当前位置:文档之家› 成矿学

成矿学

成矿学
成矿学

成矿学概念和起源

成矿学起源于大约100年前,在地学领域中已赢得了特定的地位。成矿学来源于法语术语“metallogenie”,Louis de Launay用于综合表示区域或全球矿床及其时空分布规律。该法语单词可写成英语“metallogeny"或"metallogenesis",二者不同。前者集合了实际的合描述性的知识,后者则涉及成因。

我国有区域成矿学、成矿规律学和矿床成因学等不同译法,陈国达则译为成矿学。加拿大人Peter Laznicka将其细分为经验成矿学、矿床成因论和应用成矿学。

成矿学术语提出者Launay L.de(1882)最初认力,它是“研究地壳里面元素分布、组合和分配规律的”。后来,他(1906)强调研究矿床与区域大地构造联系的重要性,并据以提出“大地构造成矿学”一词。1913年,他又进一步阐明“成矿学研究矿床,其目的是寻找矿床的空间分布规律,以及矿床随深度的变化规律”。

美国学者Holmes(1928)则认为:“成矿学是从时代、区域大地构造和岩石学等方面对矿床进行成因研究”。

在30~40年代,前苏联学者认为:“成矿学是从矿床分布规律的观点来思考的金属成矿显示的总和”。其研究对象是“成矿带、成矿省、成矿区、矿区、矿带、矿结,查明含矿区和矿床的时空分布规律,预测新的含矿区”。

1987年,前苏联出版的《地质辞典》把它视作“矿床学的一部分,研究金属矿床在空间和时间上分布的地质规律”。

1980年,美国出版的《地质辞典》中,认为成矿学是“关于矿床生成的学问,着重研究矿床的时空分布规律与区域大地构造特征和区域岩石特征的关系”。

魏洲龄等在研究华北多因复成油气藏时提出:“油气成矿学,是一门以油气地质学、大地构造学、深部地质学为基础,研究油气形成过程,阐明油气时空分布,预测有利油气远景地段的综合性交叉学科”从以上成矿学概念的提出和发展过程可以看出,尽管不同学者有不同理解,但有两点是共同的:一是突出了从大地构造、区域构造等更宏观角度来研究矿床;二是注意强调了研究矿床形成和时空分布规律与大地构造、区域构造的关系。这就比较容易将成矿学同矿床学、矿床成因学等概念区分开来。

陈国达院士是我国成矿学研究的积极倡导者和奠基人。他多次强调了成矿学及其在中国加强研究的必要性(陈国达,1982,1985,1987,等),并对成矿学的定义、研究内容、研究范围和任务等进行了系统的总结和概括。

成矿学的研究范围

成矿学是从大地构造学的角度来研究矿床的形成机理和在地壳中的时空分布规律,即把矿床学这个相对较狭窄的领域与大地构造学结合起来,以探索成矿理论的一门综合性的边缘学科。

成矿学的研究范围包括:①各种金属和非金属矿床产出的大地构造环境、条件和形成机理,特别是它们形成和变化与不同大地构造单元的沉积建造、岩浆建造、变质建造、构造型相、地球化学、地球物理、深部地质作用等方面的关系;②这些矿床在时间上和空间上的分布规律的受大地构造单元类别及其演化阶段的控制;③各种矿床在不同大地构造单元中的产

出特点及其规律。

地洼成矿学的任务

成矿学的任务,总的说来,是主要从地壳演化规律的角度探索各种大地构造单元的成矿专属性、大地构造环境及其物理、化学、生物等条件对矿产形成时的影响或形成后的改造,以及对所成矿产在时间上和空间上分布规律的控制。当代成矿学的进展与发展趋势集中表现以下几个方面:

(1)随着第三构造单元——-地洼区(活化区)概念和地洼学说的提出和建立,成矿学由长期以来地槽和地台两个基本构造单元成矿观点,发展到地槽、地台和地洼三个构造单元或多个构造单元成矿观点。

(2)随着壳体概念和历史一因果论大地构造学理论(陈国达,1988,1991,1992)的提出与建立,入们开始更加注意把历史成矿学与运动(因果)成矿学结合起来,即不仅从地壳演化历史角度(纵向一时间),而且从地壳运动变化角度(横向一空间)来研究矿床形成和分布规律。

(3)随着多因复成矿床概念和递进成矿理论(地洼成矿理论)(陈国达,1979,1982)的提出与建立,成矿学从内生或外生的单一成矿观点发展为多因复式成矿观点,并从大地构造学角度提出了叠加富化、改造富化和再造富化等主要成矿模式和多种成矿类型。

(4)在研究的水平空间上,重点从某一较小范围的区域成矿学转向较大范围乃至全球成矿学,重点放在大型构造、特别是大型区域性断裂对大型矿床、矿群、矿带、成矿省的控制,以及大型矿带分布规律的研究。

(5)在研究的垂直空间上,重点由地壳浅处转到深部以至地慢。因为许多矿床的特点及其分布规律都同地幔有关,成矿物质来源可能在深部。因此,壳一慢或慢一壳成矿观点和深部构造控矿研究更受重视,新技术和新方法在成矿学中得到更加广泛地应用。

(6)在研究的矿种上,在重视金属和元素以及能源矿床成矿学的同时,非金属成矿学逐步得到重视。

成矿学的分科

(1)构造单元成矿学

(2)构造区成矿学

(3)历史成矿学

大规模成矿与重大构造热事件的密切相关性各造山带中的主要成矿期处于全球的主要成矿期中,并具有全球对比意义。全球的主要成矿期有太古宙成矿期(>2500Ma)、古元古代成矿期(2500~1800Ma)、中元古代成矿期(1800~1000Ma)、新元古代成矿期(1000~600Ma)、早古生代成矿期(600~400Ma)、晚古生代及早中生代成矿期(400~200Ma)、晚中生代—新生代成矿期(200Ma以来)。上述各成矿期的矿化强度不同,其中四大成矿高峰期[1]分别为:中元古代成矿期2000~1800Ma、晚元古代成矿期1000~800Ma、晚古生代成矿期400~300Ma和晚中生代—新生代成矿期200Ma-。成矿高峰期对应古大陆会聚末期至裂解初期[2],与重大构造热事件密切相关。秦岭造山带的主要成矿期均位于全球成矿期中,大规模成矿发生于新元古代、晚古生代、晚中生代—新生代;喜马拉雅造山带、环太平洋造山带中的大规模成矿主

要发生在中生代—新生代。造山带中的大规模成矿作用、成矿突发性与重大构造热事件密切相关,需要结合地球演化的节律性、大陆动力学和成矿年代学进行研究。

(4)区域成矿学

成矿的分带性与不均匀性造山带中的矿床存在全球、区域、矿田、矿床范围的多级分带。造山带中区域成矿分带较为复杂,对于一个经历了大陆裂谷、洋壳发育、洋壳俯冲消减、陆陆碰撞的威尔逊旋回发展过程的造山带,可以发育裂谷、洋脊、岛弧、弧后盆地及陆内构造环境下形成的不同类型矿床的共存与分带。但是,由于构造的叠置、剥蚀以及非威尔逊旋回和构造演化的多旋回性等,使部分矿床发育、部分矿床缺失,有的矿床则重复出现,致使造山带成矿分带呈现出多样性和不均匀性。

(5)全球成矿学

(6)元素成矿学

(7)矿床成矿学

(8)比较成矿学

(9)普通或理论成矿学

成矿学研究的主要内容及研究方法

成矿学研究应着重从其成矿大地构造背景、控矿条件、成矿要素、矿床组合及其演化入手,揭示区域成矿的特色及矿床的时空分布规律,为区域矿产勘查与评价提供科学依据。

2.1 大地构造类型及其演化和运动特征

运用构造解析方法,对成矿载体,即构造单元、构造区及其演化的研究十分必要。大地构造的研究主要从其地层建造、岩浆建造、变质建造、构造型相等四个方面进行。除此之外,还可以从古地理、新构造、地貌、矿产、地球物理、构造地球化学特征、深部地壳构造与成矿动力学环境等方面进行辅助研究。大地构造研究中应坚持时空四维相结合、演化与运动并重。

2.2 主要矿床类型、成矿系列与成矿模式

在成矿学研究中,首先要对主要的、有代表性的典型矿床进行深入研究,正确区分和厘定各类矿床,查明其地质特征、成矿条件与成因,建立矿床的成矿模式。进一步研究各类矿床间的共生、组合规律,建立成矿系列和成矿模式,通过类比、求异确定主要的找矿对象(巳知的矿床类型)和发现新的矿床及新的矿床类型。

2.3 成矿环境与控矿要素

在成矿环境研究中,既要重视区域成矿的控制因素、构造-建造分析,也要重视全球及深部背景的研究。

1系统研究区域成矿的控制因素,如构造、沉积、流体、火山、生物等作用与成矿的关系。着重查明成矿带、矿化富集区产出的构造类型和含矿建造类型及其与成矿的关系。含矿建造分析是基础,不同类型的矿床产于不同的沉积、变质及岩浆岩建造中,如含铜和多金属的细碧角斑岩建造、含金的花岗绿岩建造和浊积岩建造、含铅锌等的热水沉积岩建造、含铜钼

的斑岩建造等。大型构造,如裂谷、洋盆、岛弧、沉积盆地、推覆构造、韧性剪切带、大型走滑断层、花岗岩穹窿与褶皱带等,它们总体上控制着含矿建造的产出和矿化带、矿集区的产出,分析构造—建造组合及其体系结构有利于查明不同类型矿床的形成和分布规律。

2在区域成矿环境研究方面,还应重视对不同历史时期区域岩石圈组成、结构与成矿关系的研究,揭示大规模成矿的深部控制要素,大区域岩石圈减薄作用,将导致岩石圈热状态、热结构的强烈变化,软流圈物质、能量的上涌,引起构造—岩浆—成矿事件的发生,是成矿大爆发的重要原因。对现代地球物理和岩石学、构造地质学及地球化学的研究表明,地壳和地幔的组成与结构不均一。这种不均一性在板块边界和地体边界尤为明显[21],表现为构造运动强烈,物质和能量交换显著,壳、幔物质循环及成岩成矿作用活跃,因而多是巨型成矿区带的所在地。

2.4 成矿物质、成矿流体与成矿机制

我们通常运用矿物包裹体、同位素地质、微量元素、稀土元素、成矿热力学、成矿模拟实验、计算机模拟等手段来深化对成矿物质、流体来源和成矿作用的认识。

1成矿物质来源的研究,要以矿床地球化学研究为基础,结合构造—地球化学与区域地球化学的研究,着重查明矿源区、矿源岩(层)及矿质供给、输运与聚集成矿。

2地质流体是造山带成矿中十分活跃的要素,流体类型和运动方式复杂,对地质流体与成矿关系的研究是查明成矿机理的关键之一。在分别研究岩浆流体、变质流体、地幔流体、热卤水、有机流体等成矿作用的基础上,将矿区流体与区域流体、流体的形成演化与各类地质作用结合起来进行研究,分析矿源供给、流体输运、矿石堆积和矿床定位的动力学过程,总结区域构造—流体—成矿系统的基本类型,如海底热水系统成矿、火山热液系统成矿、岩浆热液系统成矿、盆地流体系统成矿、变质核杂岩—拆离断层流体系统成矿和地热系统成矿等,并分别建立成矿模式。

2.5 构造、成岩、成矿年代学的综合研究

造山带成矿及其演化受区域构造演化过程控制,并与一定的建造(沉积、岩浆、变质建造)伴生,矿床是建造中成矿物质高度富集的特殊相。通过对造山带构造、成岩、成矿年代学的综合研究,对查明造山带构造、建造、成矿的耦合与演化规律十分重要。20世纪80年代以前,以地质研究为基础,结合同位素定年发展起来的构造年代学、岩石年代学研究,为成矿年代的厘定提供了基础。90年代以来发展起来的利用矿石矿物(特别是硫化物)和与其共生的脉石矿物精确测定成矿年龄的方法,如Rb-Sr、Sm-Nd、Re-Os、Pb-Pb、Ar-Ar法[22~27]等,为成矿年代学研究提供了新途径,使我们有可能将构造年代学、成岩年代学与成矿年代学综合起来进行研究,更准确地分析区域构造、成岩、成矿的演化序列,揭示构造活动、沉积作用、变质作用、岩浆活动与成矿的耦合与演化规律,构建成矿谱系。

2.6 矿床形成后的变化与保存

在造山带中,矿床形成后常经历变化与改造,早期形成的矿床遭受后期的变质、变形改造,矿体发生移位,再富集或贫化,并且由于遭受剥蚀的程度不同,或被不同程度地保存,或消失等。这对矿床分带研究及指导找矿工作有重要意义。因此,在造山带成矿学研究中要重视矿床形成和保存的系统研究,追溯研究矿床形成、分布和变化、保存的全过程,讨论矿床变化和矿床所处环境变化的控制因素和变化类型。

2.7 造山带的成矿规律综合研究

造山带的区域成矿规律,包括区域成矿的时空结构和演化过程。其研究内容较多,主要包括:

1造山带组成、结构、演化与成矿的研究,特别是构造体制的转化,重大地质热事件与大规模成矿作用的关系,地质构造场、地球物理场、地球化学场的结构与矿集区分布的关系研究等;

2成矿系统与成矿系列的研究,对区域成矿系统与成矿系列的类型、各成矿系统与成矿系列的空间结构与矿化分带的研究;

3成矿时间谱系的研究,包括区域成矿过程中成矿组分、成矿强度、矿床类型等的变化,成矿的继承性、叠加性与新生性的研究;

4全球构造、深部构造对矿床分布的约束和大型、超大型矿床成矿规律的研究,其目的在于揭示矿床的时空定位规律。造山带体系结构分析、成矿系统结构分析、成矿历史分析与成矿动力学分析是研究造山带成矿规律的基本方法。

2.8 区域矿产资源预测与潜力评价

区域矿产资源预测与潜力评价是造山带成矿学应用的主要领域。面对复杂的研究对象,广大地质工作者进行了广泛的探索,在成矿与找矿理论及技术方法等方面都取得了新进展。近年来,笔者在秦岭—大别造山带、松潘-甘孜造山带成矿规律与成矿预测研究中,总结出以成矿系统[2]、地质异常理论[28]为指导,以成矿规律研究为基础,以“3S”技术为支撑,以多元信息处理为手段,以矿床系列为对象,开展区域矿产资源预测与潜力评价的思路(图1)。

我国矿床地质工作者历来重视大区域矿床形成条件和分布规律的研究,认为成矿规律研究是成矿预测的理论基础。近来来,在这方面的工作中,人们更多的使用了成矿学一词。一来便于与国外近期研究取得一致;二来为了防止某些把区域成矿规律简单化的倾向。当前的区域成矿学明显着重成矿地质背景研究,而且力图从成矿区地质发展史总体上研究成矿作用的发生和演化。笔者拟对区域成矿学发展现状作一较系统评述,并对现有的理论观点和未来发展中若干方向问题作一些探讨。

1 区域成矿研究发展概况

现在一般把20世纪初deLoney(法)出版成矿学著作看作是区域成矿学思想的最早代表〔1,2〕,因为在这一著作中作者正是从法国、意大利以至全球的角度讨论某些矿床形成和分布问题的。早期成矿学研究的内容主要集中在成矿时代和矿产区域两个方面。贝特曼在“经济矿床学”一书中已对全球重收稿日期19980527要成矿时代和各大洲的数十个矿产区域作出了综述。我国区域成矿研究开始较早,翁文灏在1920年发表了“中国矿产区域论”,谢家荣1930年发表了“中国成矿时代和矿产区域”的论文,在此期间还有关于赣南钨矿、长江中下游铁矿等重要成矿区研究专著问世。前苏联矿床学家在推动区域成矿研究方面作出过突出的贡献。他们通过对成矿有利地区的分析和选择,开展了有计划的找矿工作,结果发现了不少重要新矿产地,这确实是一次理论指导找矿的成功实践。正是在此基础上以U.A比利宾为代表的矿床学家们提出了关于地槽(褶皱带)成矿规律的研究成果,总结了地壳活动带从地槽到褶皱带各个发展阶段中与一定的构造条件、沉积建造和岩浆活动有关、形成一定类型矿床及其组合,并常以一定顺序产出的规律性。稍后,他们对地壳稳定区也按基本相似的原则进行了成矿规律总结。与此同时,他们还拟定了一套编制成矿规律和成矿预测图的方法,使区域成矿研究变得更为程序化和易于操作。60年代中在国际地科联的关注下,成矿规律和成矿预测图编制工作曾在世界许多地方得到了推广。在一个时期内,人们曾设想上述褶皱带成矿规律可以普遍适用于所有活动带,但不久即发现各地的褶皱带在发展阶段和成矿特征方面实际

上都可能有重大差别。于是V.I.斯米尔诺夫作了划分褶皱带类型的尝试,但最后知道只有乌拉尔型和维尔霍扬型两个端员类型是有较广泛代表性的。经过了一度停滞不前的局面之后,70~80年代以来,在俄罗斯等国家中成矿规律研究又重新兴起,出现了具有重要影响的成矿建造分析、活化区成矿研究、大型穿透性构造聚矿以及非线型成矿等新的观点,学术思想相当活跃。板块构造理论的发展为区域成矿规律的研究开辟了新的方向。在这个理论形成初期,只有某些洲际大型成矿带被作为大陆漂移的证据之一,但很快就注意到一些年代较新的成矿带中矿床形成正是与大陆分裂机制相伴发生的。特别是当把板块边缘活动带中的斑岩矿床、块状硫化物矿床等形成与板块俯冲带构造岩浆作用联系起来的认识提出后,即有人敏锐地认识到板块构造是可以指导矿床勘查方向的工具(Guild 1971)。随着资料的迅速积累到80年代初,一批有重要意义的综合研究成果(Mitchell和Garson 1981, Sawkins 1984, Huchinson 1983) 相继问世。从此,板块理论这种全球构造模式为近二三十年来区域成矿研究提供了一个较能广泛使用的理论框架。近年来,人们也已看到经典板块构造的局限性,加强了对板块构造体制前的和比现代板块复杂且有重要区别的大陆内部成矿问题的研究以及具有复杂迁移和演化历史的地体与成矿的研究。上述表明大地构造理论对区域成矿学的发展有过重要影响,但成矿学的每一次大的进展主要还是由于区域成矿研究思想(包括在新的大地构造理论影响下)不断深化和创新的结果。早期有关成矿时代和成矿区域研究实质是在于揭示了矿床时空分布的不均匀性。活动区和稳定区成矿理论则把成矿作用与地壳构造阶段发展联系了起来,正如比利宾学派地质学家所说的,他们理论的两个基本点一是历史地质学的方法,二是地质作用普遍联系的原则。板块构造理论应用于区域成矿分析,有利于阐明多种成矿有利背景及其与全球构造的关系,同时还具有提供基本的动力学解释的优点。预期新的区域成矿理论在成矿作用演化与成矿系统研究等方面取得新的突破。

2 现代成矿学的一些重要理论观点目前,尚未形成一个能为大家广泛接受的区域成矿学理论体系。但在近二三十年的研究中已提出了不少有意义的理论和观点。回顾并探究其研究思路和方法,不仅对现实的区域找矿工作仍具有一定指导作用,而且对于建构新的区域成矿学理论体系也是必须的。

2.1 成矿建造分析成矿建造分析是前苏联矿床学家在区域成矿规律研究中相继提出的最重要学术思想。他们80年代第二代1:1000万构造成矿图就是在这种思想指导下编制的。成矿建造分析立足于全面总结和详细研究已知的含矿建造和矿石建造,即研究典型矿床含矿岩石类型及在其中的特定共生矿物组合。一个建造中的岩石和矿石常有其固有的基本组成和稳定的共生顺序,因而可以预期在相似的地质环境中以相似的面貌重现。也就是说,岩石和矿物组合及其含矿性对比是建造分析用于预测找矿的基本思路。他们当时按照矿床成因已分出了4大类共80多种建造类型[3](D.V龙德克维斯等1984),后来又将各种建造与地壳构造发展阶段结合起来,并把裂谷阶段、地槽早晚阶段、造山期早晚阶段到地台活化期早晚阶段看作是一个大旋回,并指出一个巨大成矿带中可能不止有一个大旋回的成矿作用。成矿建造分析是原苏联建造学说的一部分,其精髓是构造物质统一的观点[4]。V.I斯米尔诺夫曾指出成矿建造分析的综合成因模式,提供了可以广泛对比和分析的基础,是对比利宾学派学说的恢复、完善和发展。

2.2 板块构造与成矿有利位置及背景已有的研究工作主要在于揭示出各种与板块构造有关的成矿有利位置,从构造背景角度阐明其对矿床形成和分布的控制。在80年代初的综合性著作中已把几乎所有矿床类型产出的位置放到一定的板块构造背景中,米切尔等(1981)还展现了在威尔逊旋回中的成矿作用全景[5]。板块构造理论特别成功地阐明了活动边缘俯冲

带及碰撞带构造演化中发育的矿床,大陆内热点、裂堑和裂谷发展过程中形成的矿床以及洋中脊地带及盆地中形成的各类矿床,提供了这些矿床形成机制动力学的基本解释。地质年代较新的成矿区带的时空分布用现代板块构造体制可以作出相当完满的解释,不少成功的找矿实例更可以证明其较符合客观实际。太古宙和元古宙成矿区带的形成可能受与现代大板块构造有所不同的构造体制控制。大陆内部造山带的构造演化和成矿作用更为复杂的多,因此,关注大陆动力学研究进展十分必要。目前,研究每一地体迁移演化历史及相关成矿作用的思路也是比较可行的。

2.3 构造岩浆活化区(地洼)成矿研究活化论是中俄地质学家在发展槽台学说中提出的,它揭示了地壳由活动向稳定再向活动发展的区域构造发展规律及与之相应的区域成矿特征。中国东部中新生代成矿带、俄国远东地区是构造岩浆活化研究的经典地区,后来又作为东亚环太平洋带成矿特征进行了概括。一般认为活化区成矿发生在晚期构造发展阶段“陆成构造”条件下。后来A.D谢格洛夫(1980)指出了活化不限于中新生代,也不限于地台区,各个时代的褶皱带都可能出现,他区分了独立发展的活化与由褶皱带构造岩浆作用影响波及的活化〔6〕。很多情况下活化与地壳中的深断裂带的发展有关。顺便提及,还有另一个学派特别注意那些具洲际规模深切地壳的巨大穿透性构造对世界级矿床成矿区带的控制。陈国达的地洼学说在近二三十年中也又有了很大发展,地洼学说及其体现的地壳构造动定转化递进思想,已用来阐明地壳发展过程中的各种大地构造体制的成矿作用及其演化规律以及全球地壳中各种构造区内部及他们之间的矿产分布规律〔7〕。为此,建立了“壳体”概念,发展了壳体演化递进成矿以及壳体演化处于活动期阶段及与地幔蠕动活跃期相对应的假说。

2.4 金属成矿省及其区域地球化学背景研究很早就已提出了金属成矿省的概念,并认为是一个区域成矿的最重要控制因素。鲁蒂埃(1980)在80年代中又提出以区域进行系统化学分析取得的数据为依据揭示金属省的方法,着眼于研究金属含量的不连续性,非均匀性及每个地区的专属性特点及其控制因素〔8〕。这方面认识上的一个进展是金属省应是在较长的历史过程中的产物,是在一定时期内存在的潜在金属载体,是一个四维空间,有的下延很深,以至于与地幔的上升部分存在联系。近年来张本仁〔9〕提出成矿带区域地球化学背景研究的构想,这就是以通过区域地球化学测量及研究获得的各类地质体的地球化学数据为依据,查明区域地球化学场的分布和结构。把区域地壳(最好是岩石圈)作为一个系统,以各种地质作用的继承发展为线索,探讨化学元素通过各类地质地球化学作用发生分配、演化的趋势,进行区域构造发展和区域成矿规律的研究。从地球化学的观点看,区域成矿的实质就是区域岩石圈内成矿物质通过各种地质地球化学作用由分散状态逐步地在某些局部地段浓积的过程。他认为这样研究的优点是把特定的区域岩石圈体系、地壳发展动力学和地球化学过程有机地联系了起来。

2.5 区域成矿模式或成矿系列研究成矿模式研究是近代矿床学研究最重要的成就之一,成矿模式从针对单个矿床发展到一个成矿区内所有相关的矿床,这就是区域成矿模式,也就和我国矿床学家此前提出的成矿系列的认识联系到一起了。成矿系列的重要基础工作是建立区域内各典型矿床的成矿模式,研究各矿床模式所代表的矿床之间存在的成因联系,即把成矿作用与地质事件联系起来,把各种矿床在时空上联系起来进行考察,研究一个地区内与同一或相关成矿作用有关的矿床组合中各矿床的空间分布,时间演化和成因联系[10]。翟裕生制订了成矿系列的研究思路和程式,反映了成矿系列研究中从成矿背景到含矿建造再到矿床类型研究的层次关系及矿床类型存在的共生性、连续性、分带性、过渡性和重叠性等成矿系列结构关系的研究内容〔11〕。成矿系列分析克服了针对单个矿床进行成矿模式研究的局限

性,加强了对成矿带内含矿地区与区域地质条件之间的联系的研究,加强了对成矿作用发展演化全过程的认识,突出了成矿作用多样性、成矿物质多源性以及成矿诸因素之间主导控矿因素的认识和把握,从而有助于成矿模式的完善和有效地应用。因此认为建立各种有代表性矿床成矿模式、成矿模式组合以构成区域成矿模式应该是区域成矿研究的又一新途径。此外还有其它一些理论,如非线性成矿说提出了研究那些可能与地壳构造发展无直接关系而应属于地幔起源的矿床在地壳构造中就位的问题,该理论将随着壳幔交换研究的进展而不断深化。

3 成矿学研究发展的若干趋势随着对矿产资源需求规模和种类的扩大,成矿预测和找矿工作将继续受到重视。同时随着地球科学整体的进步和前沿领域研究取得突破,成矿学研究也必将取得较快进展,在我国区域成矿研究发展中最为关注的有以下几个方面的问题。

3.1 成矿地质背景与成矿作用演化总结以往成矿学研究发展不难看出,成矿区地质背景研究已成为区域成矿学研究的最基本内容。成矿区的概念也在发生重要变化。早先把成矿区带看作是一种成矿构造单元,是一种静态的既成的东西,现在研究成矿区带则是从区域地质发展历史中探讨成矿作用的时空域及其变化,是一种发展的、动态的观点。成矿作用演化的认识是随着地球演化思想的出现和发展而提出的。矿床是在地球(地壳)发展演化过程中的产物,因而矿床也可以看作是地球演化的一种标记。80年代以来多次国际地质会议上研讨了有关地质历史中成矿作用演化、金属成矿省成矿演化等问题。在这一时期中发表的一些重要论述(Lambert1981,Meyer1981,Huchinson,1983)已为从全球地质演化角度阐明矿床时空分布以及全球范围内对太古宙、元古宙和显生代的各种地区进行金属成矿省的综合对比提供了依据。李廷栋曾指出成矿地质背景与成矿作用演化是新一代成矿预测的理论基础。认为建立岩石圈构造演化和物质迁移过程与成矿作用之间的关系,追踪成矿作用轨迹,最终确定矿床的空间位置是当代成矿学研究的前沿之一。在进行这方面研究中裴荣富、吴良士(1993、1994)引出了金属成矿相、成矿年代学、成矿作用轨迹等新概念,充实和发展了区域成矿研究的思路和方法〔12〕。

3.2 成矿动力学研究在地质科学的许多研究领域中引入动力学研究是一个大方向。成矿学与动力学的结合使区域成矿研究达到一个新的水平。现在有关成矿动力学研究主要有两方面的内容:一是阐明形成矿床集中区的地球动力学背景。目前以造山带和盆地为两个突破口,以岩石圈变形研究为基础,深入研究这些地区岩浆作用发生及活动的机制,加强研究在构造演化过程中流体的迁移和分布〔13〕。二是成矿作用本身的动力学研究。於崇文、鲍征宇(1994)等把成矿作用表述为地质流体输运反应动力学问题,制订了多重耦合的成矿动力学机制研究方案〔14〕。他们在南岭、个旧、铜陵等地区开展了有关研究,其研究程序大致是:对矿床进行地质地球化学观察和研究,建立成矿作用模型,对模型进行检验,最后对未知地区类似矿床进行观测。我国矿床学家的这些探索性研究开辟和发展了成矿动力学研究的新方向。

3.3 现代系统科学与成矿学研究现代系统科学的理论和方法正在引进地质科学的一些领域。在成矿学研究中这方面已受到了较多的重视,取得了可喜的进展。李人澍(1990、1996)近年来在成矿系统分析方面的研究工作是很值得关注的。他提出把一个区域的矿床看作是一个成矿大系统或系统网络。成矿系统分析应该是以矿床总体为对象进行研究的,即不只是看矿床本身,且要看矿床形成全过程及其与环境的关系。他认为成矿系统属于复杂系统,除了具有多层次复杂结构外其形成演化又是确定性和随机性两种过程结合的产物,因而受到了多层次非线性因素影响,为此确定了研究工作应采取以定性研究建立成矿系统框架,探索其宏观

规律,再辅以定量研究的方针。他以成矿背景、成矿作用类型、成矿机制等决定成矿过程特色的因素为依据,建立了五种基本成矿系统,各种系统具有不同的结构特点,而结构的集约性、有序化程度又决定了系统的聚矿能力。成矿系统聚矿能力的差异与它们随地壳演化而出现的时间有关,一般是较完善的成矿机制倾向于发育在区域地质发展晚期。例如秦岭地区,堆积成矿系统代表初级成矿,熔炼和环流系统代表高级成矿,而构造岩浆复合改造系统是本区最成熟也是最重要的成矿系统。由于一个大区中的成矿系统具有明显的网络性,表现在它们具有过渡、重合、叠加和多通道关系,研究这些特征可以追溯成矿演化脉络,查明矿床之间及其与环境之间的联系,指导矿床的预测和勘查〔15〕。目前,李人澍正以主要成矿系统非线性过程分析作为探索成矿预测新途径为目标而继续进行研究。此外,计算机及其它新技术在成矿学研究中的应用也是发展的必然趋势。Laznixka(1994)对此有过重要论述。

4 结语矿床学研究中很早就形成了矿床成因论和区域成矿两个方向。这与构造地质学中出现区域大地构造的情况十分相似。大地构造研究在50~60年代中已得到显著发展,而区域成矿研究则相对滞后,这可能主要由于成矿学研究对象和任务的复杂性与综合性以及要以有关基础学科的发展水平为依托。成矿学虽尚未形成可被广泛接受的理论体系,但已积累了大量研究成果资料,提出了多种理论观点,这些理论观点都从不同侧面、不同程度上揭示了区域成矿的某些规律性。目前它们互相渗透,互相补充。值得重视的是近年来在若干理论问题上已出现了彼此接近、殊途同归的趋势。新科学思维和新技术方法的引进,有助于对复杂问题的认识和处理,有利于产生新的研究思路,充实和改善研究方法,在促进区域成矿学的进一步发展中是大有可为的。

摘要成矿系统是当今矿床学研究的一个重要课题,是矿床学向系统义、全球化方向发展的一种趋势。成矿系统是指在一定地质时—空域中,控制矿床形成和保存的全部地质要素和成矿作用过程,以及所形成的矿床系列和异常系列构成的整体,它是具有成矿功能约一个自然系统。成矿系统是在一般矿床成因研究的基础上,着重从宏观上,从成矿的时间、空间、物质、运动的有机结合上,探讨区域足度的成矿规律。其研究意义是深入认识成矿动力学机制,指导矿产勘查,并有利于将成矿学信息应用到地学其它学科中去c文中还论述了成矿系统与成矿系列、成矿区带的联系和区别,对成矿系统的基本要素、作用过程、作用产物和成矿后变化及保存4个问题作了说明。提出以成矿的构造动力体制作为划分成矿系统大类约依据及以成矿机理作为划分成矿系统类型的主要标志:最后以古大陆边缘构造—成矿系统为例,说明构造动力型式、构造组合与成矿系统之间的内在联系。

什么是成矿系统?在1979年版的英文地质辞典中没有这个术语,在俄文地质辞典(1973,卷2)L1’中,成矿系统被解释为“由成矿物质来源、运移通道和矿化堆积场所组成的一个自然系统”。以后,M·n·马祖洛夫(1985)[n‘3提出:“成矿系统是导致矿床形成的地质体、地质现象和地质作用的总和。”B·H·森雅克夫(1986)以]认为:“成矿系统是下列因素的总和:能量和物质的来源、搬运介质、矿质运移的机理和通道、矿石堆积场以及矿石堆积作用,这些因素的相互作用导致矿床形成。”

B,M·契克夫(1987)[n‘3指出:“成矿系统是在一定空间(现在的或地质历史时期的)导致成矿物质高度浓集的构造—物质因素和流体因素相互作用的总和c”上述俄罗斯学者对

成矿系统的定义是大同小异的,他们比较强调两个方面,一是矿源、运移和矿石雄积的作用过程,二是强调构造、物质、能量、流体等控矿因素及其相互联系c这两个方面都是成矿系统的基本内容。

西方文献中对成矿系统一词或类似名词常有运用,但很少见到对成矿系统的定义。澳大利亚的A·L·贾奎斯(19N)[n’驼出:“成矿系统可定义为控制矿床的形成和保存的全部地质要素,着重在以下作用:成矿物质从源区的活化、运移,并以高度富集的形式堆积,以及在以后地质历史中将它们保存下来的作用G”这一定义增加了将矿床保存下来的作用,体现了历史演化的思路,对找矿有实际意义。

在我国,挺祟文(1994.1998)[‘,n‘“从复杂性科学的角度,探讨成矿动力系统的自组织临界性,他提出s“成矿系统是一个多组成锅台和多过程锅台的动力学系统,多组成包括‘多组分’和‘多个体’的双重涵义。许多成矿作用又是两种或两种以上过程锅台的多重锅台过程G”“成矿系统总体上是远离平衡、时—空延展的复杂耗散系统G,’放崇文从成矿作用动力学的深度来分析成矿系统的形成过程和机理,对从本质上探讨和认识成矿规律有指导意义。

李人汤(1996)“”认为:“成矿系统可以定义为特定时空域中从矿源生成到矿质定位全过程所形成的工业与非工业矿化,与矿体生成有联系的中间产物,反映成矿作用的各种指示物,以及卷入成矿系统空间的自然体系的总和。”李人谢在成矿系统的内涵中强调了非工!L 翟裕生(1998)提出:“成矿系统是在一定时—空域中由控制成矿诸要素结合成的、具有成矿功能的统一整体。它包括成矿物质由分散到富集的制约因素、作用过程及各种地质矿化产物Lt2113j。”在本文中,又针对成矿系统的特殊性,即成矿作用过程的有关信息被保存在现存矿床及有关地质异常中的特点,补充了矿床形成后保存作用的内容,将成矿系统定义为“成矿系统是指在一定的时—空域中,控制矿床形成和保存的全部地质要素和成矿作用动力过程,以及所形成的矿床系列、异常系列构成的整体,是具有成矿功能的一个自然系统”。

由上述可见,成矿系统概念中包括了控矿要素、成矿作用过程、形成的矿床系列和异常系列,以及成矿后变化和保存等4方面基本内容,体现了矿床形成有关的物质、运动、时间、空间、形成、演化的统一性、整体性和历史观。

分子动力学模拟方法概述(精)

《装备制造技术》 2007年第 10期 收稿日期 :2007-08-21 作者简介 :申海兰 , 24岁 , 女 , 河北人 , 在读研究生 , 研究方向为微机电系统。 分子动力学模拟方法概述 申海兰 , 赵靖松 (西安电子科技大学机电工程学院 , 陕西西安 710071 摘要 :介绍了分子动力学模拟的基本原理及常用的原子间相互作用势 , 如Lennard-Jones 势 ; 论述了几种常用的有限差分算法 , 如 Verlet 算法 ; 说明了分子动力学模拟的几种系综及感兴趣的宏观统计量的提取。关键词 :分子动力学模拟 ; 原子间相互作用势 ; 有限差分算法 ; 系综中图分类号 :O3 文献标识码 :A 文章编号 :1672-545X(200710-0029-02 从统计物理学中衍生出来的分子动力学模拟方法 (molec- ular dynamics simulation , M DS , 实践证明是一种描述纳米科技 研究对象的有效方法 , 得到越来越广泛的重视。所谓分子动力学模拟 , 是指对于原子核和电子所构成的多体系统 , 用计算机模拟原子核的运动过程 , 从而计算系统的结构和性质 , 其中每一个原子核被视为在全部其他原子核和电子所提供的经验势场作用下按牛顿定律运动 [1]。它被认为是本世纪以来除理论分析和实验观察之外的第三种科学研究手段 , 称之为“计算机实验” 手段 [2], 在物理学、化学、生物学和材料科学等许多领域中得到广泛地应用。

根据模拟对象的不同 , 将它分为平衡态分子动力学模拟 (EM DS (和非平衡态分子动力学模拟 (NEM DS 。其中 , EM DS 是分子动力学模拟的基础 ; NEM DS 适用于非线性响应系统的模拟 [3]。下面主要介绍 EM DS 。 1分子动力学方法的基本原理 计算中根据以下基本假设 [4]: (1 所有粒子的运动都遵循经典牛顿力学规律。 (2 粒子之间的相互作用满足叠加原理。 显然这两条忽略了量子效应和多体作用 , 与真实物理系统存在一定差别 , 仍然属于近似计算。 假设 N 为模拟系统的原子数 , 第 i 个原子的质量为 m i , 位置坐标向量为 r i , 速度为 v i =r ? i , 加速度为 a i =r ?? i , 受到的作用力为 F i , 原子 i 与原子 j 之间距离为 r ij =r i -r j , 原子 j 对原子 i 的作用力为 f ij , 原子 i 和原子 j 相互作用势能为 ! (r ij , 系统总的势能为 U (r 1, r 2, K r N = N i =1! j ≠ i ! " (r ij , 所有的物理量都是随时 间变化的 , 即 A=A (t , 控制方程如下 : m i r ?? i =F i =j ≠ i

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

分子动力学模拟

分子动力学模拟 分子动力学就是一门结合物理,数学与化学的综合技术。分子动力学就是一套分子模拟方法,该方法主要就是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量与其她宏观性质。 这门技术的发展进程就是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit)、 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步就是确定起始构型,一个能量较低的起始构型就是进行分子模拟的基础,一般分子的其实构型主要就是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度就是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度就是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之与为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子与分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学与预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能与动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正就是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动与分子内部运动的轨迹也会不同,进而影响到抽样的结果与抽样结果的势能计算,在计算宏观体积与微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但就是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但就是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想就是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但就是通常情况下,体系各自由度中运动周期最短的就是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其她无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

成矿预测基本理论

一、成矿预测基本理论 1.相似类比理论 相似类比理论是指在相似的地质环境下,应该有相似的矿床产出,如一定种类的矿床及其共生组合特征,在相同的地区范围内应该有相似的矿产资源量。依据于这一理论,在进行矿产资源评价时,就可以运用研究程度较高、地质资料丰富的矿床所取得的有关认识去推测研究程度较低、地质资料比较有限的同类矿床的成矿前景和可能的资源量等。 2.求异理论 求异理论是相对于人们熟知的相似类比理论而提出,其主要是指一些新类型、特殊类型或超规模(巨型、超大型)的矿床皆产于特殊的地质环境中,这种特殊的地质环境具有与周围地质环境截然不同的地质结构和要素,构成所谓的地质异常。在找矿评价中,从总结、研究和探求地质异常入手,进而进行成矿可能性分析。 求异理论强调的是地质体(地质环境)的不同之处对成矿的影响及作用,它对于找寻评价新类型、特殊类型、超大型的矿床具有特殊的指导作用,而相似类比理论只能指导人们进行已熟知的同类型矿床的找寻评价工作。 3.定量组合控矿理论 定量组合控矿理论是指成矿不是由单一因素,也不是由任意几个因素的组合完成的,而是由必要和充分的因素的耦合而完成的,但这种“必要和充分”的因素的组合对于矿产勘查工作者往往具有较大的不确定性,为了最大限度地提高找矿成功概率,就必须最大限度地查明控矿的定量组合因素。 在进行某一地区或某一矿区的成矿前景或资源潜力评价工作时,按照定量组合控矿理论,首先应全面地分析有关控矿地质因素并掌握这些因素对成矿的贡献及其相互之间的耦合关系,尽可能定量地研究控矿因素组合,而不是仅限于定性分析和判断。在地质条件相似的情况下,一些地区成矿,而另一些地区可能无矿,这是因为相似的地质条件并不一定是成矿的充分条件。一般地说,一个地区成矿概率的大小与成矿的有利因素的种类及其耦合有关。 “定量”是任何一门科学现代化的重要标志及基本要求。按照定量组合控矿理论,在进行矿产预测时应该充分提取、构置、优化各种控矿要素及各种信息,并采用一定的先进技术手段进行综合的定量处理,定量地把握各种因素在成矿中所起作用的大小、性质、参与程度等,以提高评价结论的准确程度。 4.惯性理论 惯性理论本身是指自然界的客观事物在其发展变化过程中常常表现出一定的延续性,通常称其为惯性现象。在矿产勘查领域中,这种惯性现象表现为成矿事件及其有关的地质体,如矿床等在时间、空间上所具有的稳定的变化趋势。这种变化趋势越稳定,则越不易受到外界其它因素的干扰而改变其发展趋势。在进行地质评价时,依据惯性理论作指导,通过分析、总结有关的地质体及成矿事件的发展变化规律,就可以对其相邻地段及深部地段的成矿前景及可能的成矿规模进行推断。 5.相关理论 相关理论是指任何成矿事件的发生、变化都不是孤立的,而是在与其它地质作用的相互影响下发展的,并且这种相互影响常常表现为一种因果关系。例如地质评价的主要对象—矿床和各种岩石及构造有着密切的联系,一定类型的矿床是特定的地质作用的特殊产物。相关理论有助于评价者深入、全面地分析与成矿有关的各种地质因素,从而正确地认识矿床的有关特征及成矿规律,进而做出正确的评价。 二、基本方法

系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

vasp做分子动力学

vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势。 缺点:可选系综太少。 尽管如此,对于大多数有关分子动力学的任务还是可以胜任的。 主要使用的系综是NVT和NVE。 下面我将对主要参数进行介绍! 一般做分子动力学的时候都需要较多原子,一般都超过100个。 当原子数多的时候,k点实际就需要较少了。有的时候用一个k点就行,不过这都需要严格的测试。通常超过200个原子的时候,用一个k点,即Gamma点就可以了。 INCAR: EDIFF 一般来说,用1E-4或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。 IBRION=0 分子动力学模拟 IALGO=48 一般用48,对于原子数较多,这个优化方式较好。 NSW=1000 多少个时间步长。 POTIM=3 时间步长,单位fs,通常1到3. ISIF=2 计算外界的压力. NBLOCK= 1 多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT. KBLOCK=50 NBLOCK*KBLOCK个步长写一次XDATCAR. ISMEAR=-1 费米迪拉克分布. SIGMA =0.05 单位:电子伏 NELMIN=8 一般用6到8,最小的电子scf数.太少的话,收敛的不好. LREAL=A APACO=10 径向分布函数距离,单位是埃. NPACO=200 径向分布函数插的点数. LCHARG=F 尽量不写电荷密度,否则CHG文件太大. TEBEG=300 初始温度. TEEND=300 终态温度。不设的话,等于TEBEG. SMASS -3 NVE ensemble;-1 用来做模拟退火;大于0 NVT 系综。 ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// 1)收敛判据的选择 结构弛豫的判据一般有两种选择:能量和力。这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的。但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。计算量的增大和误差的传递导致力收敛慢。 到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量

构造与成矿(资料汇编)

(一)摘自《论层间滑动断层及其控矿作用》 沈远超 1、层间滑动断裂成矿特征及成矿规律 通过对位于胶莱盆地北缘的蓬家夼、发云夼、郭城、大庄子等金矿的研究,对受层间滑动断裂控制的金矿床的成矿地质特征及规律总结如下: (1) 地(岩) 层-断层-矿层三位一体,断层-脉岩-矿体时空有序 层间滑动断裂控制了含矿层位,层间滑动断层发生于能干岩性与非能干岩性之间,层间滑动断裂带即为金矿化带,即具有地层-断层-矿层三位一体的特征。同时,闪长岩脉沿断层分布,与矿层呈平行伴生关系。 (2) 成矿系统与构造系统密切相关 区域性层间滑动系统控制了矿带的分布,某一层次的滑动单独构成一个矿床,单一滑动断层控制矿体,不同小构造形式控制不同的矿化类型,如角砾状矿石的分布受构造角砾岩带控制,脉状-网脉状矿化受碎裂岩带控制,从而构成了多级控矿构造系统。 (3) 多层次滑动与多层次成矿 如蓬家夼、大庄子金矿产于盆地基底地层中,发云夼金矿产于盆地盖层中。 (4) 矿体产状缓、规模大,矿化-蚀变具一定的分带性。 (5) 成矿多期次多阶段。 如大庄子金矿体形成期经历了先张后压再剪切的过程。拉张阶段形成碎裂-角砾状矿石和张性断裂,挤压期形成石墨化矿石和透镜状构造,剪切期形成于矿化之后,主要表现为形成斜切矿体的断层和基性脉岩的侵入。 2、层间滑动断裂的控矿作用 层间滑动断裂对金矿的控制作用主要表现在: (1) 层间滑动断裂为岩浆-流体提供通道,为成矿物质的沉淀提供了容矿空间。 (2) 控制成矿物质的来源 层间滑动断裂为低角度正断层,其上下盘切层断裂及羽裂发育,与大范围的围岩有良好的沟通性,便于热液运移并萃取成矿物质。 (3) 层间滑动过程中的构造地球化学作用 在层间滑动过程中因构造-化学作用,断裂带中的物质成分发生有规律的变化。对蓬家夼金矿区蚀变岩的常量组分分析结果,表明从围岩到断裂中心,Si 、Ti 、Ca 有规律地依次递增或递减,K在矿体中含量最低,这与钾化主要发生于矿体外围有关。在断裂带的中心部位,因Ca 、Na 大量逸散,而使Si 、Fe等元素富集。总的来看,从断裂中心向外大致次序为:Si 、Fe 、Mg、Mn、Al 、Ca 、Na 、K,这与孙岩等以韧脆性断裂的成型阶段为例,以元素的离子半径、离子比重为据,将造岩元素稳定顺序归为: Si 、Mg、Mn、Al 、Ca 、Na 和K(1998 ,孙岩) 的情况相一致,这是一种动力分异作用的结果。在断裂蚀变带中,微量元素也有一定

系统动力学定义(精)

系统动力学定义 系统动力学出现于1956年,是美国麻省理工学院JayW.Forrester福瑞斯特教授最早提出的一种对社会经济问题进行系统分析的方法论和定性与定量相结合的分析方法,是一门以系统反馈控制理论为基础,以计算机仿真技术为主要手段,定量地研究系统发展的动态行为的一门应用学科,属于系统科学的一个分支。复旦大学管理学院王其藩教授在他所著的《高级系统动力学》中给出了系统动力学的内涵曰:系统动力学是一门研究信息反馈系统的学科,是一门探索如何认识和解决系统问题的科学,是一门交叉、综合性的学科。系统动力学认为,系统的行为模式与特性主要地取决于其内部的动态结构与反馈机制,系统在内外动力和制约因素的作用下按一定的规律发展和演化。系统动力学是从运筹学的基础上改进发展起来的。鉴于运筹学太拘泥于“最优解”这一不足,系统动力学从观点上做了基本的代写硕士论文改变,它不依据抽象的假设,而是以现实存在的世界为前提,不追求“最佳解”,而是寻求改善系统行为的机会和途径。由此,系统动力学在传统管理程序的背景下,引进信息反馈和系统力学理论,把社会问题流体化,从而获得描述社会系统构造的一般方法,并且通过电子计算机强大的记忆能力和高速运算能力而获得对真实系统的跟踪,实现了社会系统的可重复性实验。不同于运筹学侧重于依据数学逻辑推演而获得解答,系统动力学是依据对系统实际的观测所获得的信息建立动态仿真模型,并通过计算机实验室来获得对系统未来行为的描述。当然,系统动力学建立的规范模型也只是实际系统的简化与代表。一个模型只是实际系统一个断面或侧面,系统动力学认为,不存在终极的模型,任何模型都只是在满足预定要求的条件下的相对成果。模型与现实系统的关系可用下图形象地加以说明。

成矿规律与成矿预测-总结

成矿规律与成矿预测总结 1.成矿规律与成矿预测概论 1.成矿规律学: 是应用地学理论来研究矿床的形成、时空分布及其演化规律的学科,是指导矿床勘查,进行成矿预测的基础. 2.成矿预测 是根据成矿规律或矿化信息,按一定的方法和程序对不同规模的矿化单元(矿带\矿田\矿体)的产出位置、矿化类型、资源量等的预测。 成矿预测通常包括 (1)定性预测:概念预测:利用矿床分布的概念模式预测矿床。 (2)定量预测:矿床统计预测:根据矿床分布的统计规律预测矿床。 前者是后者的基础,后者是对前者的定量化表达。以成矿规律为基础的成矿预测工作,是矿床勘查工作创新的基本途径。 2.成矿地质背景和控矿地质因素分析 1.成矿地质背景 形成矿床的各种地质作用(事件)、成矿条件和控矿因素的总和。最基本的控矿因素(1)地层(岩性) (2)构造:褶皱:背斜和向斜 断裂:压\张\扭性断裂 (3)岩浆岩: (a)超基性(科马提岩/橄榄岩):Ni\Cu\Cr\PGE (b)基性岩(玄武岩/辉长岩):Fe\V\Ti (c)中性岩(安山岩/闪长岩):Fe、Cu、Pb、Zn、Au (d)酸性岩(流纹岩/花岗岩):W、Sn、Bi、Mo、Li、Be、Nb、Ta (e)碱性岩(正长岩):Au、Cu、Mo 不同类型的矿床具有不同的成矿地质背景和控矿因素组合。 2.地质异常 (1)由地质异常事件形成的物质组成、结构构造、成因序次与围岩具有显著差别的地质体;(2)小概率事件形成的稀有地质体,服从统计规律; (3)矿床是典型的地质异常体。 3.控矿因素 (1)地层(岩性)控矿 (2)构造(褶皱+断裂)控矿 (3)岩浆岩控矿:成矿专属性 (4)地球化学(元素丰度+挥发分) 3.成矿时空分布规律 1.成矿期\成矿域 一定的成矿物质在一定地质时期的某些地区或一定地区的某些地质时期内的富集规律。 (1)这种有利于某种矿产或多种矿产富集的地质时间区间称为成矿期。 (2)有利于成矿的区域成为成矿省(带\矿集区) . 2.研究意义 在研究成矿规律时,采用成矿期、成矿省、矿化分带性等概念。能够针对性地查明矿化在时间上和空间上的分布规律,认识地质发展历史中成矿作用在区域(全球性和地域性)和局部范

区域构造与成矿浅析

区域构造与成矿浅析 区域构造是控制成矿的基本要素,成矿是一种复杂的地质作用。构造不仅控制矿床形成,同时它在很大程度上也影响着矿床的破坏与保存。构造不仅仅是局部的控矿因素,它还能控制或影响岩浆活动、沉积作用、流体作用、变质作用……各类地质作用,文中简略叙述了构造成矿研究的历史,论述了大型构造与成矿的关系,提出构造动力体制转换是引发成矿作用的一种重要机制,总结提出构造研究的一些思路。 标签:区域构造控制成矿作用 地质构造有不同的级别和层次,从显微构造直到全球构造,它们影响成矿的范围,并且研究意义各不相同构造尺度成矿构造级别矿化单元研究应用目的微型构造显微成矿构造矿石、矿物选矿、冶炼中小型构造矿田矿床构造矿田、矿床、矿体找矿、勘探、采矿大型构造区域成矿构造成矿区(带)区域成矿与预测大地构造大区域成矿构造成矿域资源潜力评价全球构造全球成矿构造全球成矿域全球成矿分析。 1大型构造与成矿 大型构造通常是指规模达数百千米级的地质构造。一般而言,大型构造不是一个单一的构造形迹,而是由与其拌生的或派生的一系列构造要素组合成的。常见的大型构造可按其所反映的地壳变形场分为五大类端元:即反映地壳水平运动的伸展、收缩和走滑,反映垂向调整的隆升和沉降,其间可以有各种过渡或转化型式。与同类型的小型构造相比,大型构造不仅是地壳或岩石圈受力变形的产物,而且它的形成和演化控制着与其有关的沉积、岩浆、变质等作用。大型构造如裂谷、推覆构造、剪切带构造等都是岩石圈动力作用的产物。大型构造的控矿作用主要表现在:(1)大型构造可为矿源场、中介场和储矿场的有机联通提供有利条件。例如,深源的含矿流体可以大断裂为通道而到达地壳浅表,并在该大断裂的次级断裂裂隙中堆积成矿;(2)大型构造的长期性、脉动性和继承性,有利于成矿物质的反复叠加富集,使它们汇聚在同一有限空间,这种多重富集作用有利于形成超大型矿床;(3)一些矿床尤其是大型矿床,其形成需要巨大、稳定的热液对流系统,支持这种系统正常运转的巨大岩石裂隙网络带,只有在大型构造的热动力作用下才能形成,如超大型斑岩铜、钼矿床;(4)大型构造因其贯通性而能连通位于不同深度和不同地质体内的不同类型的流体,并导致它们的混合,这有利于汇集成矿所需的矿质、挥发分和形成必要的地球化学障,因而有利于矿床的形成。 大型构造在源(控制岩石建造的形成的分布)、运(连通、驱动含矿流体)、储(提供多样的成矿环境)等方面控制了矿床的产生。另外,其控矿作用还可表现为一些超大型矿床主要分布于一定的成矿构造环境中,而同一构造环境对不同类型成矿系统的作用不同。近年来,由于深部探测技术的发展,主要是地球物理探测、地幔岩包体研究和区域地球化学以及一些碰撞造山带的研究,提供了有关

成矿理论

浅成低温热液矿床成矿作用 —以波尔盖拉金矿床及高松山金矿床为例

浅成低温热液矿床成矿作用 —以波尔盖拉金矿床及高松山金矿床为例 浅成低温热液型矿床是金、银矿床的一种重要类型。按林格伦(1922,1933)对浅成热液的定义,这类矿床包括贵金属(碲化物或硒化物)、贱金属、汞和辉锑矿等矿床,矿床是在低温(小于200℃)和中压条件下从有火成喷气的含水溶液中形成的,是指发生在浅处并常在火山岩中定位的矿化体,常出现一些不协调的矿物组合,即在同一矿床中同时出现高温矿物组合和低温矿物组合。现代矿床学研究认为这类矿床普遍存在过较高的成矿温度(200~300℃),有时可达400℃,成矿压力低于112MPa。尽管如此,现在仍然沿用了/浅成低温这个术语,但概念的内涵已经发生了变化,并不意味着这类矿床必须形成于低温(如小于200℃)条件下。浅成低温热液矿床包括火山、次火山热液矿床,热泉型矿床以及微细浸染型矿床。前两类矿床的成矿围岩通常为火山岩、次火山岩。后一类矿床的成矿围岩为碳酸盐岩和碎屑岩。本文将只讨论前两类矿床。目前比较流行的分类如下:Silberman等(1986)将浅成热液矿床划分为高硫和低硫的富矿囊型以及高硫和低硫热泉型;Heald等(1987)分为明矾石-高岭石型(酸性硫酸盐型)和冰长石-绢云母型;Bonham(1986)将这类矿床为低硫型、高硫型和碱性岩型。其中以Heald的分类和Bonham的分类应用最广。 1.成矿背景及成矿作用 浅成低温热液矿床形成的构造环境主要为岩浆弧和弧后的张裂带。这种岩浆既可以是陆缘岩浆弧,也可以是岛弧环境。这样的构造在全球主要有3条,即:环太平洋成矿带、地中海-喜马拉雅成矿带和古亚洲成矿带。在环太平洋东西两带均发育有火山、次火山内外两条带。在环太平洋东带,浅成低温热液型矿床除沿美洲西海岸岩浆弧分布外,在弧后几百公里有一条平行于火山弧的弧后引张带。该带在不同地段表现形式不同,在北美,表现为盆地-山脉省,正断层广泛发育,地堑(盆地)和地垒(山脉)相间平行排列,其双峰式火山作用表明拉张应力场的存在,系弧后裂谷作用早期阶段的表现。盆岭省为北美一条长700 km的裂谷系的一部分。包括哥伦比亚河玄武岩的运道岩墙和斯内克河平原西部的地堑。在南美的安第斯山脉东侧,有大片高原碱性橄榄玄武岩发育,说明在火山弧的内侧,弧后引张作用广泛存在。在西太平洋也存在两条成矿带,一条从日本列岛经我国台湾、菲律宾、加里曼丹岛、巴布亚新几内亚及所罗门群岛,形成于岛弧环境。日本的菱刈、串木野、春日,中国台湾的金瓜石矿及新西兰的豪拉基矿带,巴布亚新几内亚的波尔盖拉矿均

成矿规律(摘抄)

1、断裂性质和规模及其与矿化的关系 首先要查明控矿断裂的性质、规模、产状要素等等。 就力学性质而言,可将断裂分为张性、压性和扭性三大类。三类断裂不同的成矿特点如下: 张性:围岩受力处于膨胀状态,孔隙度较高。 其成矿特点是:结构面呈不规则状、延伸较小,矿液易于通过。温度下降快,形成相对开放系统,以充填成矿为主。主要发生在浅部,受控的矿成脉状或向下尖灭的透镜状居多。 压性:围岩受力处于压缩状态,孔隙度渗透率都小。 其成矿特点是:结构面呈舒缓波状,走向、倾向延伸大,有尖灭再现的特点,温压下降慢,形成相对封闭系统,以交代成矿为主,完全压性断裂,对成矿不利。 扭性:兼具张性和扭性的特点(压扭接近压性,张扭接近张性),孔隙度渗透率也介于二者之间。 结构面产状平直,延伸大,有次级断层与主断裂共生,对成矿有利,充填交代作用均可成矿。 在实际工作中,从断层结构面特点和伴生构造岩的性质,可以对断裂主要力学性质作出判断。有时有的断裂构造活动过程中出现力学性质的改变,产生极为复杂的情况,所以要具体分析。 张性、压性断裂活动过程中,常常都伴有扭应力活动,形成压扭性或张扭性断裂。 压扭性断裂结构面常常是不透水面,在成矿过程起着“屏蔽”作用。 一般纯张性断裂中矿化不是最好的,而张扭性断裂中矿化意义较

大。 不同力学性质断裂的派生构造也有不同特点,有助于查明受控矿脉的尖灭再现、侧现、侧伏等规律。断裂构造的规模,包括断距大小,断裂沿走向和倾向的延伸距离,下切深度大小等。有的断裂深切下地幔,且长期活动,常称为深大断裂。它们往往是类生矿化,特别是壳下源矿化的控制构造,值得重视。 2、断裂活动的时间和期次及其与矿化的关系 在一个地区往往存在不同时期的断裂构造,而矿化只与其中某一时期或几期断裂构造有关,至于成矿后的断裂对矿体主要是改造和破坏。同一条断裂的不同活动期,其力学性质可能发生变化,前期构造与后期构造互相影响。构造的多期活动,可以导致多期矿化的叠加,这些情况在各个矿区极为常见。矿床划分成矿段的主要依据之一,就是矿区构造活动期次。一些层控矿床,断裂构造在成矿中起着重要作用。因此,对断裂构造的研究、分析,有着重要的意义。 3、断裂构造的有利成矿部位 断裂构造现象极为常见,但是成矿只是在断裂中某些局部地段。从断裂控矿角度出发,广大地质工作者积累了不少实际资料。 下列有利的成矿部位,对预测选区选点极为重要。 (1)不同断裂交叉处,主干断裂与次级断裂交汇处; (2)在断裂产状变化处,在平面上断层走向发生扭曲转弯处,在剖面上张性断层倾角由缓变陡处,压性断层由陡变缓处。 (3)断裂中局部圈闭好的部位,如压扭性断层的下盘,断层泥和蚀变构造岩起圈闭作用; (4)断裂构造与有利岩层交汇或其他构造交切处等。

全国重要矿产和区域成矿规律研究进展综述_王登红

第8 8卷 第1  2期2 0 1 4年1 2月 地 质 学 报 ACTA GEOLOGICA SINICA Vo l.88 No.12Dec. 2 0 1  4 注:本文为中国地质大调查“我国重要矿产和区域成矿规律研究”项目(编号1212010633903)和“中国矿产地质与区域成矿规律综合研究(中国矿产地质志)”项目(编号1212011220369)、“中国分矿种(组)矿产地质总结研究”项目(编号12120114039601)、“中国区域成矿规律研究与总结”项目(编号12120114039701)等联合资助的成果。收稿日期:2014-08-30;改回日期:2014-11- 21;责任编辑:周健。作者简介:王登红,男,1967年生。研究员,博士生导师,现主要从事成矿规律和矿产资源潜力评价方面的研究工作。通讯地址:100037,北京市百万庄路26号;电话:010-68999048;Email:wangdenghong @sina.com。全国重要矿产和区域成矿规律研究进展综述 王登红1),徐志刚1),盛继福1),朱明玉2),徐珏1),袁忠信1),白鸽1),屈文俊3), 李华芹4),陈郑辉1),王成辉1),黄凡1),张长青1),王永磊1),应立娟1),李厚民1),高兰1), 孙涛1),付勇1),李建康1),武广1),唐菊兴1),丰成友2),赵正1),张大权5) 1)中国地质科学院矿产资源研究所,北京,100037; 2 )中国地质科学院,北京,100037;3)国家地质实验测试中心,北京,100037; 4 )中国地质调查局武汉地调中心,武汉,430205;5)中国地质调查局,北京,100037 内容提要: 对重要矿产开展全国性的资源潜力评价,是国情调查的重要组成部分,而开展重要矿产和区域成矿规律的研究,又是矿产资源潜力评价的基础性工作。自2006~2013年的8年间,通过对400多个典型矿床的野外调查,开展了典型矿床和区域成矿规律的全面研究,编制了成矿规律研究的技术要求,组织了全国性的技术培训,指导了大区和省级项目成矿规律研究工作,完成了大区和省级项目典型矿床和成矿规律研究成果的验收、汇总和综合,编制了全国单矿种(组)成矿规律相关专题图件,建立了相应的数据库,提出了一系列新认识、新技术和新方法,包括同位素定年的方法和成矿规律编图方法,为矿产资源潜力评价奠定了扎实了理论基础,有效地指导了潜力评价和地质找矿工作,培养了人才,锻炼了队伍,取得了良好的经济效益,显著地提升了我国成矿学的研究水平。 关键词:矿种成矿规律;区域成矿规律,潜力评价;成矿预测;研究进展 作为“ 全国重要矿产资源潜力评价”计划项目中的重要组成部分,“全国重要矿产和区域成矿规律研究”工作项目旨在根据现有资料、系统总结全国重要矿种、成矿区带的成矿规律,并以此指导矿产资源潜力评价和矿产勘查。项目的总体目标任务为:通过开展全国典型矿床和区域成矿规律研究,编制成矿规律研究技术要求,开展技术培训;指导大区和省级项目成矿规律研究工作;负责大区和省级项目典型矿床、成矿规律成果的验收、汇总和综合;编制和完成全国矿种(组)成矿规律相关专题图件及其数据库建设;组织开展全国典型矿床野外调查。自2006~2013年, 以中国地质科学院矿产资源研究所为首的研究集体野外调查矿产地共453处,采集各类样品数千件,新测定同位素年龄数据400多个,编制了16个矿种的1∶500万全国性图件4类64种, 建设分矿种的数据库16个,汇总数据库1个,发表论文16 8篇,已出版专著8部、全国性成矿规律图1套,取得了一系列研究进展。 1 研究方法方面的新进展 成矿规律的研究是一项主观能动性很强的工作,由于研究人员对客观事物的认识千差万别,采取什么样的方法至关重要(王登红,2011)。以往没有一套规范性的技术要求来表达对成矿规律的认识,尤其是如何编制成矿规律图,学者们认识各异,编出的图件也各不相同,影响到对成矿规律的认识和表达。在项目实施之初,项目负责人就认识到编制统一技术规范的重要性,组织相关人员编制了全国统一的技术要求(陈毓川等,2010a),有效地推动和促进了重要矿产和区域成矿规律的研究。例如,为编好省级的、大区的和全国的单矿种成矿规律图和综合矿种成矿规律图,项目有关人员研读并吸取了国内外的一些成矿(规律)图和“国标GB958-99”之长处,设计出了一套新的图例(图1、2、3) 。该套图例

成矿规律研究

成矿规律研究 成矿规律研究是矿产预测工作的核心内容,采用从点到面,点面结合的方法,解剖典型矿床,划分成矿系列并建立区域的和矿床的成矿模式,编制成矿规律图件。 第一节成矿特征研究 一、典型矿床解剖 典型矿床解剖工作是成矿规律研究工作的基础,要求选择工作区内在矿种、规模、成矿类型、控矿因素等方面具有代表性的矿床或矿点,进行典型矿床解剖工作。 具体要求如下: 1. 控矿因素的研究 控矿因素的研究是在成矿地质背景宏观分析的基础上,对控制成矿的直接地质因素进行分析研究,其前提是首先确定各类地质作用是否和成矿有关。 (1)与成矿有关的地层的研究内容:地层层序、时代、产状、空间分布、岩石组合,岩石结构构造、岩石物理性质、矿物成分,岩石化学、微量元素、不同岩性和成矿的关系。 (2)与成矿有关的岩浆岩研究内容:侵入岩三度空间形态、侵入深度、侵入期次,侵入时代、侵入角砾岩特征、自变质作用,接触带特征,岩石结构构造、剥蚀程度、矿物成分、微量元素、岩石化学、同位素成分、稀土元素分配、气液包裹体、岩石组合、脉岩、隐伏岩体的推测和圈定。 (3)控岩控矿构造研究内容 褶皱构造:划分褶皱变形期,确定各期次褶皱的产状、形态、空间组合形式,确定褶皱构造演化历史及空间特征变化,确定褶皱和断裂构造的关系。 断裂构造:确定控矿和非控矿断裂,确定其形态、产状、规模、形成深度,级别划分、空间展布特征,平面和剖面形态组合特征、控矿构造期次,发生发育历史、控矿构造的性质及各期次各空间产状的性质转化特征,控矿构造和区域构造的关系及其边界条件的确定,成矿物质迁移沉淀和构造活动的关系。 (4)古构造的分析研究内容:韧性剪切带、继承性区域断裂带、火山机构、火山原生构造、火山岩浆构造带、沉积盆地,隆起和坳陷等古构造轮廓、同生构造带、造礁带等。 2. 成矿特征的研究 (1)填制矿产统计卡片,内容包括矿床位置、区域构造背景、控矿因素、矿床特征、矿体特征、矿石特征等内容,附矿区平面图及典型矿体剖面图。

青海玉树地区三江构造带北段构造与成矿的关系探讨

青海玉树地区三江构造带北段构造与成矿的关系探讨 摘要:本文首先介绍了研究区矿产概述,然后研究了晚古生代、中生代及新生代与成矿的关系及影响,最后就与成矿有关的侵入岩、火山活动等因素进行了探讨,具有较强的指导性和价值,供参考。 关键词:三江构造带北段;构造;成矿 Abstract: this paper first introduced the research area mineral overview, then studies the late Paleozoic Mesozoic and Cenozoic and mineralization, the relationship and influence, finally the metallogenic intrusive rocks, volcanic activities factors were discussed, and has strong guidance and value, for reference. Keywords: sanjiang tectonic belt section; Structure; metallogenic “三江”成矿带北段,成矿地质条件优越。晚三叠世以来,唐古拉地块北缘裂陷活动强烈,形成大范围的裂陷海盆,并伴有强烈的火山活动,形成大量海相火山岩和次火山岩,与喜马拉雅期的断隆作用有关,有关的中一酸性斑岩体星罗棋布。这些印支晚期的火山岩、次火山岩和喜马拉雅期斑岩,以及与以铜为主的多金属矿成矿关系极为密切。几条深断裂既控制着研究区内地层和岩浆岩的分布,也是成矿物质来源的通道。在该带上目前已发现以铜(铝)铅锌为主的有色金属矿产地六十余处。成矿类型主要有火山一次火山斑岩型、喷流沉积一叠加改造型、沉积变质一后期改造型、接触交代型、沉积砂岩型、浅成低温热液型及韧性剪切带有关的蚀变岩型等,其中以斑岩型、火山喷流沉积一叠加改造型、沉积变质一后期改造型为主,找矿前景巨大。 1研究区矿产概述 研究区位于唐古拉北缘成矿带北带,晚三叠世以来,裂陷活动强烈并伴有强烈的火山活动。这些印支晚期的火山岩和喜马拉雅期的斑岩与以铜为主的多金属矿关系密切,以多金属成矿为主,目前已发现的矿床主要有四川白玉县呷村超大型多金属矿、青海玉树赵卡隆多金属矿以及涉及研究区的朵龙格玛多金属矿。研究区的矿床主要产在巴塘群火山一沉积岩系中。 2构造与成矿的关系 根据现今研究结果综合分析,区域上的构造演化不是由一次陆一陆碰撞造山完成的,而是先后经历多岛海、陆内俯冲和陆内转换三次不同类型造山过程,

系统动力学方法-名词

系统动力学方法 系统动力学方法是一种以反馈控制理论为基础,以计算机仿真技术为手段,通常用以研究复杂的社会经济系统的定量方法。自50年代中美国麻省理工学院地的福雷斯特教授创立以来,它已成功地尖用于企业、城市、地区、国家甚至世界规模的许多战略与决策等分析中,被誉为"战略与决策实验室"。这种模型从本质上看是带时间滞后的一阶差微分方程,由于建模时借助于"流图",其中"积累"、"流率"和其它辅助变量都具有明显的物理意义,因此可以说是一种布告同实际的建模方法。它与其它模型方法相比,具有下列特点: (1)适用于处理长期性和周期性的问题。如自然界的生态平衡、人的生命周期和社会问题中的经济危机等都呈现周期性规律并需通过较长的历史阶段来观察,已有不少系统动力学模型对其机制作出了较为科学的解释。 (2)适用于对数据不足的问题进行研究。建模中常常遇到数据不足或某些数据难于量化的问题,系统动力学藉各要素间的因果关系及有限的数据及一定的结构仍可进行推算分析。 (3)适用于处理精度要求不高的复杂的社会经济问题。上述总是常因描述方程是高阶非线性动态的,应用一般数学方法很难求解。系统动力学则藉助于计算机及仿真技术仍能获得主要信息。 (4)强调有条件预测。本方法强调产生结果的条件,采?quot;如果……则"的形式,对预测未来提供了新的手段。 系统动力学的基本概念包括: (1)因果反馈。如果事件A(原因)引起事件B(结果),AB简便形成因果关系。若A增加引起B增加,称AB构成正因果关系;若A啬引起B减少,则负因果关系。两个以上因果关系链首尾相连构成反馈回路,亦分正、负反馈回路。 (2)积累。本法视社会经济状态变化为由许多参变量组成的一种流,通过对流的研究来掌握系统性质和运动规律。流的规程量便是"积累",用以描述系统状态,系统输入输出流量之差为积累增量。"流率"表述流的活动状态,亦称决策函数,积累则是流的结果。任何决策过程均可用流的反馈回路描述。 (3)流图。流图由"积累"、"流率"、"物质流"、"信息流"等符号构成,直观形象地反映系统结构和动态特征。 某库存系统的流图如图16-8。图中,库存量(L)和劳力(A)为积累变量, 产出率(R 1),发货率(R 2 ),雇用率(R 3 )为流速变量。可以根据流图写出系 统动力学方程。 如:积累(L)公式为:L=L 0+(R 1 -R 2 )△t

相关主题
文本预览
相关文档 最新文档