当前位置:文档之家› 汉诺塔问题的非递归算法分析

汉诺塔问题的非递归算法分析

汉诺塔问题的非递归算法分析
汉诺塔问题的非递归算法分析

汉诺塔递归与非递归算法研究

作者1,作者2,作者33

(陕西师范大学计算机科学学院,陕西西安 710062)

摘要: 摘要内容(包括目的、方法、结果和结论四要素) 摘要又称概要,内容提要.摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明,确切地记述文献重要内容的短文.其基本要素包括研究目的,方法,结果和结论.具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息.摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息.

关键词:关键词1; 关键词2;关键词3;……(一般可选3~8个关键词,用中文表示,不用英文

Title

如:XIN Ming-ming , XIN Ming

(1.Dept. of ****, University, City Province Zip C ode, China;2.Dept. of ****, University, City Province Zip C ode, China;3.Dept. of ****, University, City Province Zip C ode, China)

Abstract: abstract(第三人称叙述,尽量使用简单句;介绍作者工作(目的、方法、结果)用过去时,简述作者结论用一般现在时)

Key words: keyword1;keyword2; keyword3;……(与中文关键词对应,字母小写(缩略词除外));

正文部分用小5号宋体字,分两栏排,其中图表宽度不超过8cm.。设置为A4页面

1 引言(一级标题四号黑体加粗)

这个问题当时老和尚和众僧们,经过计算后,预言当所有的盘子都从基柱A移到基座B上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。其实,不管这个传说的可信度有多大,如果考虑把64个盘子,由一个塔柱上移到另一根塔柱上,并且始终保持上小下大的顺序。假设有n个盘子,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2n-1。n=64时,

f(64)= 2^64-1=18446744073709551615

假如每秒钟一次,共需多长时间呢?一年大约有 31536926 秒,计算表明移完这些金片需要5800多亿年,比地球寿命还要长,事实上,世界、梵塔、庙宇和众生都早已经灰飞烟灭。

对传统的汉诺塔问题,目前还有不少的学者继续研究它的非递归解法,本文通过对递归算法的研究…….

提示:(1)可以定义问题的规模n,如盘子的数量;(2)塔柱的数量(目前有部分理论可以支撑,不妨用计算机实现)分析规模的变化与算法的复杂度比较。(3)可以对经典的汉诺塔问题条件放松、加宽,如在经典的汉诺塔问题中大盘只能在小盘下面,放松其他条件可以定义相邻两个盘子必须满足大盘只能在小盘下面。其它盘子不作要求。

2 算法设计

2.1 汉诺塔递归算法描述(二级标题小五黑体加粗)

用人类的大脑直接去解3,4或5个盘子的汉诺塔问题还可以,但是随着盘子个数的增多,问题的规模变的越来越大。这样的问题就难以完成,更不用说吧问题抽象成循环的机器操作。所以类似的问题可用递归算法来求解。下面n个盘的汉

诺塔问题可用如下递归方法实现。

如果n=1,则将圆盘从A直接移动到B。

如果n=2,则:

(1)将A上的n-1(等于1)个圆盘移到C上;

(2)再将A上的一个圆盘移到B上;

(3)最后将C上的n-1(等于1)个圆盘移到B上。

如果n=3,则:

A)将A上的n-1(等于2)个圆盘移到C(借助于B),步骤如下:(1)将A上的n-2(等于1)个圆盘移到B上。

(2)将A上的一个圆盘移到C。

(3)将B上的n-2(等于1)个圆盘移到C。

B)将A上的一个圆盘移到B。

C)将C上的n-1(等于2)个圆盘移到B(借助A),步骤如下:(1)将C上的n-2(等于1)个圆盘移到A。

(2)将C上的一个盘子移到B。

(3)将A上的n-2(等于1)个圆盘移到B。到此,完成了三个圆盘的移动过程。

从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤:

第一步把A上的n-1个圆盘移到C上;

第二步把A上的一个圆盘移到B上;

第三步把C上的n-1个圆盘移到B上;

其中第一步和第三步是类同的。

算法如下:(伪码描述、自然语言描述、流程图)

Main

1: { int n ;

2: Input(n);

3: Hanoi(n,”A”,”B”,”C”) ; }

4: Hanoi(n,char a,char b,char c)

5: { if (n>0)

6: { hanoi ( n - 1, a, c, b) ;

7: printf “( %d %a - > %c \n”, n , a, c) ;

8: hanoi ( n - 1,b, a, c) ;}

}

递归算法结构清晰,可读性强,而且很容易用数学归纳法证明算法的正确性,然而它的运行效率较低,它的时间复杂度主要在程序嵌套调用所用的时间。T(N)=2T(N-1)+1,容易计算出T(N)=2N-1.若在程序中消除递归调用,使其转化为非递归调用算法。通常,消除递归采用一个用户定义的栈来模拟系统的递归调用工作栈,从而达到递归改为非递归算法的目的。

2.2 汉诺塔非递归算法描述

2.2.1非递归1:遍历二叉树搜索解空间(三级标题小五楷体)

通过定义MAXSTACK栈,可将递归算法转化为非递归调用算法。具体程序如下:

#define MAXSTACK 100 /* 栈的最大深度*/

int N = 3; /* N阶问题/*

int c = 1; /* 一个全局变量,表示目前移动的步数*/

struct hanoi { /* 存储汉诺塔的结构,包括盘的数目和三个盘

的名称*/

int n; char a, b, c;};

struct hanoi p[MAXSTACK];

void move(char a, int n, char c) /* 移动函数,表示把某个盘从

某根针移动到另一根针*/

{ printf("%d. Move disk %d from %c to %c\n", c++, n, a, c);} void push(struct hanoi *p, int top, char a, char b, char c,int n)

{p[top+1].n = n - 1;

p[top+1].a = a;

p[top+1].b = b;

p[top+1].c = c; }

void unreverse_hanoi(struct hanoi *p) /*汉诺塔的非递归算法*/ { int top = 0;

while (top >= 0) {

while (p[top].n > 1) { /* 向左走到尽头*/

push(p, top, p[top].a, p[top].c, p[top].b, p[top].n);

top++; }

if (p[top].n == 1) { /* 叶子结点*/

move(p[top].a, 1, p[top].b);

top--; }

if (top >= 0) { /* 向右走一步*/

move(p[top].a, p[top].n, p[top].c);

top--;

push(p, top, p[top+1].b, p[top+1].a, p[top+1].c, p[top+1].n);

top++; } }}

int main(void)

{ printf("unreverse program:n");

c = 1; p[0].n = N;

p[0].a = 'a', p[0].b = 'b', p[0].c = 'c';

unreverse_hanoi(p);

return 0;}

2.2.2非递归2:优化遍历二叉树搜索解空间

如:从汉诺塔的递归算法中可知,当盘子的个数大于2 时,汉诺塔的移动过程分为3步,第一步将n-1个盘从A 移到C;第二步将第n盘从A 移到B;第三步将n-1个盘从C移到B。如果把移动过程看作是二叉树的中序遍历,则可用二叉树与汉诺塔

移动过程建立一个映射[2,3]。如图2所示,三阶盘数,所对应的移动过程共有3!=6种移动方法。即:A→B ,A→C, B→C, B→A, C→A, C→B 6种移动方法.

图 2 移动过程的映射

在构造解空间树的时候,遵循由初始塔→目标塔,分解为两部分:初始塔→和中转塔→目标塔。如图3所示构造n 阶汉诺塔问题的解空间树与对应的解。依次类推一直到达叶节点生成满二叉树。最后对生成的二叉树中序遍历,每搜索一个结点,对应的输出它的映射值,例如:搜索到0号结点,则输出A →B, 搜索到3号结点,则输出B →A, 搜索到5号结点,则输出C →B.依次类推直到解空间树中所有结点搜索完成,算法结束。

1. from A →B

2. from A →C

3. from B →C

4. from A →B

5. from C →A

6. from C →B

7. from A →B

01

20

5

4

A →B

A →

C

C

→B

C

A

A

B

(a)

(b)

B →

C

A

B

图3 3阶汉诺塔与所对应的解空间树

下面给出它的中序遍历算法。将二叉树严格按照左子树在左,右子树在右画,中序遍历的结果应该是结点从左到右的一个排列。由于它是满二叉树,整个输出过程是,先输出最下层的一个结点,然后,输出上层中第一个左子树能包含该结点的结点,然后,再输出下层的下一个结点,再输出上层中第一个左子树能包含该结点的结点,直到下层的结点全部输出完为止。用一维数level_position [] 存储某一层已输出的结点序号。由于该二叉树是满二叉树,上层第i 个结点的左孩子一定是下层的第2i-1个结点,右孩子一定是下层的第2i 个结点。这样,判断下层结点是否是上层结点的右孩子,只要判断上下层结点在其本层的编号是否构成2倍关系即可,整个算法程序实现如下:

void output (int present_level, int position, int n) //参数分别为:当前层号,在本层的序号,总层数 { int val;

val= (position-1) %3;

if (present_level%2= =1) val=val+3; //如果是奇数层,其值为3, 4, 5

switch (val)

{case 0: printf ("%d from A--->B\n" ,n -present_level+1) ; break; case 1: printf (" %d from B--->C\n" ,n-present_level+1) ; break; case 2: printf (" % d from C--->A\n" ,n -present_level+1);break; case 3:printf ("% d from A --->C\n" ,n -present_level+1) ; break; case 4: printf (" %d from C--->B\n" ,n-present_level+1) ; break; case 5:printf ("% d from B--->A\n" ,n-present_level+1); break;}} main ()

{ int level_position [100] ; //某层的已输出的结点序号 int n,i,sample_nub,total_sample;//最后一层已输个数、总个数 printf (" input n=") ; //盘的数量 scanf (" %d" ,&n) ; printf (" \n") ;

sample_nub=0;total_sample=1;

for (i=1;i

level_position [i] ++;

output (i,level_position [n] ,n) ;//输出第i 层某一序号的结点 sample_nub++;

while (sample_nub

{ while (level_position [i] ==2*level_position [i-1] ) i--; //寻找把该结点作为左子树的祖先结点 level_position [i-1] ++; output (i-1,level_position [i-1] ,n) ; i=n;

level_position [i] ++;

output (i,level_position [n] ,n) ; sample_nub++;} }

3 算法分析

定理1.算法1是可终止的。 证明:…..

定理2.算法1是有效的。 证明:…..

定理3.算法1的时间复杂度是O()。 证明:…..

定理4.算法1的空间复杂度是S()。 证明:…..

4 仿真实验与分析

主要包括仿真平台(Matlab 、C 、C++、JAVA 、VC 等)、仿真参数设置、实验分析

如:本文实验环境:CPU ,Intel E6320。内存,DDR2;

容量,1024MB;硬盘,160GB;缓存,8192KB;,PF使用率:47%-50%;集成开发工具:Microsoft Visual C++ 6.0,上对nanoi塔问题递归、非递归算法规模(盘子个数N)和执行时

间进行仿真。图4表明递归算法与非递归算法随着塔柱上盘子个数的增多,所执行的时间均已指数级增长。同时递归算法

与非递归算法1曲线变化不是很明显,从初始盘子为7到盘子

个数为18均保持一致,主要原因是非递归算法1是在递归算法基础上消除递归调用,并没有进行智能优化。故它们在执行

过程中所用的时间相同。即他们在时间复杂度均为2n-1。

图4 塔数与3种算法运行时间

而非递归算法2在盘子个数为9,就开始比递归算法与非

递归算法1所执行时间要短。特别是随着盘子个数增加到15

的时,非递归算法2明显比前两个算法时间上占有。说明非递归算法二在时间复杂度上要低于前两个算法的时间复杂度

2n-1。这与我们预期分析一致。(文中实验仿真图用matlab7.0绘制)

5 总结

总结是以研究成果为前提,经过严密的逻辑推理和论证所得出的最后结论.在结论中应明确指出论文研究的成果或观点,对其应用前景和社会,经济价值等加以预测和评价,并指出今后进一步在本研究方向进行研究工作的展望与设想.结论应写得简明扼要,精练完整,逻辑严谨,措施得当,表达准确,有条理。它是摘要的一部分,但要比摘要更详细。

参考文献: (参考文献示例参见下页)

[1]著者.题目[J].刊名(全称,英文期刊名以黑体标志), 出版年,卷号(期号):起始页码. [期刊]

[2]著者.书名[M].译者,译.版本项(初版不写)出版地(城市名): 出版者, 出版年:起始页码.[书籍] [3]著者.题目:文集实际完整名称,出版年[C].出版地:出版者,出版年:起止页码.[会议录(论文集、论文

汇编等)]

[4]著者.析出题目[文献类型标志]//整本文献的编者姓名.

文集实际完整名称.版本项.出版地(城市名): 出版者,

出版年:起止页码.[析出文献)]

[5]著者.题名[D]. 所在城市:学位授予单位, 出版年.

[学位论文]

[6]著者.题名,报告号[R]. 出版地(城市名): 出版者, 出版年.[科技报告、手册等]

[7]著者.准编号标准名称[S].出版地: 出版者,出版年. [8]著者.题名[N].报纸名,出版日期(版次).[报纸文章] 出版日期按YY-MM-DD格式

[9]著者.题名[文献类型标志/电子文献载体标志].(更新日期) [引用日期].获取和访问路径(如

https://www.doczj.com/doc/2114827869.html,).[电子文献]

[10]专利所有者.专利题名:专利国别,专利号[P].公告日期.获取和访问路径.

如:

[1]吕国英,任瑞征,钱宇华.算法设计与分析(第二版)[M].

北京:清华大学出版社,2009:57-59.

[2]邱宁. 汉诺塔问题的非递归算法分析[J].浙江树人大

学学报,2005.5(02):117-118.

[3]陈文. 汉诺塔非递归算法[J]. 电脑编程技巧与维护,

2009,

14:10-11.

算法分析与设计

第一章 什么是算法 算法是解决一个计算问题的一系列计算步骤有序、合理的排列。对一个具体问题(有确定的输入数据)依次执行一个正确的算法中的各操作步骤,最终将得到该问题的解(正确的输出数据)。 算法的三个要素 1).数据: 运算序列中作为运算对象和结果的数据. 2).运算: 运算序列中的各种运算:赋值,算术和逻辑运算 3).控制和转移: 运算序列中的控制和转移. 算法分类 从解法上:数值型算法:算法中的基本运算为算术运算;非数值型算法:算法中的基本运算为逻辑运算. 从处理方式上:串行算法:串行计算机上执行的算法;并行算法:并行计算机上执行的算法 算法的五个重要的特性 (1) 有穷性:在有穷步之后结束。 (2) 确定性:无二义性。 (3) 可行性:可通过基本运算有限次执行来实现。 (4) 有输入 表示存在数据处理 (5) 有输出 伪代码 程序设计语言(PDL ),也称为结构化英语或者伪代码,它是一种混合语言,它采用一种语言(例如英语)的词汇同时采用类似另外一种语言(例如,结构化程序语言)的语法。 特点:1)使用一些固定关键词的语法结构表达了结构化构造、数据描述、模块的特征; 2)以自然语言的自由语法描述了处理过程;3)数据声明应该既包括简单的也包括复杂的数据结构;4)使用支持各种模式的接口描述的子程序定义或者调用技术。 求两个n 阶方阵的相加C=A+B 的算法如下,分析其时间复杂度。 #define MAX 20 ∑∑∑∑-=-=-=-=====102101010*11n i n i n i n j n n n n n n n n )O()1O(1O(11i i j i j ==∑∑==))O(N )21O()O()O(21N 1=+=∑=∑==)(N N i i N i i 赋值,比较,算术运算,逻辑运算,读写单个变量(常量)只需1单位时间 2). 执行条件语句 if c then S1 else S2 的时间为TC +max(TS1,TS2). 3). 选择语句 case A of a1: s1;a2: s2;...; am: sm 需要的时间为 max (TS1,TS2 ,..., TSm ). 4). 访问数组的单个分量或纪录的单个域需要一个单位时间. 5). 执行for 循环语句的时间=执行循环体时间*循环次数. 6). while c do s (repeat s until c)语句时间=(Tc+Ts)*循环次数. 7). 用goto 从循环体内跳到循环体末或循环后面的语句时,不需额外时间 8). 过程或函数调用语句:对非递归调用,根据调用层次由里向外用规则1-7进行分析; 对递归调用,可建立关于T(n)的递归方程,求解该方程得到T(n).

《递归算法与递归程序》教学设计

递归算法与递归程序 岳西中学:崔世义一、教学目标 1知识与技能 (1) ?认识递归现象。 (2) ?使用递归算法解决冋题往往能使算法的描述乘法而易于表达 (3) ?理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4) ?认识递归算法往往不是咼效的算法。 (5) ? 了解递归现象的规律。 (6) ?能够设计递归程序解决适用于递归解决的问题。 (7) ?能够根据算法写出递归程序。 (8) ? 了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2) 和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1) 了解递归现象和递归算法的特点。 (2) 能够根据问题设计出恰当的递归程序。 2、教学难点 (1) 递归过程思路的建立。 (2) 判断冋题是否适于递归解法。 (3) 正确写出递归程序。 三、教学环境 1、教材处理 教材选自《浙江省普通高中信息技术选修:算法与程序设计》第五章,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自 定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习⑵ 和练习

算法设计与分析习题答案1-6章

习题1 1. 图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现 在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次, 图是这条河以及河上的两个岛和七座桥的草 图。请将该问题的数据模型抽象出来,并判断此问题是否有解。 七桥问题属于一笔画问题。 输入:一个起点 输出:相同的点 1, 一次步行 2, 经过七座桥,且每次只经历过一次 3, 回到起点 该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。 2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法 =m-n 2.循环直到r=0 m=n n=r r=m-n 3 输出m 3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C++描述。 编写程序,求n 至少为多大时,n 个“1”组成的整数能被2013整除。 #include using namespace std; int main() { double value=0; 图 七桥问题

for(int n=1;n<=10000 ;++n) { value=value*10+1; if(value%2013==0) { cout<<"n至少为:"< using namespace std; int main () { double a,b; double arctan(double x);圣经上说:神6天创造天地万有,第7日安歇。为什么是6天呢?任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。例如,6=1+2+3,因此6是完美数。神6天创造世界,暗示着该创造是完美的。设计算法,判断给定的自然数是否是完美数 #include using namespace std; int main() { int value, k=1; cin>>value; for (int i = 2;i!=value;++i) { while (value % i == 0 ) { k+=i;有4个人打算过桥,这个桥每次最多只能有两个人同时通过。他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。这就意味着两个人过桥后必须有一个人将手电筒带回来。每个人走路的速度是不同的:甲过桥要用1分钟,乙过桥要用2分钟,丙过桥要用5分钟,丁过桥要用10分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间? 由于甲过桥时间最短,那么每次传递手电的工作应有甲完成 甲每次分别带着乙丙丁过桥 例如: 第一趟:甲,乙过桥且甲回来

递归算法和非递归算法的区别和转换

递归算法向非递归算法转换 递归算法实际上是一种分而治之的方法,它把复杂问题分解为简单问题来求解。对于某些复杂问题(例如hanio塔问题),递归算法是一种自然且合乎逻辑的解决问题的方式,但是递归算法的执行效率通常比较差。因此,在求解某些问题时,常采用递归算法来分析问题,用非递归算法来求解问题;另外,有些程序设计语言不支持递归,这就需要把递归算法转换为非递归算法。 将递归算法转换为非递归算法有两种方法,一种是直接求值,不需要回溯;另一种是不能直接求值,需要回溯。前者使用一些变量保存中间结果,称为直接转换法;后者使用栈保存中间结果,称为间接转换法,下面分别讨论这两种方法。 1. 直接转换法 直接转换法通常用来消除尾递归和单向递归,将递归结构用循环结构来替代。 尾递归是指在递归算法中,递归调用语句只有一个,而且是处在算法的最后。例如求阶乘的递归算法: long fact(int n) { if (n==0) return 1; else return n*fact(n-1); } 当递归调用返回时,是返回到上一层递归调用的下一条语句,而这个返回位置正好是算法的结束处,所以,不必利用栈来保存返回信息。对于尾递归形式的递归算法,可以利用循环结构来替代。例如求阶乘的递归算法可以写成如下循环结构的非递归算法: long fact(int n) { int s=0; for (int i=1; i<=n;i++) s=s*i; //用s保存中间结果 return s; } 单向递归是指递归算法中虽然有多处递归调用语句,但各递归调用语句的参数之间没有关系,并且这些递归调用语句都处在递归算法的最后。显然,尾递归是单向递归的特例。例如求斐波那契数列的递归算法如下: int f(int n) {

汉诺塔非递归算法C语言实现

汉诺塔非递归算法C语言实现 #include #include #define CSZL 10 #define FPZL 10 typedef struct hanoi { int n; char x,y,z; }hanoi; typedef struct Stack { hanoi *base,*top; int stacksize; }Stack; int InitStack(Stack *S) { S->base=(hanoi *)malloc(CSZL*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base; S->stacksize=CSZL; return 1; } int PushStack(Stack *S,int n,char x,char y,char z) { if(S->top-S->base==S->stacksize) { S->base=(hanoi *)realloc(S->base,(S->stacksize+FPZL)*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base+S->stacksize; S->stacksize+=FPZL; } S->top->n=n; S->top->x=x; S->top->y=y; S->top->z=z; S->top++; return 1; } int PopStack(Stack *S,int *n,char *x,char *y,char *z) { if(S->top==S->base)

汉诺塔问题与递归思想教学设计

一、教学思想(包括教学背景、教学目标) 1、教学背景 本课程“递归算法”,属于《数据结构与算法》课程中“栈和队列”章节的重点和难点。数据结构与算法已经广泛应用于各行各业的数据存储和信息处理中,与人们的社会生活密不可分。该课程是计算机类相关专业核心骨干课程,处于计算机学科的核心地位,具有承上启下的作用。不仅成为全国高校计算机类硕士研究生入学的统考科目,还是各企业招聘信息类员工入职笔试的必考科目。数据结构与算法课程面向计算机科学与技术、软件工程等计算机类学生,属于专业基础课。 2、教学大纲 通过本课程的学习,主要培养学生以下几个方面的能力: 1)理解递归的算法; 2)掌握递归算法的实现要素; 3)掌握数值与非数值型递归的实现方法。 根据学生在学习基础和能力方面的差异性,将整个课程教学目标分成三个水平:合格水平(符合课标的最低要求),中等以上水平(符合课标的基本要求),优秀水平(符合或超出课标提出的最高要求)。具体如下表:

二、课程设计思路(包括教学方法、手段) “递归算法”课程以故事引入、案例驱动法、示范模仿、启发式等多元化教学方法,设计课程内容。具体的课堂内容如下所示:

1 1 2 3 3 7 4 15 5 31 count = 2n-1 思考:若移动速度为1个/秒,则需要 (264-1)/365/24/3600 >= 5849亿年。 四、总结和思考 总结: 对于阶乘这类数值型问题,可以表达成数学公式,然后从相应的公式入手推导,解决这类问题的递归定义,同时确定这个问题的边界条件,找到结束递归的条件。 对于汉诺塔这类非数值型问题,虽然很难找到数学公式表达,但可将问题进行分解,问题规模逐渐缩小,直至最小规模有直接解。 思考: 数值型问题:斐波那契数列的递归设计。 非数值型问题:八皇后问题的递归设计。阐述总结知识拓展 三、教学特色(总结教学特色和效果) 递归算法课程主要讨论递归设计的思想和实现。从阶乘实例入手,由浅入深,层层深入介绍了递归的设计要点和算法的实现。从汉诺塔问题,通过“边提问,边思考”的方式逐层深入地给出算法的分析和设计过程。通过故事引入、案例导入、实例演示、PPT展示、实现效果等“多元化教学方式”,努力扩展课堂教学主战场。加上逐步引导、问题驱动,启发学生对算法的理解,并用实例演示展示算法的分析过程,在编译环境下实现该算法,加深对算法实现过程的认识。 1、知识点的引入使用故事诱导法讲授 通过“老和尚讲故事”引入函数的递归调用,并通过“世界末日问题” 故事引入非数值型问题的递归分析,激发学习积极性,挖掘学生潜能。

算法分析与设计习题集整理

算法分析与设计习题集整理 第一章算法引论 一、填空题: 1、算法运行所需要的计算机资源的量,称为算法复杂性,主要包括时间复杂度和空间复杂度。 2、多项式10()m m A n a n a n a =+++L 的上界为O(n m )。 3、算法的基本特征:输入、输出、确定性、有限性 、可行性 。 4、如何从两个方面评价一个算法的优劣:时间复杂度、空间复杂度。 5、计算下面算法的时间复杂度记为: O(n 3) 。 for(i=1;i<=n;i++) for(j=1;j<=n;j++) {c[i][j]=0; for(k=1;k<=n;k++) c[i][j]= c[i][j]+a[i][k]*b[k][j]; } 6、描述算法常用的方法:自然语言、伪代码、程序设计语言、流程图、盒图、PAD 图。 7、算法设计的基本要求:正确性 和 可读性。 8、计算下面算法的时间复杂度记为: O(n 2) 。 for (i =1;i

汉诺塔问题的三种实现

// test_project.cpp : 定义控制台应用程序的入口点。//汉诺塔问题的 // //递归实现 /*#include "stdafx.h" #include using namespace std; int count=0;//记录移动到了多少步 void Move(int n,char From,char To); void Hannoi(int n,char From, char Pass ,char To); //把圆盘从From,经过pass,移动到To int main() { int n_count=0; cout<<"请输入圆盘个数:"; cin>>n_count; Hannoi(n_count,'A','B','C'); } void Move(int n,char From,char To)

{ count++; cout<<"第"<

/*后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放A B C; 若n为奇数,按顺时针方向依次摆放A C B。 ()按顺时针方向把圆盘从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘在柱子A,则把它移动到B;若圆盘在柱子B,则把它移动到C;若圆盘在柱子C,则把它移动到A。 ()接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。 ()反复进行()()操作,最后就能按规定完成汉诺塔的移动。 所以结果非常简单,就是按照移动规则向一个方向移动金片: 如阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 汉诺塔问题也是程序设计中的经典递归问题,下面我们将给出递归和非递归的不同实现源代码。*/ /*#include "stdafx.h" #include #include

n!非递归算法的设计与实现

n!非递归算法的设计与实现 1 课题描述 尽管递归算法是一种自然且合乎逻辑的解决问题的方式,但递归算法的执行效率通常比较差。因此在求解许多问题时常采用递归算法来分析问题,用非递归方法来求解问题;另外一些程序不支持递归算法来求解问题,所以我们都会用非递归算法来求解问题。 本次课程设计主要内容是:用非递归算法实现n!的计算,由于计算机中数据的存储范围有限,而又要求出尽可能大的n的阶乘的值,用数组构造n的运算结果的存储结构,用栈的存储方式,最后输出n!的运算结果。 本次课程设计的目的是:通过本次课程设计,可以使大家了解缓存中数据的存储范围,提高自学能力,增强团队合作意识。

2 需求分析 本次n!非递归算法的课程设计中主要用到的知识有:数组、函数、栈,选择条件中的结构语句(if…else),和循环结构语句中的语句while()语句、do…while()语句和for()语句,选择语句if的运用。 对n!的非递归的算法,主要是运用非递归的算法实现n的阶乘。 限制条件: (1).要求的n必须是整数; (2). n的范围; (3). 数据类型和表数范围。

递归和非递归算法是相通的,递归是一种直接或间接调用自身的算法,而非递归不调用自身函数递推采用的是递归和归并法,而非递推只采用递归法。递推法一般容易溢出,所以一般都采用递推法分析,而用非递推法设计程序。 将n定义为float型,便于查看n是否为整数; 本次试验分为两个模块: (1).当n小于都等于12时,实现阶乘的模块m(n): 直接用sum*=i;实现求n的阶乘,相对简单,容易就算。 (2).当n大于12时,如果用long型结果就会溢出,所以实现阶乘需调用的模块f(n): 采用数组存放计算的结果,用队列输出运行结果。由于计算结果较大,将结果除以数组最大存储位数,将高位结果存放在数组的起始地址上,将低位的结果存放在数组的末端地址上,最后采用队列输出运行结果。 (3).模块调用关系如图3.1所示 图3.1 模块调用图

递归算法详解

递 归 冯文科 一、递归的基本概念。 一个函数、概念或数学结构,如果在其定义或说明内部直接或间接地出现对其本身的引 用,或者是为了描述问题的某一状态,必须要用至它的上一状态,而描述上一状态,又必须用到它的上一状态……这种用自己来定义自己的方法,称之为递归或递归定义。在程序设计中,函数直接或间接调用自己,就被称为递归调用。 二、递归的最简单应用:通过各项关系及初值求数列的某一项。 在数学中,有这样一种数列,很难求出它的通项公式,但数列中各项间关系却很简单,于是人们想出另一种办法来描述这种数列:通过初值及n a 与前面临近几项之间的关系。 要使用这样的描述方式,至少要提供两个信息:一是最前面几项的数值,一是数列间各项的关系。 比如阶乘数列 1、2、6、24、120、720…… 如果用上面的方式来描述它,应该是: ???>==-1 ,1,11n na n a n n 如果需要写一个函数来求n a 的值,那么可以很容易地写成这样:

这就是递归函数的最简单形式,从中可以明显看出递归函数都有的一个特点:先处理一 些特殊情况——这也是递归函数的第一个出口,再处理递归关系——这形成递归函数的第二个出口。 递归函数的执行过程总是先通过递归关系不断地缩小问题的规模,直到简单到可以作为 特殊情况处理而得出直接的结果,再通过递归关系逐层返回到原来的数据规模,最终得出问题的解。 以上面求阶乘数列的函数)(n f 为例。如在求)3(f 时,由于3不是特殊值,因此需要计 算)2(*3f ,但)2(f 是对它自己的调用,于是再计算)2(f ,2也不是特殊值,需要计算 )1(*2f ,需要知道)1(f 的值,再计算)1(f ,1是特殊值,于是直接得出1)1(=f ,返回上 一步,得2)1(*2)2(==f f ,再返回上一步,得62*3)2(*3)3(===f f ,从而得最终解。 用图解来说明,就是 下面再看一个稍复杂点的例子。 【例1】数列}{n a 的前几项为

汉诺塔问题的非递归算法分析

汉诺塔递归与非递归算法研究 作者1,作者2,作者33 (陕西师范大学计算机科学学院,陕西西安 710062) 摘要: 摘要内容(包括目的、方法、结果和结论四要素) 摘要又称概要,内容提要.摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明,确切地记述文献重要内容的短文.其基本要素包括研究目的,方法,结果和结论.具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息.摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息. 关键词:关键词1; 关键词2;关键词3;……(一般可选3~8个关键词,用中文表示,不用英文 Title 如:XIN Ming-ming , XIN Ming (1.Dept. of ****, University, City Province Zip C ode, China;2.Dept. of ****, University, City Province Zip C ode, China;3.Dept. of ****, University, City Province Zip C ode, China) Abstract: abstract(第三人称叙述,尽量使用简单句;介绍作者工作(目的、方法、结果)用过去时,简述作者结论用一般现在时) Key words: keyword1;keyword2; keyword3;……(与中文关键词对应,字母小写(缩略词除外)); 正文部分用小5号宋体字,分两栏排,其中图表宽度不超过8cm.。设置为A4页面 1 引言(一级标题四号黑体加粗) 这个问题当时老和尚和众僧们,经过计算后,预言当所有的盘子都从基柱A移到基座B上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。其实,不管这个传说的可信度有多大,如果考虑把64个盘子,由一个塔柱上移到另一根塔柱上,并且始终保持上小下大的顺序。假设有n个盘子,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2n-1。n=64时, f(64)= 2^64-1=18446744073709551615 假如每秒钟一次,共需多长时间呢?一年大约有 31536926 秒,计算表明移完这些金片需要5800多亿年,比地球寿命还要长,事实上,世界、梵塔、庙宇和众生都早已经灰飞烟灭。 对传统的汉诺塔问题,目前还有不少的学者继续研究它的非递归解法,本文通过对递归算法的研究……. 提示:(1)可以定义问题的规模n,如盘子的数量;(2)塔柱的数量(目前有部分理论可以支撑,不妨用计算机实现)分析规模的变化与算法的复杂度比较。(3)可以对经典的汉诺塔问题条件放松、加宽,如在经典的汉诺塔问题中大盘只能在小盘下面,放松其他条件可以定义相邻两个盘子必须满足大盘只能在小盘下面。其它盘子不作要求。 2 算法设计 2.1 汉诺塔递归算法描述(二级标题小五黑体加粗) 用人类的大脑直接去解3,4或5个盘子的汉诺塔问题还可以,但是随着盘子个数的增多,问题的规模变的越来越大。这样的问题就难以完成,更不用说吧问题抽象成循环的机器操作。所以类似的问题可用递归算法来求解。下面n个盘的汉

汉诺塔问题实验报告

1.实验目的: 通过本实验,掌握复杂性问题的分析方法,了解汉诺塔游戏的时间复杂性和空间复杂性。 2.问题描述: 汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。所有碟子按从大到小的次序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔A 上的碟子移动到塔C上去,其间借助于塔B的帮助。每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。当牧师们完成任务时,世界末日也就到了。 3.算法设计思想: 对于汉诺塔问题的求解,可以通过以下三个步骤实现: (1)将塔A上的n-1个碟子借助塔C先移到塔B上。 (2)把塔A上剩下的一个碟子移到塔C上。 (3)将n-1个碟子从塔B借助于塔A移到塔C上。 4.实验步骤: 1.用c++ 或c语言设计实现汉诺塔游戏; 2.让盘子数从2 开始到7进行实验,记录程序运行时间和递 归调用次数; 3.画出盘子数n和运行时间t 、递归调用次数m的关系图, 并进行分析。 5.代码设计: Hanio.cpp #include"stdafx.h" #include #include #include void hanoi(int n,char x,char y,char z) { if(n==1) { printf("从%c->搬到%c\n",x,z); } else { hanoi(n-1,x,z,y); printf("从%c->%c搬到\n",x,z); hanoi(n-1,y,x,z); }

高中信息技术 算法与程序设计-递归算法的实现教案 教科版

递归算法的实现 【基本信息】 【课标要求】 (三)算法与问题解决例举 1. 内容标准 递归法与问题解决 (1)了解使用递归法设计算法的基本过程。 (2)能够根据具体问题的要求,使用递归法设计算法、编写递归函数、编写程序、求解问题。 【教材分析】 “算法的程序实现”是《算法与程序设计》选修模块第三单元的内容,本节课是“递归算法的程序实现”,前面学习了用解析法解决问题、穷举法解决问题、在数组中查找数据、对数进行排序以及本节的前一小节知识点“什么是自定义函数”的学习,在学习自定义函数的基础上,学习递归算法的程序实现是自定义函数的具体应用,培养学生“自顶向下”、“逐步求精”的意识起着重要的作用。 『递归算法在算法的学习过程中是一个难点,在PASCAL和C语言等程序语言的学习过程中,往往是将其放在“函数与过程”这一章节中来讲解的。递归算法的实现也是用函数或是过程的自我调用来实现的。从这一点上来讲,作者对教材的分析与把握是准确的,思路是清晰的,目标是明确的。』 【学情分析】 教学对象是高中二年级学生,前面学习了程序设计的各种结构,在学习程序设计各种结构的应用过程中培养了用计算机编程解决现实中问题的能力,特别是在学习循环语句的过程中,应用了大量的“递推”算法。前一节课学习了如何自定义函数,在此基础上学习深入学习和体会自定义函数的应用。以递推算法的逆向思维进行求解问题,在学习过程中体会递归算法的思想过程。多维度的思考问题和解决问题是提高学生的学习兴趣关键。 『递归算法的本质是递推,而递推的实现正是通过循环语句来完成的。作者准确把握了学生前面的学习情况,对递归算法的本质与特征也分析的很透彻,可以说作者对教学任务的分析是很成功的,接来就要看,在成功分析的基础上作者是如何通过设计教学来解决教学难点的了。』 【教学目标】

算法设计及分析递归算法典型例题

算法递归典型例题 实验一:递归策略运用练习 三、实验项目 1.运用递归策略设计算法实现下述题目的求解过程。 题目列表如下: (1)运动会开了N天,一共发出金牌M枚。第一天发金牌1枚加剩下的七分之一枚,第二天发金牌2枚加剩下的七分之一枚,第3天发金牌3枚加剩下的七分之一枚,以后每天都照此办理。到了第N天刚好还有金牌N枚,到此金牌全部发完。编程求N和M。 (2)国王分财产。某国王临终前给儿子们分财产。他把财产分为若干份,然后给第一个儿子一份,再加上剩余财产的1/10;给第二个儿子两份,再加上剩余财产的1/10;……;给第i 个儿子i份,再加上剩余财产的1/10。每个儿子都窃窃自喜。以为得到了父王的偏爱,孰不知国王是“一碗水端平”的。请用程序回答,老国王共有几个儿子?财产共分成了多少份? 源程序: (3)出售金鱼问题:第一次卖出全部金鱼的一半加二分之一条金鱼;第二次卖出乘余金鱼的三分之一加三分之一条金鱼;第三次卖出剩余金鱼的四分之一加四分之一条金鱼;第四次卖出剩余金鱼的五分之一加五分之一条金鱼;现在还剩下11条金鱼,在出售金鱼时不能把金鱼切开或者有任何破损的。问这鱼缸里原有多少条金鱼? (4)某路公共汽车,总共有八站,从一号站发轩时车上已有n位乘客,到了第二站先下一半乘客,再上来了六位乘客;到了第三站也先下一半乘客,再上来了五位乘客,以后每到一站都先下车上已有的一半乘客,再上来了乘客比前一站少一个……,到了终点站车上还有乘客六人,问发车时车上的乘客有多少? (5)猴子吃桃。有一群猴子摘来了一批桃子,猴王规定每天只准吃一半加一只(即第二天吃剩下的一半加一只,以此类推),第九天正好吃完,问猴子们摘来了多少桃子? (6)小华读书。第一天读了全书的一半加二页,第二天读了剩下的一半加二页,以后天天如此……,第六天读完了最后的三页,问全书有多少页? (7)日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。分完后父亲说:“老大将分给你的桔子的1/8给老二;老二拿到后连同原先的桔子分1/7给老三;老三拿到后连同原先的桔子分1/6给老四;老四拿到后连同原先的桔子分1/5给老五;老五拿到后连同原先的桔子分1/4给老六;老六拿到后连同原先的桔子分1/3给老大”。结果大家手中的桔子正好一样多。问六兄弟原来手中各有多少桔子? 四、实验过程 (一)题目一:…… 1.题目分析 由已知可得,运动会最后一天剩余的金牌数gold等于运动会举行的天数由此可倒推每一 天的金牌剩余数,且每天的金牌数应为6的倍数。 2.算法构造 设运动会举行了N天, If(i==N)Gold[i]=N; Else gold[i]=gold[i+1]*7/6+i;

汉诺塔问题非递归算法详解

Make By Mr.Cai 思路介绍: 首先,可证明,当盘子的个数为n 时,移动的次数应等于2^n - 1。 然后,把三根桩子按一定顺序排成品字型(如:C ..B .A ),再把所有的圆盘按至上而下是从小到大的顺序放在桩子A 上。 接着,根据圆盘的数量确定桩子的排放顺序: 若n 为偶数,按顺时针方向依次摆放C ..B .A ; 若n 为奇数,按顺时针方向依次摆放B ..C .A 。 最后,进行以下步骤即可: (1)首先,按顺时针方向把圆盘1从现在的桩子移动到下一根桩子,即当n 为偶数时,若圆盘1在桩子A ,则把它移动到B ;若圆盘1在桩子B ,则把它移动到C ;若圆盘1在桩子C ,则把它移动到A 。 (2)接着,把另外两根桩子上可以移动的圆盘移动到新的桩子上。 即把非空桩子上的圆盘移动到空桩子上,当两根桩子都非空时,移动较小的圆盘。 (3)重复(1)、(2)操作直至移动次数为2^n - 1。 #include #include using namespace std; #define Cap 64 class Stake //表示每桩子上的情况 { public: Stake(int name,int n) { this->name=name; top=0; s[top]=n+1;/*假设桩子最底部有第n+1个盘子,即s[0]=n+1,这样方便下面进行操作*/ } int Top()//获取栈顶元素 { return s[top];//栈顶 } int Pop()//出栈 { return s[top--];

} void Push(int top)//进栈 { s[++this->top]=top; } void setNext(Stake *p) { next=p; } Stake *getNext()//获取下一个对象的地址 { return next; } int getName()//获取当前桩子的编号 { return name; } private: int s[Cap+1];//表示每根桩子放盘子的最大容量 int top,name; Stake *next; }; void main() { int n; void hanoi(int,int,int,int); cout<<"请输入盘子的数量:"; cin>>n; if(n<1) cout<<"输入的盘子数量错误!!!"<

汉诺塔问题的重点是分析移动的规则

汉诺塔问题的重点是分析移动的规则,找到规律和边界条件。 若需要将n个盘子从A移动到C就需要(1)将n-1个盘子从A移动到B;(2)将你第n个从A移动到C;(3)将n-1个盘子再从B 移动到C,这样就可以完成了。如果n!=1,则需要递归调用函数,将A上的其他盘子按照以上的三步继续移动,直到达到边界条件n=1为止。 思路清楚了,程序就好理解了。程序中的关键是分析好每次调用移动函数时具体的参数和对应的A、B、C塔的对应的关系。下面来以实际的例子对照程序进行说明。 ①move(int n,int x,int y,int z) ②{ ③if (n==1) ④printf("%c-->%c\n",x,z); ⑤else ⑥{ ⑦move(n-1,x,z,y); ⑧printf("%c-->%c\n",x,z); ⑨{getchar();}//此句有必要用吗?感觉可以去掉的吧 ⑩move(n-1,y,x,z); } }

比如有4个盘子,现在全部放在A塔上。盘子根据编号为1、2、3、4依次半径曾大。现在要将4个盘子移动到C上,并且是按原顺序罗列。首先我们考虑如何才可以将4号移动到C呢?就要以B为中介,首先将上面的三个移动到B。此步的操作也就是程序中的①开始调入move函数(首次调用记为一),当然现在的n=4,然后判断即③n!=1所以不执行④而是到⑤再次调用move函数(记为二)考虑如何将3个盘移动到B的方法。此处是递归的调用所以又一次回到①开始调入move函数,不过对应的参数发生了变化,因为这次要考虑的不是从A移动4个盘到C,而是要考虑从A如何移动移动3个盘到B。因为n=3,故不可以直接移动要借助C做中介,先考虑将两个移动到C的方法,故再一次到⑤再一次递归调用move函数(记为三)。同理两个盘还是不可以直接从A移动到C所以要以B为中介考虑将1个移动到B的过程。这次是以B为中介,移动到C为目的的。接下来再一次递归调用move函数(记为四),就是移动到B一个,可以直接进行。程序执行③④句,程序跳出最内一次的调用(即跳出第四次的调用)返回上一次(第三次),并且从第三次的调用move 函数处继续向下进行即⑧,即将2号移动到了C,然后继续向下进行到 ⑩,再将已经移到B上的哪一个移回C,这样返回第二次递归(以C 为中介将3个盘移动到B的那次)。执行⑧,将第三个盘从A移动到B,然后进入⑩,这次的调用时因为是将C上的两个盘移到B以A

递归算法的优缺点

递归算法的优缺点: ○ 1优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。 ○2缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。 边界条件与递归方程是递归函数的二个要素 应用分治法的两个前提是问题的可分性和解的可归并性 以比较为基础的排序算法的最坏倩况时间复杂性下界为0(n·log2n)。 回溯法以深度优先的方式搜索解空间树T ,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树T 。 舍伍德算法设计的基本思想: 设A 是一个确定性算法,当它的输入实例为x 时所需的计算时间记为tA(x)。设Xn 是算法A 的输入规模为n 的实例的全体,则当问题的输入规模为n 时,算法A 所需的平均时间为 这显然不能排除存在x ∈Xn B ,使得对问题的输入规模为n 拉斯维加斯( Las Vegas )算法的基本思想: 设p(x) 是对输入x 调用拉斯维加斯算法获得问题的一个解的概率。一个正确的拉斯维加斯算法应该对所有输入x 均有p(x)>0。 设t(x)是算法obstinate 找到具体实例x 的一个解所需的平均时间 ,s(x)和e(x)分别是算法对于具体实例x 蒙特卡罗(Monte Carlo)算法的基本思想: 设p 是一个实数,且1/2

[转]递归算法详解

[转]递归算法详解 2009年09月05日星期六20:34 本文转至https://www.doczj.com/doc/2114827869.html,/blog/378483 C通过运行时堆栈支持递归函数的实现。递归函数就是直接或间接调用自身的函数。 许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的著名的老潭老师的《C语言程序设计》一书中就是从阶乘的计算开始的函数递归。导致读过这本经书的同学们,看到阶乘计算第一个想法就是递归。但是在阶乘的计算里,递归并没有提供任何优越之处。在菲波那契数列中,它的效率更是低的非常恐怖。 这里有一个简单的程序,可用于说明递归。程序的目的是把一个整数从二进制形式转换为可打印的字符形式。例如:给出一个值4267,我们需要依次产生字符‘4’,‘2’,‘6’,和‘7’。就如在printf函数中使用了%d格式码,它就会执行类似处理。 我们采用的策略是把这个值反复除以10,并打印各个余数。例如,4267除10的余数是7,但是我们不能直接打印这个余数。我们需要打印的是机器字符集中表示数字‘7’的值。在ASCII码中,字符‘7’的值是55,所以我们需要在余数上加上48来获得正确的字符,但是,使用字符常量而不是整型常量可以提高程序的可移植性。‘0’的ASCII码是48,所以我们用余数加上‘0’,所以有下面的关系: ‘0’+ 0 =‘0’ ‘0’+ 1 =‘1’ ‘0’+ 2 =‘2’ ... 从这些关系中,我们很容易看出在余数上加上‘0’就可以产生对应字符的代码。接着就打印出余数。下一步再取商的值,4267/10等于426。然后用这个值重复上述步骤。 这种处理方法存在的唯一问题是它产生的数字次序正好相反,它们是逆向打印的。所以在我们的程序中使用递归来修正这个问题。 我们这个程序中的函数是递归性质的,因为它包含了一个对自身的调用。乍一看,函数似乎永远不会终止。当函数调用时,它将调用自身,第2次调用还将调用自身,以此类推,似乎永远调用下去。这也是我们在刚接触递归时最想不明白的事情。但是,事实上并不会出现这种情况。 这个程序的递归实现了某种类型的螺旋状while循环。while循环在循环体每次执行时必须取得某种进展,逐步迫近循环终止条件。递归函数也是如此,它在每次递归调用后必须越来越接近某种限制条件。当递归函数符合这个限制条件时,

马踏棋盘非递归算法

#include struct point { int x,y;//马的位置 int dir;//这一次马行走的方向 }; struct stack { point p[64];//存储马的位置,方便回溯 }; int board [8][8]; int Htry1[8]={-2,-1,1,2,2,1,-1,-2}; int Htry2[8]={1,2,2,1,-1,-2,-2,-1}; bool chech[8][8]={0};//标记位置是否已经被占用 int main() { int i,j; int top=0; int z; cout<<"请输入马的初始位置"; cin>>i; cin>>j; stack sta; sta.p[top].x=i; sta.p[top].y=j; board [i][j]=top; chech [i][j]=true; int nx; int ny; for(int u=0;u<64;u++) sta.p[u].dir=0;//把每个结点的dir清零 for(z=0;;) { if(sta.p[top].x+Htry1[z]>=0&&sta.p[top].x+Htry1[z]<8&& sta.p[top].y+Htry2[z]>=0&&sta.p[top].y+Htry2[z]<8&& !chech [sta.p[top].x+Htry1[z]][sta.p[top].y+Htry2[z]]//检查要走的下个位置是否可行 ) { nx=sta.p[top].x+Htry1[z];

ny=sta.p[top].y+Htry2[z]; sta.p[top].dir=z; top++; sta.p[top].x=nx; sta.p[top].y=ny; board [nx][ny]=top; chech [nx][ny]=true; z=-1; } else if(z==7)//如果不可行,而且是最好一次检查 { chech [sta.p[top].x][sta.p[top].y]=false; top--; while(1) { z=sta.p[top].dir; if(z!=7) break; else { chech [sta.p[top].x][sta.p[top].y]=false; top--; } } } if(top==-1||top==63)break;//如果回溯到-1,或者栈满,则退出循环 z++; } for(i=0;i<8;i++) { for(j=0;j<8;j++) cout<

相关主题
文本预览
相关文档 最新文档