当前位置:文档之家› 2,牛顿运动定律

2,牛顿运动定律

2,牛顿运动定律

2,牛顿运动定律

高考物理牛顿运动定律的应用练习题及答案

高考物理牛顿运动定律的应用练习题及答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。已知木板与物块间动摩擦因数μ1=3 ,木板与传送带间的动摩擦因数μ2= 3 4 ,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ; (3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。 【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲: 木块重力沿斜面的分力:1 sin 2 mg mg α= 斜面对木块的最大静摩擦力:13 cos 4 m f mg mg μα== 由于:sin m f mg α> 所以,小木块处于静止状态; (2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=

木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()9 9.0N 8 m F M m g = += (3)因为F=10N>9N ,所以两者发生相对滑动 对小木块有:2 1cos sin 2.5m/s a g g μαα=-= 对长木棒受力如图丙所示 ()21sin cos cos F Mg M m g mg Ma αμαμα--+-'= 解得24.5m/s a =' 由几何关系有:221122 L a t at =-' 解得1t s = 全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα?? =+=+++ ??? 解得:12J Q =。 2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s2)求: (1)长板2开始运动时的加速度大小;

牛顿运动定律解题(二)

牛顿运动定律解题(二) 1、一个物体放在光滑的水平面上,处于静止。从某一时刻t=0 起,受到如下图所示的力F的作用,设力F的正方向为向北, 物体的质量为m=10kg。物体在5s末的位移是____;速度是 ____,方向_____,物体在10s末的位移是____;速度是_____, 方向_____ 2、用恒力F在时间t内能使质量为m的物体,由静止开始移动一段距离s,若用F/2恒力,在时间2t内作用于该物体,由静止开始移动的距离是_____。 3、物体在力F1作用下获得正西方向4 m/s2的加速度,在力F1和力F2共同作用下获得正北方向3 m/s2的加速度。那么物体在力F2单独作用下的加速度大小是_____ 。 4、甲、乙两个物体的质量之比为2:1,受到的合外力的大小之比是1:2,甲、乙两个物体都从静止开始运动,那么,两个物体经过相同的时间通过的路程之比为_____。 5、在运动的升降机中天花板上用细线悬挂一个物体A,下面吊着一个轻质 弹簧秤(弹簧秤的质量不计),弹簧秤下吊着物体B,如下图所示,物体A 和B的质量相等,都为m=5kg,某一时刻弹簧秤的读数为40N,设g=10 m/s2, 则细线的拉力等于_____,若将细线剪断,在剪断细线瞬间物体A的加速度 是_____,方向______;物体B的加速度是_____;方向_____。 6、一滑块恰能沿斜面匀速下滑.现在该滑块上作用一竖直向下的恒力,则滑块的运动情况是 (A)仍保持匀速滑下; (B)将加速下滑; (C)将减速下滑; (D)根据具体数据才能确定. 7、如图所示,A,B两滑块叠放在水平地面上.A,B间的摩擦系数为μ1,B与地面的摩擦系数为μ2.若在A上作用一水平力F,使A,B一起以相同速度作匀速直线运动.则关于两摩擦系数必须有 (A)μ1≠0,μ2=0;(B)μ1≠0μ2≠0; (C)μ1>μ2,μ2≠0;(D)μ1<μ2,μ1≠0. 8、重10牛的滑块A置于倾角37°的斜面上,用细线通过斜面 顶端滑轮与砝码B相连,如图.A和斜面间的摩擦系数为0.4. 不计滑轮摩擦,要使A在斜面上平衡,B所受重力应多大? 9、水平地面上放着重6牛的物体,用1.8牛的水平拉力能使物 体匀速前进.如用与水平面成30°角的力来拉,则要使物体匀速运动拉力的大小为 . 10如图,A,B是两个带柄(a和b)的完全相同的木块,C是质量为m 的长木板,A,B与斜面及木板间皆有摩擦,C与A,B间摩擦系数均 匀μ.设它们原来都是静止的.(1)使A不动,手握b使B沿斜面向上 拉,当B开始移动时,C是否动? ,此时A与C间的摩擦力f A为 .(2)若使B不动,手握a使A沿斜面向下拉,当A开始移动时,C是否动? . 11、一物体沿斜面匀速向上滑动,那么关于该物体受力的个数可能是 (A)两个力;(B)三个力; (C)四个力;(D)多于四个力. 12、重5牛的滑块恰能在倾角为37°的斜面上匀速下滑.则物块与斜面间的摩擦系数为 . 若用一平行斜面的力拉滑块匀速向上滑动,则拉力大小为 .

牛顿运动定律的运用教案

牛顿运动定律的运用教 案 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

牛顿运动定律的应用 教学目标 一、知识目标 1.知道运用牛顿运动定律解题的方法 2.进一步学习对物体进行正确的受力分析 二、能力目标 1.培养学生分析问题和总结归纳的能力 2.培养学生运用所学知识解决实际问题的能力 三、德育目标 1.培养学生形成积极思维,解题规范的良好习惯 教学重点 应用牛顿运动定律解决的两类力学问题及这两类问题的基本方法 教学难点 应用牛顿运动定律解题的基本思路和方法 教学方法 实例分析发归纳法讲练结合法 教学过程 一、导入新课 通过前面几节课的学习,我们已学习了牛顿运动定律,本节课我们就来学习怎样运用牛顿运动定律解决动力学问题。 二、新课教学

(一)、牛顿运动定律解答的两类问题 1.牛顿运动定律确定了运动和力的关系,使我们能够把物体的受力情况和运动情况联系起来,由此用牛顿运动定律解决的问题可分为两类: a.已知物体的受力情况,确定物体的运动情况。 b.已知物体的运动情况,求解物体的受力情况 2.用投影片概括用牛顿运动定律解决两类问题的基本思路 已知物体的受力情况???→?=ma F 据 求得a ?→?据t v v s as v v at v v at v s t t t ......2210202020可求得???? ?????=-?→?+=+= 已知物体的运动情况???→?????→?=???????=-+=+=ma F as v v at v s at v v a t t 据据求得2221022 00求得物体的受力情况 3.总结 由上分析知,无论是哪种类型的题目,物体的加速度都是核心,是联结力和运动的桥梁。 (二)已知物体的受力情况,求解物体的运动情况 例1.如图所示,质量m=2Kg 的物体静止在光滑的水平地 面上,现对物体施加大小F=10N 与水平方向夹角θ= 370的斜向上的拉力,使物体向右做匀加速直线运动。已知sin370=,cos370=取g=10m/s 2,求物体5s 末的速度及5s 内的位移。 问:a.本题属于那一类动力学问题 (已知物体的受力情况,求解物体的运动情况) b.物体受到那些力的作用这些力关系如何 引导学生正确分析物体的受力情况,并画出物体受力示意图。

应用牛顿运动定律解决“四类”热点问题

专题强化三应用牛顿运动定律解决“四类”热点问题 专题解读 1.本专题是应用动力学方法分析动力学图象问题、连接体问题、临界和极值问题以及多运动过程问题.在高考中主要以选择题形式考查,且每年都有命题. 2.学好本专题可以培养同学们的分析推理能力、应用数学知识和方法解决物理问题的能力. 3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识. 1.常见图象 v-t图象、a-t图象、F-t图象、F-a图象等. 2.题型分类 (1)已知物体受到的力随时间变化的图线,要求分析物体的运动情况. (2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况. (3)由已知条件确定某物理量的变化图象. 3.解题策略 (1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等. (3)明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断. 例1(多选)(2019·全国卷Ⅲ·20)如图1(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平.t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力.细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示.木板与实验台之间的摩擦可以忽略.重力加速度取10 m/s2.由题给数据可以得出() A.木板的质量为1 kg B.2~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2

牛顿运动定律的应用2

牛顿第二定律(2) 应用牛顿第二定律解题的一般步骤: (1)确定研究对象(在有多个物体存在的复杂问题中,确定研究对象尤其显得重要)。 (2)分析研究对象的受力情况,画出受力图。 (3)选定正方向或建立直角坐标系。通常选加速度的方向为正方向,或将加速度的方向作为某一坐标轴的正方向。这样与正方向相同的力(或速度)取正值;与正方向相反的力(或速度)取负值。 (4)求合力(可用作图法,计算法或正交分解法)。 (5)根据牛顿第二定律列方程。 (6)必要时进行检验或讨论。 1.质量为2kg 的物体放在水平地面上,与水平地面的动摩擦因数为0.2,现对物体作用一向右与水平方向成37°,大小为10N 的拉力F ,使之向右做匀加速运动,求物体运动的加速度? 2.如图所示,装有架子的小车,用细线拖着小球在水 平地面上运动,已知运动中,细线偏离竖直方向30°, 则小车在做什么运动? 4.在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作( ) A .匀减速运动。 B .匀加速运动。 C .速度逐渐减小的变加速运动。 D .速度逐渐增大的变加速运动。 5.一个力作用于质量为m 1的物体A 时,加速度为a 1;这个力作用于质量为m 2的物体时,加速度为a 2,如果这个力作用于质量为m 1+m 2的物体C 时,得到的加速度为( ) A . 221a a + B .2111m m a m + C .2122m m a m + D .2 121a a a a + 作业: 1.当作用在物体上的合外力不等于零时,则 ( ) A .物体的速度一定越来越大 B .物体的速度一定越来越小

应用牛顿运动定律解题的方法和步骤

§3.4应用牛顿运动定律解题的方法和步骤 应用牛顿运动定律的基本方法是隔离法,再配合正交坐标运用分量形式求解。 解题的基本步骤如下: (1)选取隔离体,即确定研究对象 一般在求某力时,就以此力的受力体为研究对象,在求某物体的运动情况时,就以此物体为研究对象。有几个物体相互作用,要求它们之间的相互作用力,则必须将相互作用的物体隔离开来,取其中一物体作研究对象。有时,某些力不能直接用受力体作研究对象求出,这时可以考虑选取施力物体作为研究对象,如求人在变速运动的升降机内地板的压力,因为地板受力较为复杂,故采用人作为研究对象为好。 在选取隔离体时,采用整体法还是隔离法要灵活运用。如图3-4-1要求质量分别为M 和m 的两物体组成的系统的加速度a ,有 两种方法,一种是将两物体隔离,得方程为 ma T mg =- Ma Mg T =-μ 另—种方法是将整个系统作为研究对象,得方 程为 a M m Mg mg )(+=-μ 显然,如果只求系统的加速度,则第二种方法好;如果还要求绳的张力,则需采用前一种方法。 (2)分析物体受力情况:分析物体受力是解动力学问题的一个关键,必须牢牢 图3-4-1

掌握。 ①一般顺序:在一般情况下,分析物体受力的顺序是先场力,如重力、电场力等,再弹力,如压力、张力等,然后是摩擦力。并配合作物体的受力示意图。 大小和方向不受其它力和物体运动状态影响的力叫主动力,如重力、库仑力;大小和主向与主动力和物体运动状态有密切联系的力叫被动力或约束力,如支持力、摩擦力。这就决定了分析受力的顺序。如物体在地球附近不论是静止还是加速运动,它受的重力总是不变的;放在水平桌面上的物体对桌面的压力就与它们在竖直方向上有无加速度有关,而滑动摩擦力总是与压力成正比。 ②关于合力与分力:分析物体受力时,只在合力或两个分力中取其一,不能 同时取而说它受到三个力的作用。一般情况下选取合Array力,如物体在斜面上受到重力,一般不说它受到下滑力 和垂直面的两个力。在—些特殊情况下,物体其合力不 图3-4-2 能先确定,则可用两分力来代替它,如图3-4-2横杆左 端所接铰链对它的力方向不能明确之前,可用水平和竖直方向上的两个分力来表示,最后再求出这两个分力的合力来。 ③关于内力与外力:在运用牛顿第二定律时,内力是不可能对整个物体产生加速度的,选取几个物体的组合为研究对象时,这几个物体之间的相互作用力不能列入方程中。要求它们之间的相互作用,必须将它们隔离分析才行,此时内力转化成外力。 ④关于作用力与反作用力:物体之间的相互作用力总是成对出现,我们要分 清受力体与施力体。在列方程解题时,对一对相互作用力一般采用同一字线表示。在不考虑绳的质量时,由同一根绳拉两个物体的力经常作为一对相互作用力处

牛顿运动定律的应用

第3讲牛顿运动定律的应用 ★考情直播 1.考纲解读 考纲内容能力要求考向定位 1.牛顿定律的应用 2.超重与失重 3.力学单位制1.能利用牛顿第二定 律求解已知受力求运 动和已知运动求受力 的两类动力学问题 2.了解超重、失重现 象,掌握超重、失重、 完全失重的本质 3.了解基本单位和导 出单位,了解国际单 位制 牛顿第二定律的应 用在近几年高考中出 现的频率较高,属于 Ⅱ级要求,主要涉及 到两种典型的动力学 问题,特别是传送带、 相对滑动的系统、弹 簧等问题更是命题的 重点.这些问题都能 很好的考查考试的思 维能力和综合分析能 力. 考点一已知受力求运动 [特别提醒] 已知物体的受力情况求物体运动情况:首先要确定研究对象,对物体进行受力分析,作出受力图,建立坐标系,进行力的正交分解,然后根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量. 一轻质光滑的定滑轮,一条不可伸长的轻

绳绕过定滑轮分别与物块A 、B 相连,细绳处于伸直状态,物块A 和B 的质量分别为m A =8kg 和m B =2kg ,物块A 与水平桌面间的动摩擦因数μ=0.1,物块B 距地面的高度h =0.15m.桌面上部分的绳足够长.现将物块B 从h 高处由静止释放,直到A 停止运动.求A 在水平桌面上运动的时间.(g=10m/s 2) [解析]对B 研究,由牛顿第二定律得m B g-T=m B a 1 同理,对A :T-f =m A a 1 A N f μ= 0=-g m N A A 代入数值解得21/2.1s m a = B 做匀加速直线运2112 1t a h =;11t a v = 解得s t 5.01= s m v /6.0= B 落地后,A 在摩擦力作用下做匀减速运动2a m f A = ;2 1a v t = 解得:s t 6.02= s t t t 1.121=+= [方法技巧] 本题特别应注意研究对象和研究过程的选取,在B 着地之前,B 处于失重状态,千万不可认为A 所受绳子的拉力和B 的重力相等.当然B 着地之前,我们也可以把A 、B 视为一整体,根据牛顿第二定律求加速度,同学们不妨一试. 考点二 已知运动求受力 [例2]某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多

第三章牛顿运动定律2

第三章 牛顿运动定律(二) 班级 姓名 总分 1.如图所示,一木块在光滑水平面上受一恒力F 作用而运动,前方固定一个 弹簧,当木块接触弹簧后( ). A .将立即做变减速运动 B .将立即做匀减速运动 C .在一段时间内仍然做加速运动,速度继续增大 D .在弹簧处于最大压缩量时,物体的加速度为零 2.质量为1 kg 的质点,受水平恒力作用,由静止开始做匀加速直线运动,它在t s 内的位移为x m ,则F 的大小为(单位为N)( ). A.2x t 2 B.2x 2t -1 C.2x 2t +1 D.2x t -1 3.一个原来静止的物体,质量是7 kg ,在14 N 的恒力作用下,则5 s 末的速度及5 s 内通过的路程为( ). A .8 m/s 25 m B .2 m/s 25 m C .10 m/s 25 m D .10 m/s 12.5 m 4.如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定在倾角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度分别 为( ) A .都等于g 2 B.g 2和0 C. M A +M B M B ·g 2和0 D .0和 M A +M B M B ·g 2

5.用细绳拴一个质量为m 的小球,小球将一固定在墙上的水平轻质弹簧压缩了x (小球与弹簧不拴连),如图所示.将细绳剪断后( ). A .小球立即获得kx m 的加速度 B .小球在细绳剪断瞬间起开始做平抛运动 C .小球落地的时间等于 2h g D .小球落地的速度大于2gh 6. 乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30°的山坡以加速度a 上行,如图4所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m 的小物块,小物块相对斜面静止(设缆车保持竖直状态运行).则( ). A .小物块受到的摩擦力方向平行斜面向上 B .小物块受到的摩擦力方向平行斜面向下 C .小物块受到的滑动摩擦力为1 2mg +ma D .小物块受到的静摩擦力为1 2mg +ma

高中物理牛顿运动定律的应用专题训练答案及解析

高中物理牛顿运动定律的应用专题训练答案及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x=L?x 相对滑动产生的热量为: Q=μmg△x 代值解得: Q=0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送 带逆时针转动,运行速度v=1.0m/s。已知木板与物块间动摩擦因数μ1= 3 2 ,木板与传送 带间的动摩擦因数μ2=3 ,取g=10m/s2,最大静摩擦力等于滑动摩擦力。 (1)若在恒力F作用下,薄木板保持静止不动,通过计算判定小木块所处的状态; (2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m; (3)若F=10N,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q。 【答案】(1)木块处于静止状态;(2)9.0N(3)1s 12J 【解析】 【详解】 (1)对小木块受力分析如图甲:

2 牛顿运动定律与图像相关问题教师版

1. (2019年3月兰州模拟)质量为2kg的物体在水平力F作用下运动,t=0时刻开始计时,3s末撤去F,物体继续运动一段时间后停止,其v-t图象的一部分如图所示,整个过程中阻力恒定,则下列说法正确的是() A.水平力F为3.2N B.水平力F做功480J C.物体从t=0时刻开始,运动的总位移为92m D.物体与水平面间的动摩擦因数为0.5 【参考答案】B 【命题意图】本题以水平力作用下物体运动为情景,以速度图像给出解题信息,考查对速度图像的理解、牛顿运动定律、做功及其相关知识点。 【解题思路】在0~3s时间内,物体匀速运动,由平衡条件,F-μmg=0,3s末撤去F,在3~5s时间内,物体 做匀减速直线运动,运动的加速度大小为a= v t ? ? =4m/s2,由牛顿第二定律,μmg=ma,联立解得:μ=0.4,F=8N, 选项AD错误;在0~3s时间内,物体匀速运动位移x1=20×3m=60m,水平力F做功W=Fx=8×60J=480J,选项B正确;3s末撤去F,物体继续运动时间t=v/a=5s,即8s末物体停止运动,补全速度图像,由速度图像的面积表示位移可知,物体在3~8s时间内位移x2=20×5×1/2=50m,物体从t=0时刻开始,运动的总位移为s= x1+x2=60m+50m=110m,选项C错误。 【方法归纳】速度图像的斜率表示加速度,速度图像的面积表示位移。 2. (2018山东济南联考)受水平外力F作用的物体,在粗糙水平面上做直线运动,其v-t图线如图所示,则( ) A.在0-t1秒内,外力F大小不断增大 B. 在t1时刻,外力F为零

C .在t 1-t 2秒内,外力F 大小可能不断减小 D .在t 1-t 2秒内,外力F 大小可能先减小后增大 【参考答案】 CD 【名师解析】在0~t 1时间内,斜率逐渐减小,加速度减小,速度增加的慢了,说明外力F 大小不断减小,但仍然大于摩擦力,故A 错误.在t 1时刻斜率为零,即加速度为零,说明外力等于摩擦力,故B 错误.在t 1~t 2时间内,反方向的加速度逐渐增大,说明向后的合力一直增大,可能是F 一直减小,也可能是F 减小到零后反向增加,故C 、D 均有可能. 3.(2018洛阳联考)如图甲所示,一轻质弹簧的下端固定在水平面上,上端叠放两个质量均为M 的物体A 、B (B 物体与弹簧连接),弹簧的劲度系数为k ,初始时物体处于静止状态。现用竖直向上的拉力F 作用在物体A 上,使物体A 开始向上做加速度为a 的匀加速运动,测得两个物体的v -t 图像如图乙所示(重力加速度为g ),则( ) A .施加外力前,弹簧的形变量为2g k B .外力施加的瞬间,A 、B 间的弹力大小为M (g -a ) C .A 、B 在t 1时刻分离,此时弹簧弹力恰好为零 D .弹簧恢复到原长时,物体B 的速度达到最大值 【参考答案】B 【名师解析】 施加外力F 前,物体A 、B 整体平衡,根据平衡条件有2Mg =kx ,解得x =2Mg k ,故A 错误;施加外力F 的瞬间,对物体B ,根据牛顿第二定律有F 弹-Mg -F AB =Ma ,其中F 弹=2Mg ,解得F AB =M (g -a ),故B 正确;由题图乙知,物体A 、B 在t 1时刻分离,此时A 、B 具有共同的v 和a ,且F AB =0,对B 有F 弹′-Mg =Ma ,解得F 弹′=M (g +a ),故C 错误;当F 弹′=Mg 时,B 达到最大速度,故D 错误。 4.粗糙水平面上静止放置质量均为m 的A 、B 两物体,它们分别受到水平恒力F 1、F 2的作用后各自沿水平面运动了一段时间,之后撤去F 1、F 2,两物体最终都停止,其v t 图象如图所示,下列说法正确的是( ) A .A 、 B 两物体与地面间的滑动摩擦因数之比为2:1 B .F 1与A 物体所受摩擦力大小之比为3:1

高中物理专项练习:牛顿运动定律 (2)

高中物理专项练习:牛顿运动定律 一.选择题 1. (河南郑州二模)如图所示,个质量均为m的小球通过完全相同的轻质弹簧(在弹性限度内)相连,在水平拉力F的作用下,一起沿光滑水平面以加速度a向右做匀加速运动,设1和2之间 弹簧的弹力为F 1—2,2和3间弹簧的弹力为F 2—3 ,2018和间弹簧的弹力为F 2018— ,则下列结论正确 的是 A.F 1—2:F 2—3 :……F 2018—= 1:2:3: (2018) B.从左到右每根弹簧长度之化为1:2:3: (2018) C.如果突然撤去拉力F,撤去F瞬间,第个小球的加速度为F,N其余每个球的加速度依然为a D.如果1和2两个球间的弹簧从第1个球处脱落,那么脱落瞬间第1个小球的加速度为0,第2个小球的加速度为2a,其余小球加速度依然为a 【参考答案】AD 【命题意图】本题以轻弹簧连接的个小球为情景,考查连接体、受力分析、牛顿运动定律及其相关知识点. 【解题思路】隔离小球1,由牛顿运动定律,F1-2=ma,把小球1和2看作整体隔离,由牛顿运动定律,F2-3=2ma,把小球1、2和3看作整体隔离,由牛顿运动定律,F3-4=3ma,把小球1、2、3和4看作整体隔离,由牛顿运动定律,F4-5=4ma,·····把小球1到2018看作整体隔离,由牛顿运动定律,F2018-=2018ma,联立解得:F1-2∶F2-3∶F3-4∶F4-5∶F5-6······F2018-=1∶2∶3∶4∶5······2018,选项A正确;由于弹簧长度等于弹簧原长加弹簧伸长量,弹簧伸长量与弹簧弹力成正比,所以选项B错误;如果突然撤去拉力F,撤去F的瞬间,小球之间弹簧弹力不变,2018和之间的弹簧弹力F2018-=2018ma,由牛顿第二定律可得F=ma,F2018-=ma’,联立解得第个小球的加速度 a’=2018 2019 F m ,选项C错误;如果1和2两个球之间的弹簧从第1个球处脱落,那么脱落瞬间,第 1个小球受力为零,加速度为零,第2个小球受到2和3之间弹簧弹力,F2-3=ma2,解得第2个小球的加速度a2=2a,其余小球受力情况不变,加速度依然为a,选项D正确. 【方法归纳】对于连接体,要分析求解小球之间的作用力,需要隔离与该力相关的小球列方程解答.解答此题常见错误主要有:一是对弹簧作用力的瞬时性理解掌握不到位;二是研究对象选择不当;三是分析解答有误.

牛顿运动定律应用

高考第一轮复习---牛顿运动定律考点例析 牛顿三个运动定律是力学的基础,对整个物理学也有重大意义。本章考查的重点是牛顿第二定律,而牛顿第一定律和第三定律在牛顿第二定律的应用中得到了完美的体现。从近几年高考看,要求准确理解牛顿第一定律;加深理解牛顿第二定律,熟练掌握其应用,尤其是物体受力分析的方法;理解牛顿第三定律;理解和掌握运动和力的关系;理解超重和失重。本章内容的高考试题每年都有,对本章内容单独命题大多以选择、填空形式出现,趋向于用牛顿运动定律解决生活、科技、生产实际问题。经常与电场、磁场联系,构成难度较大的综合性试题,运动学的知识往往和牛顿运动定律连为一体,考查推理能力和综合分析能力。如:2000年上海物理试题第21题(风洞实验)、2001年全国物理试题第8题(惯性制导系统)、2001年上海物理试题第8题(升降机下落)、2001年上海物理试题第20题(轻绳和轻弹簧的辩析纠错题)、2002年理科综合全国卷第26题(蹦床运动)、2003年全国春季理综第16题(滑冰运动)、2004年全国理综四第19题(猫在木板上跑动)等等。同学们只要把任何一套高考试题拿来研究,总会发现有与牛顿定律有关的试题。 一、夯实基础知识 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x, F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互

最新高考物理牛顿运动定律的应用试题经典

最新高考物理牛顿运动定律的应用试题经典 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动 则有:212A A h a t = 21 2 B B h a t = A B H h h =+ A A V a t = B B V a t = 联立得:2s t =,10m A h =, 15m B h =,10m/s A V =,15m/s B V = A 、 B 落地时的动能分别为kA E 、kB E ,由机械能守恒,则有: 21()2 kA A A A A E m v m g H h = +- 400J kA E =

2牛顿运动定律及牛顿力学中的守恒定律

习题2 2-1 质量为16kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为 6N x f =,7N y f =,当0t =时,0x y ==,2m /s x v =-,0y v =。当2s t =时,求: (1) 质点的位矢; (2) 质点的速度。 解:由 x x f a m = ,有:x a 263 m /168 s ==,27m /16y y f a s m -= = (1)2 0035 22m /84 x x x v v a dt s =+=-+?=-?, 20077 2m /168 y y y v v a dt s -=+=?=-?。 于是质点在2s 时的速度:57 m /s 48 v i j =-- (2)22011()22x y r v t a t i a t j =++1317 (224)()428216 i j -=-?+??+? 137 m 48 i j =-- 2-2 质量为2kg 的质点在xy 平面上运动,受到外力2 424=-F i t j 的作用,t =0 时,它的初速度为034=+v i j ,求t =1s 时质点的速度及受到的法向力n F 。 解:解:由于是在平面运动,所以考虑矢量。 由:d v F m d t =,有:2 4242d v i t j dt -=?,两边积分有: 02 01(424)2 v t v d v i t j dt =-??,∴3024v v t i t j =+-, 考虑到034v i j =+,s t 1=,有15v i =

由于在自然坐标系中,t v v e =,而15v i =(s t 1=时),表明在s t 1=时,切向速度方向就是i 方向,所以,此时法向的力是j 方向的,则利用2 424F i t j =-,将s t 1=代入有424424t n F i j e e =-=-,∴24n F N =-。 2-3.如图,物体A 、B 质量相同,B 在光滑水平桌面上.滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是多少? 解:分别对A ,B 进行受力分析,可知: A A A m g T m a -= 2B B T m a = 12 B A a a = 则可计算得到:4 5 A a g = 。 2-4.如图,用质量为1m 的板车运载一质量为2m 的木箱,车板与箱底间的摩擦系数为μ,车与路面间 的滚动摩擦可不计,计算拉车的力F 为多少才能保证木箱不致滑动? 解法一:根据题意,要使木箱不致于滑动,必须使 板车与木箱具有相同的加速度,且上限车板与箱底间为最大摩擦。 即:max 212222 f m g f F a m m m m m μ==<=+ 可得:12()F m m g μ<+ 解法二:设木箱不致于滑动的最大拉力为max F ,列式有: max 2122F m g m a m g m a μμ-== 联立得:max 12()F m m g μ=+, 有:12()F m m g μ<+。 2-5.如图所示一倾角为θ的斜面放在水平面上,斜面上放一木块,两者间摩擦系数为

牛顿运动定律二例题分析

牛顿运动定律的应用(二)·例题分析 例1 如图3-31所示的三个物体质量分别为m1和m2和m3,带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计,为使三个物体无相对运动.水平推力F等于多少? 分析由于三个物体无相对运动,因此可看作一个整体,列出整体的牛顿第二定律方程.然后再隔离m1、m2,分别列出它们的运动方程. 解由整体在水平方向的受力列出牛顿第二定律方程为 F=(m1+m2+m3)a.①分别以m1、m2为研究对象作受力分析(图3-32).设绳张力为T.

对m1,在水平方向据牛顿第二定律得 T=m1a. ②对m2,在竖直方向由力平衡条件得 T-m2g=0. ③联立式①、②、③,得水平推力 说明也可以全部用隔离法求解.设连接m1与m2的绳中张力为T,m2与m3之间相互作用力为N,滑轮两侧绳子张力形成对m3的合力为F′,画出各个物体的隔离体受力图如图3-33所示(m1、m3竖直方向的力省略). 对于m1,由受力分析知

T=m1a. ④对于m2,由水平方向与竖直方向的受力情况分别可得 N=m2a, ⑤ T-m2g=0. ⑥对于m3,由于F′的水平分力(向左)等于T,因此 F-N-T=m3a. ⑦由④、⑤、⑥三式得 把它们代入式⑦得水平推力F:

显然,全部用隔离法求解时,不仅未知数和方程数多,还可能因疏漏滑轮两侧绳子拉力对m3的影响而造成错误.所以应注意灵活地有分有合,交替使用隔离法和整体法. 例2 两重叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图3-34所示,滑块A、B的质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A 之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力 [ ] A.等于零 B.方向沿斜面向上 C.大小等于μ1mgcosθ D.大小等于μ2mgcosθ 分析把A、B两滑块作为一个整体,设其下滑加速度为a.由牛顿第二定律 (M+m)gsinθ-μ1(M+m)gcosθ=(M+m)a,

高一物理牛顿运动定律的应用

第三章 D 牛顿运动定律的应用 一、教学任务分析 本节内容是对牛顿运动定律的综合提高和延伸,也为学习以后的物理学习打好力学基础。 学习本节内以受力分析、力的合成与分解、匀加速直线运动规律、牛顿运动定律等基础知识和相应的技能为基础。 通过实例情景和学生活动,了解建立国际单位制的重要性和必要性,介绍用国际单位制及其应用。 通过对典型示例的分析和讨论,归纳出用牛顿运动定律解决力学问题的一般规律和方法。 通过对观察录像、演示实验和学生小实验,感受超重、失重现象,应用牛顿第二定律分析、探究超重、失重现象的本质与规律。 二、教学目标 1、知识与技能 (1)知道国际单位制。知道基本单位和导出单位。理解力学中的三个基本单位。 (2)学会导出单位的推演方法并能进行单位换算。 (3)掌握用牛顿运动定律解决力学问题的一般规律和方法。 (4)知道超重和失重现象。 (5)学会用牛顿第二定律分析超重、失重现象。 2、过程与方法 (1)通过创设情景、实例分析和练习的过程,认识引入国际单位制的重要性和必要性。 (2)通过对典型示例的分析、讨论过程,认识分析、比较、等效、演绎、归纳、验证等科学方法。 (3)通过对电梯中进行的超重失重实验的定性观察和学生小实验,感受用牛顿运动定律解决实际问题的一般规律和方法。 3、情感、态度与价值观 (1)通过阅读关于“火星探测器失事原因”的STS材料,在了解统一单位重要性的同时,感悟严谨的治学态度对科学发展的重大意义。 (2)通过应用牛顿运动定律解决实际问题的过程,感悟物理学在社会发展中的重要作用。 (3)通过学生实验的过程,激发求知欲,获得成就感。 (4)通过观察神舟六号飞船录像片段,了解我国航天事业的发展,激发民族自豪感。三、教学重点与难点 重点:怎样应用牛顿运动定律解决力学问题。 难点:对超重失重视现象的认识。 四、教学资源 1、器材:多媒体投影仪,演示超重、失重的DIS实验器材,改锥,饮料瓶(人手一个)。

高中物理必修一重点强化卷2 牛顿运动定律的应用

高中物理必修一重点强化卷: 牛顿运动定律的应用 一、选择题 1.(多选)关于作用力和反作用力,下列说法正确的是() A.地球对重物的作用力大小等于重物对地球的作用力大小 B.当作用力是摩擦力时,反作用力也一定是摩擦力 C.鸡蛋击石头,石存蛋破,证明作用力可以大于反作用力 D.匀速上升的气球所受浮力没有反作用力 【解析】地球对重物的作用力与重物对地球的作用力是相互作用力,大小相等,A对;由作用力和反作用力的性质可知,B对;鸡蛋击石头,石存蛋破,是由于鸡蛋比石头容易打破,并不是作用力大于反作用力,C错;匀速上升的气球所受浮力的反作用力是气球对空气的作用力,D错. 【答案】AB 2.用牛顿第三定律判断下列说法中正确的是() A.马拉车时,只有马对车的拉力大于车对马的拉力时才能前进 B.物体A静止在物体B上,A的质量是B的质量的10倍,所以A作用于B的力大于B作用于A的力 C.轮船的螺旋桨旋转时向后推水,水同时给螺旋桨一个作用力 D.发射火箭时,燃料点燃后,喷出的气体给空气一个作用力,空气施加的反作用力推动火箭前进 【解析】只有当马对车的拉力大于车受到的阻力时,车才能开始运动,马拉车的力和车拉马的力是一对作用力和反作用力,大小总是相等的,A错误;A、B之间的相互作用力总是大小相等的,与它们的质量无关,B错误;轮船之所以前进是因为螺旋桨旋转时给水一个向后的推力,水同时给螺旋桨一个向前的推力,从而推动轮船前进,C正确;火箭之所以能够前进是因为火箭向后推动燃烧形成的高温高压气体,根据牛顿第三定律,燃烧形成的高温高压气体也向前推火箭,从而使火箭克服阻力向前飞行,如果说成喷出的气体向后推空气,那么根据牛顿第三定律,应是空气向前推“喷出的气体”而不是推动火箭,D错误.【答案】 C

牛顿运动定律的应用练习题含答案

牛顿运动定律的应用练习题含答案 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M =6.0kg 的物块A 。装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。传送带的皮带轮逆时针匀速转动,使传送带上表面以u =2.0m/s 匀速运动。传送带的右边是一半径R =1.25m 位于竖直平面内的光滑 14圆弧轨道。质量m =2.0kg 的物块B 从1 4 圆弧的最高处由静止释放。已知物块B 与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l =4.5m 。设第一次碰撞前,物块A 静止,物块B 与A 发生碰撞后被弹回,物块A 、B 的速度大小均等于B 的碰撞前的速度的一半。取g =10m/s 2。求: (1)物块B 滑到 1 4 圆弧的最低点C 时对轨道的压力; (2)物块B 与物块A 第一次碰撞后弹簧的最大弹性势能; (3)如果物块A 、B 每次碰撞后,物块A 再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B 经第一次与物块A 碰撞后在传送带上运动的总时间。 【答案】(1)60N ,竖直向下(2)12J (3)8s 【解析】 【详解】 (1) 设物块B 沿光滑曲面下滑到水平位置时的速度大小为v 0,由机械能守恒定律得: 2 012 mgR mv 代入数据解得: v 0=5m/s

相关主题
文本预览
相关文档 最新文档