方向。 4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。求: (1)圆心处O 点的场强; (2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。 解:(1)在半圆环上取?λλRd l dq ==d ,它在O 点产生场强大小为 20π4R dq dE ε= ?ελ d R 0π4= ,方向沿半径向外 根据电荷分布的对称性知,0=y E ??ελ ?d R dE dE x sin π4sin 0= = R d R E x 000 π2sin π4ελ ??ελπ ==? 故 R E E x 0π2ελ = =,方向沿x 轴正向。 (2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。

大学物理答案第6章

大学物理答案第6章 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第六章 气体动理论 6-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 6-2 一容器内储有氧气,其压强为1.01105 Pa ,温度为27℃,求:(l ) 气体分子的数密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 6-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。

大学基础物理学答案(习岗)第6章

第六章 稳恒磁场 本章提要 1. 磁感应强度 描述磁场力的属性的物理量是磁感应强度,常用B 来表示。其定义式为 qv F B max = 在SI 制中,B 的单位为特斯拉(T )。B 另一个单位为高斯(G),两者的换算关系为 1T=104G 2. 毕奥—萨伐尔定律 (1) 毕奥—萨伐尔定律 ? 毕奥—萨伐尔定律的微分形式 电流元I d l 在真空中任一点P 所产生的磁感应强度d B 的大小与电流元的大小成正比,与电流元I d l 和r 的夹角的正弦成正比,与电流元到P 点的距离的平方 成反比。d B 的方向垂直于I d l 和r 所组成的平面,指向与矢积I d l ×0r 的方向相同,即 00 2d d 4I r l r B m p ′= 其中, 7-20410N A m p -=醋,称真空磁导率。 ? 毕奥—萨伐尔定律的积分形式 00 2 d d 4l l I r μπ?==?? l r B B (2)几种典型的磁场分布 ? 无限长直电流的磁场分布 02I B r m p = ? 载流长直螺线管内的磁场分布 0B nI m = ? 运动电荷的磁场分布 00 2 4q r v r B m p ′= 3. 磁高斯定理

? 磁通量 穿过磁场中某一面积S 的磁通量定义为 d B S m s Φ= 蝌 ? 磁高斯定理 通过空间中任意封闭曲面的磁通量必为零,即 d 0S B S =蝌 g ò 4. 安培环路定理 在真空中的稳恒磁场内,磁感应强度B 的环流等于穿过积分回路的所有传导电流强度代数和的0μ倍,即 0in d L I B r m ??ò ? 5. 安培力与洛仑兹力 (1)安培力 载流导线在磁场中受到的宏观力称安培力。安培力服从安培定律。 ? 安培定律的微分形式 放在磁场中任一点处的电流元d I l 所受到的磁场作用力d F 的大小与电流元d I l 的大小和该点的磁感应强度B 的大小成正比,还与电流元d I l 的方向和B 的方向之间的夹角θ的正弦成正比,d F 的方向为d I ?l B 所确定的方向。即 d d I =?F l B ? 安培定律的积分形式 对于任意载流导线,若将其视为由无数个电流元组成的,则其在磁场中所受的作用力为 d F l B l I =?? (2)洛仑兹力 一个定向运动的电荷在磁场中所受的力即洛仑兹力,其满足的基本规律为 q =?f υB 洛仑兹力的几个重要应用: ? 质谱仪 ? 霍耳效应 6. 磁介质 (1) 磁介质及分类 能在磁场作用下发生变化,并且能够反过来影响磁场的介质称磁介质。一般用磁介质中的磁感应强度B 的大小与真空中的磁感应强度0B 的大小之比来描述磁介质被磁化后对原来外磁场的影响,即

大学基础物理学课后答案 主编习岗 高等教育出版社

第一章 思考题: <1-4> 解:在上液面下取A 点,设该点压强为A p ,在下液面内取B 点,设该点压强为B p 。对上液面应用拉普拉斯公式,得 A A R p p γ20= - 对下液面使用拉普拉斯公式,得 B B 02R p p γ= - 又因为 gh p p ρ+=A B 将三式联立求解可得 ??? ? ??-= B A 112R R g h ργ <1-5> 答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高,土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结,从而使得清晨时土壤表层变得较为湿润。 <1-6> 答:连续性原理是根据质量守恒原理推出的,连续性原理要求流体的流动是定常流动,并且不可压缩。伯努利方程是根据功能原理推出的,它的使用条件是不考虑流体的黏滞性和可压缩性,同时,还要求流动是定常流动。如果流体具有黏滞性,伯努利方程不能使用,需要加以修正。 <1-8> 答:泊肃叶公式适用于圆形管道中的定常流动,并且流体具有黏滞性。斯托克斯公式适用于球形物体在黏滞流体中运动速度不太大的情况。 练习题: <1-6> 解:设以水坝底部作为高度起点,水坝任一点至底部的距离为h 。在h 基础上取微元d h ,与之对应的水坝侧面面积元d S (图中阴影面积)应为坡长d m 与坝长l 的乘积。 练习题1-6用图 d h d F

大学物理答案第6章

第六章 气体动理论 6-1 一容积为10L 的真空系统已被抽成1.0×10-5 mmHg 的真空,初态温度为20℃。为了提高其真空度,将它放在300℃的烘箱内烘烤,使器壁释放出所吸附的气体,如果烘烤后压强为1.0×10-2 mmHg ,问器壁原来吸附了多少个气体分子? 解:由式nkT p =,有 3 2023 52/1068.1573 1038.1760/10013.1100.1m kT p n 个?≈?????==-- 因而器壁原来吸附的气体分子数为 个183201068.110101068.1?=???==?-nV N 6-2 一容器内储有氧气,其压强为1.01?105 Pa ,温度为27℃,求:(l )气体分子的数 密度;(2)氧气的密度;(3)分子的平均平动动能;(4)分子间的平均距离。(设分子间等距排列) 分析:在题中压强和温度的条件下,氧气可视为理想气体。因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解。又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知d n V ,10=即可求出。 解:(l )单位体积分子数 3 25m 1044.2-?==kT p n (2)氧气的密度 3m kg 30.1-?===RT pM V m ρ (3)氧气分子的平均平动动能 J 1021.62321k -?==kT ε (4)氧气分子的平均距离 m 1045.3193-?==n d 6-3 本题图中I 、II 两条曲线是两种不同气体(氢气和氧气)在同一温度下的麦克斯韦分子速率分布曲线。试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2)两种气体所处的温度。 分析:由M RT v /2p =可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率p v 也就不同。因22O H M M <,故氢气比氧气的p v 要大,由此可判定图中曲线II 所标13p s m 100.2-??=v 应是对应于氢气分子的最概然速率。从而可求出该曲线所对应的温度。又因曲线I 、II 所处的温度相同,故曲线I 中氧气的最概然速率也可按上式求得。 解:(1)由分析知氢气分子的最概然速率为

大学物理学教程(第二版)(下册)答案

物理学教程下册答案9-16 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面电荷的代数和必定为零,但不能肯定曲面一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说确的是( )

(A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域为常量,则电场强度在该区域必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大围不会超过±10-21e,而中子电量与零差值的最大围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子

大学物理第六章

班级: 姓名: 学号: ★说明:作业模板必须使用单张A4纸(21x29.7cm)正反面打印、复印或手抄;手写作答;若手抄题目请注意题目排版布局。 评 分 大学物理作业 第6章 静电场 一、计算题 1. 已知电荷线密度为λ、半径为R 的半圆环均匀带电,试求环心处场强E 。 2. 已知地球半径km 6371=R ,地球表面电场强度近似为V/m 200=E ,方向指向地球球心;在距离地面高km 4.1=h 处,电场强度降为V/m 200'=E ,方向仍指向地球球心。试求: (1) 地球携带的总的静电荷电量q ; (2) 试计算距离地面高1.4km 以下大气层里的平均电荷密度ρ。 (212120m N C 1085.8? ? ???×=ε )

Ver 1.1 二、填空题 1. 已知电荷线密度为λ、半径为R 的41圆环均匀带电,则此环心处场强=E 。 2. 一半径为R 带有一缺口的细圆环,缺口的长度为d ,且R d <<,圆环上均匀带正电,总电量为q ,则环心O 处的场强大小=E 。 3. 一个球体均匀带电,体密度为ρ,以r 表示球心指向球内任意一点的位矢,则球体内r 处场强=E ;若在球内部以r 所指的地方为球心挖去一小球形成真空(小球位于大球内),则小球内任意一点的电场强度=E 。 4. 一直细棒长为a ,均匀带有电荷q ,则在细棒所在的直线上,到细棒一端点距离为b 的一点场强大小=E 。 5. 两点电荷相距l 远,其电量分别为q 2和q ?;将第三个点电荷'q 置于前述两点电荷的中点处,则'q 受力大小=F 。(设q q <<') 6. 两同心球面均匀带电,所带电量分别为1q 和2q ,若半径分别为1R 和2R (21R R <),则1R 和2R 之间的r 处的场强大小=E 。 三、单项选择题 1. 真空中有两块平行板,相距为d ,两板面积均为S ,且d S >>,带电分别为Q +和Q ?,则两板之间的作用力为( ) (A) 202π4d Q ε (B) S Q 02ε (C)S Q 022ε (D)d Q 0 2 2ε 2. 若均匀电场的场强为E ,其方向平行于半径为R 的半球 面的轴线,如图所示。则通过此半球面的电通量为( ) (A) E R 2π (B) E R 22π (C) 32π2E R (D) 0 3. 一半径为r 细圆环所带电量为q ,则环心O 处场强大小为( ) (A) 20π4r q ε (B) 202 π4r q ε (C)0 (D)无法判断 4. 高斯定理0d ∑∫=?q S S E 中,场强E 是由( )激发的。 (A) 高斯面内的正电荷; (B) 高斯面内的所有电荷; (C) 高斯面外的所有电荷; (D) 高斯面内、外的所有电荷。

相关主题
文本预览
相关文档 最新文档