当前位置:文档之家› 风力发电控制系统

风力发电控制系统

风力发电控制系统
风力发电控制系统

贝加莱风力发电控制系统

2009-05-18 09:24

1、蓬勃发展的风电技术

风力发电正在中国蓬勃发展,即使在金融危机的大形势下,风力发电行业仍然不断的加大投资。在2008年,风力发电仍然保持着30%以上的强劲增长势头,包括Vestas、Gemsa、GE、国内的金风科技、华锐、运达工程等其订单交付已经到2011年后。

国内的风力发电控制技术起步较晚,目前的控制系统均是由欧洲专用控制方案提供商提供的专用系统,价格高昂且交货周期较长。开发自主知识产权的控制系统必须要提上日程,一方面,由于缺乏差异化而使得未来竞争中的透明度过高,而造成陷入激烈的价格竞争,另一方面,寻找合适的平台开发自主的风电控制系统将使得制造商在未来激烈竞争中获得先手。

然而,风电控制系统必须满足风电行业特殊的需求和苛刻的指标要求,这一切都对风力发电的控制系统平台提出了要求,而B&R的控制系统,在软硬件上均提供了适应于风力发电行业需求的设计,在本文我们将介绍因何这些控制器能够满足风力发电的苛刻要求。

2、风力发电对控制系统的需求

2.1高级语言编程能力

由于功率控制涉及到风速变化、最佳叶尖速比的获取、机组输出功率、相位和功率因素,发电机组的转速等诸多因素的影响,因此,它包含了复杂的控制算法设计需求,而这些,对于控制器的高级语言编程能力有较高的要求,而B&R PCC产品提供了高级语言编程能力,不仅仅是这些,还包括了以下一些关键技术:

2.1.1复杂控制算法设计能力

传统的机器控制多为顺序逻辑控制,而随着传感器技术、数字技术和通信技术的发展,复杂控制将越来越多的应用于机器,而机器控制本身即是融合了逻辑、运动、传感器、高速计数、安全、液压等一系列复杂控制的应用,PCC的设计者们很早就注意到这个发展方向而设计了PCC 产品来满足这一未来的需求。

为了满足这种需求,PCC设计为基于Automation Runtime的实时操作系统(OS)上,支持高级语言编程,对于风力发电而言,变桨、主控逻辑、功率控制单元等的算法非常复杂,这需要一个强大的控制器来实现对其高效的程序设计,并且,代码安全必须事先考虑,以维护在研发领域的投资安全。

2.1.2功能块调用

PCC支持PLCopen Motion、PLCopen Safety和PLCopenHydraulic库

的调用,这对于风电这一集合了变桨运动控制、安全逻辑设计、液压控制的综合系统来说是再好不过的选择.变桨控制将考虑多个伺服的定位和同步关系,而safety为机组提供了多种安全回路设计以保护机组的安全可靠运行,液压控制被极其容易的集成到系统中而无需购置专用的液压控制模块。同时,PCC支持用户自定义库的封装设计,用户可以将其自身的核心算法封装为功能块来调用,这使得一方面代码的安全性得到了很好的保证,而另一方面,它也提供了针对不同机组的系统调用,大大简化了软件的重构,支持快速开发。

2.1.3All In One的设计理念- Automation Studio?

Automation Studio?设计初衷是建立在一种放眼整机控制而不是局部(只关心驱动或者逻辑,独立组件),30年的丰富OEM控制设计使得B&R深刻理解“整体”的意义,因此,其软件包设计为面向整个机器的各个对象(逻辑、运动、测量、通信、显示)和过程(配置、项目规划与管理、诊断、调试、维护)。

对于B&R Automation Studio而言,控制器的设计、变桨伺服、液压控制、Safety技术、通信均在一个”All In One”的工具包Automation Stduio中实现,对于风力发电这样的综合多种控制需求的系统而言,Automation Studio提供了一个完整的工程设计与应用的平台,它使得代码生成、仿真分析、远程诊断与维护集成为一体,难道还有什么需要不能满足吗?

抛开技术的因素,对于用户而言,一套软件即可实现所有的应用需求,这降低工程师的学习成本,也作为一个平台,为用户提供了长期持续创新的软件平台基础。

3、Matlab/Simulink自动风力发电控制器代码生成

这是一个令人振奋的设计-Matlab/SIMULINK被集成到Automation Studio中,提供了一种将MATLAB这一广泛应用于工程设计和仿真分析的工具。

2008年开始,B&R与Mathworks建立了深度的合作关系,采用MATLAB/SIMULINK工具,提供针对电力行业的模型构建、仿真分析与代码生成设计。

3.1基于建模的系统设计

控制系统设计是基于数学建模的,这是所有工程应用的目标和基础理论,而Matlab正是提供了建模设计架构上的系统仿真和分析。

通过SIMULINK,建立模型就如同装配物理系统本身一样,模型中的组件就像实际的物理线路连接一样方便,这些物理连接代表理想的传导

路径,通过这个方法,可描述系统的物理结构,而无需推导和实现用于系统的方程,模型与原理图非常相似,从模型中,SIMULINK可自动构造描述系统运行的微分代数方程,这些方程可与其它方程集成在一起。例如你可以定义线性和饱和变压器、避雷器和断路器以及输电线路的模型,励磁、液压和风力涡轮机组,以及电力电子单元的GTO、IGBT模型,对于控制和测量单元的电压、电流、阻抗测量,RMS测量,有功和无功功率的计算,以及abc-to dq0及dq0到abc的转换,三相单元的RPL 负载、同步或异步发电机,电动机分析和测量工具均可以被组件形式建立模型,并通过SIMULINK来连接。

利用SIMULINK可以为风力发电机组建立控制系统模型

3.2 SIMULINK的电力应用分析能力

SIMULINK里包含了柔性输电系统向量模型、风力涡轮的向量模型、电机的直接转矩控制和磁场定向控制模型等。SIMULINK为电力系统网络提供了三种解决方案,以及一种理想的切换算法,可通过高频切换提升系统的仿真性能。在 Simulink中使用变步积分算法来执行高度精确的电力系统模型仿真。其中一些积分算法可处理在实际电力系统建模中常遇到的数值刚性系统。

SIMULINK提供的零点穿越检测功能,能以十分精确的机器精度检测并求解不连续过程。离散仿真采用固定步长梯形积分法来仿真系统,特别适合带电力电子设备的电力系统模型。该模式还有助于实现模型的实时执行。向量仿真则采用一组固定频率代数。

3.3 代码自动生成

通过MATLAB/Simulink,系统建模的控制器代码可以被生成,并经过优化成为真正可用的程序,而这些强大的功能也被集成到了Automation Studio中,对于开发风电控制系统而言,这无疑是一种非常好的选择。

4、基于B&R系统的风力发电解决方案

B&R风力发电控制包含了软硬件方案,也包括上述所提及的仿真分析在内,应用于变桨、功率控制与电网检测和远程维护等。

4.1.变桨控制方案Pitch Control

变桨控制是在ACOPOSmulti伺服驱动器和X20CPU的设计上的,可以快速实现风力发电的变桨控制(Pitch Control),通过光纤接口的实时通信技术Ethernet POWERLINK,可以将三个桨叶的伺服参数进行高速同步通信。

4.1.1SPT(Smart Process Technology)提供了快速的调桨过程。 智能过程技术是作为ACOPOSmulti内置的功能块运行的,它提供了

一种智能化的位置控制方案,可以根据给定外界参数而快速的寻找最佳的路径来获得对桨叶的快速调整,满足在最大叶尖速比的获取,以及在安全逻辑下的快速复位保护桨叶。

4.1.2伺服直接控制

即使在控制器失效的情况下,变桨系统也能安全的对桨叶进行控制,这得益于ACOPOSmulti伺服驱动器内置的SPT设计,驱动器满足了极端情况下的控制需求。

4.1.3直流供电设计

ACOPOSmulti伺服驱动器为公共直流母线设计(Common DC-Bus Technology),可以通过直流母线来进行能量的均衡分配,而特别指出的是:通过与知名的电池制造商的合作,ACOPOSmulti伺服驱动器内提供一个备用电池的方案,这一方案对于电网没有交流供电时桨叶的安全保护控制和启动状态下的位置调整至关重要,或者这是极富竞争力的设计之一。

4.2.风力发电专家模块

4.2.1 X20CM0985-电网检测和并网同步

对于风力发电,专用的三相电网检测和并网同步模块X20CM0985无疑是极富竞争力的专家模块设计,它具有以下功能设计:

4.2.1.1测量

4.2.1.1.1常规测量功能:作为一般的电力测量模块使用,可多路测量线电压、相电压、频率。

4.2.1.1.2发电机侧测量:并网模式时用来测量发电机侧各项参数

● 相电流

● 电流均值

● 动态电流均值

● 中性线电流

● 线电压

● 相电压

● 视在功率

● 有功功率

● 无功功率

● 频率

4.2.1.1.3同步主网监测:发电机侧和电网侧同步端口参数测量相角差、电压差。

■ 热过流监测

■ 不平衡负载监测

■ 短路电流监测

■ 电压不平衡监测

■ 励磁监测

4.2.1.2同步并网功能

该模块最大的特点是具有同步并网功能,两路同步主网端口可同时监测网侧和发电机侧的电压、相位、频率等参数。模块内部可比较判断同步条件是否具备,当网侧和机侧的电压幅值、相位差、频率差满足一定条件时,激活并网功能,输出脉冲信号触发并网开关,使发电机回路输出电能馈送到电网上。

X20CM0985电力测量与并网同步专家模块

4.2.1.3应用结构图

X20CM0985电力测量模块应用结构图

在电路图中可以看出,该模块可以直接测量发电机定子和网侧三相电压,利用电流互感器改变发电机定子电流变比后接入模块来测量发电机定子电流。另外,两路同步主网端(Synchronization mains network 1和Synchronization mains network 2)监测网侧和发电机侧对应线路中电压、相位和频率值。如果同步条件满足则数字量端口DO4发出并网脉冲使主回路上开关合闸,电能馈送电网。

数字量端口DO1作为输出继电器使用,含一个开点和一个闭点。运行中模块会监测发电机相关状态,当出现如过压、欠压、超频、欠频、过流、短路、电压电流不平衡和励磁失效等状态时,DO1会输出高电平信号驱动外部电路动作。

数字量端口DO2可输出脉冲信号供外部电能计量用。

数字量端口DO3作为电网电流电压监测输出信号,当模块检测到电网电流或电压低于参考值时DO3输出高电平信号。

数字量端口DO5和DO6无特殊功能,可作为一般输出点来使用。

4.2.1.4工作模式

■ 滑动窗口同步模式

■ 同步状态监测模式

■ 低电压非同步模式

在B&R集成开发环境Automation Studio中可对模块功能及参数进行一些设置,如工作模式、同步端口选择、同步窗口参数、电流电压放大倍数、状态监测等等

4.2.2其它I/O模块简要描述

除了专用的X20CM0985,B&R还提供:

4.2.2.1带有示波器功能的AI/AO模块:对于监控风电参数,并提供示波器显示分析能力。

4.2.2.2光纤中继器模块:X20BH模块用于远程的设备通信可以使得远程站扩展到2km以上.

4.2.2.3PWM输出模块:用于针对逆变器的控制等专用模块。

4.2.2.4IP67等级模块:除了针对机柜内的控制系统,IP67等级模块也适用于风力发电野外应用的灵活配置和现场接线能力,上述的

AI/AO均有IP67防护等级产品,支持M12的连接。

这些,都是B&R可以应用于风力发电领域的特殊设计模块。

4.3风电安全回路设计

4.3.1 B&R Safety技术

B&R safety技术是目前运行最高效率的安全系统,并且有完整的产品线如Safetylogic 、Safety I/O,Safety Motion、Powerlink Safety,满足SIL 3级别的设计,安全逻辑的扫描周期为1ms,是目前刷新最快的Safety Logic产品,B&R SafetyLogic是基于POWERLINK实时通信技术而设计的,通过将系统中关键的逻辑如强风、恶劣天气,机组的状态变化如叶轮过速、扭缆、电源失效、制动和操作人员的紧急按钮动作等通过黄色的X20 Safety I/O输入到系统中,而Safetylogic控制器作为一个POWERLINK Controlled Node来运行,只有在Safety逻辑对应的I/O动作时才引发一个安全逻辑的执行过程(这些过程依据引发安全的源而设计为不同),Safetylogic是独立于标准控制单元的

4.3.2风力发电安全逻辑设计

通常,有多个安全系统过程可用,每一个安全系统过程制定激活哪一个安全回路,有多个传感器开关:叶轮转速、电机转速、掉电后电机功率、机舱振动,制定不同安全传感器的的级别和不同安全逻辑生效下的不通设备失效动作的时间延迟,Safetylogic系统将引导紧急停机,例如失效下安全的变桨动作、电机切出、应用轴刹车以及断开偏航驱动、机组脱网动作,最大限度的保证机组的安全,并且这些安全相关的数据将被存储到紧急停车过程中,后备电源将纳入安全逻辑中来以便为停机过程提供控制器电源保障。

B&R Automation Studio工具包支持PLCopen的Safety库应用,支持20种开放的PLCopenSafety功能块,对于风力发电这样牵扯到严格的机组安全的应用而言,它不仅高效、完整的并且开放,易于构建安全逻辑。

即使对于恶劣的环境,B&R也有IP67等级的Safety模块可供使用。

4.4. PLCopen Hydraulic库支持液压控制

在风力发电中,液压变桨方案由于其输出功率大等特点而被大量应用,而刹车制动、偏航系统的液压也采用了液压系统来进行。

通过在齿轮箱输出端与发电机之间安装液压系统、限压系统、压力补偿、恒流恒速以及制动系统,在桨叶转数随风速变化时,不会导致发电机组的输出电压和频率的不稳定,有利于并网运行。

目前750kW机组通常采用叶尖刹车系统和高速轴机械阀刹车系统,采用失效-安全保护模式来运行。

B&R Automation Studio支持液压库,AsHydCon V1在2006年已经发布开始使用,可提供液压定位、补偿和PID调节算法功能块,支持PLCopen的Hydraulic库使得B&R Automation Studio可以为风力发电设计液压控制的系统。

4.5.远程诊断和维护

4.5.1远程维护是必需的设计

对于风力发电机组而言,远程监控无疑至关重要,因为,风力发电机组的安装往往是在海边、山谷风口、沙漠隔壁这样的远离市区的地方,因为,只有这些地方才能提供较大的风力资源。

4.5.2多种远程维护方案

远程诊断与维护提供了维护风电场设备和系统的便捷方案,在B&R 系统中,实现远程方案灵活并且能够不增加或很少的成本即可。

4.5.2.1基于VNC Server的远程维护

在B&R的HMI和Controller中,VNC Server和Web Server只需配置即可,这是一个软件功能块形式存在的,无需增加任何成本,并且,VNC Server的监控软件是免费的可获得的,不仅提供完全现场监控级的权限,也能够提供参数修改和设置的能力。

4.5.2.2 Web Server则提供了基于Internet远程访问的能力

通过Windows自带的IE浏览器即可实现对远程主机的数据监控,包括CPU运行、当前I/O参数等。

4.5.2.3 FTP Server提供了远程的程序传输能力

通过FTP Server程序的修改可以由本地PC完成后经由Internet远程下载到控制器中。

4.5.2.4 SNMP则提供了电子邮件发送数据的可能

E-mail可以传送如现场数据、报警信息等到监控端的电子信箱中。

4.5.2.5GSM支持则使得关键数据可以通过手机MMS短信形式在最快的时间里发送到监控工程师的手机上,以便及时的对现场问题采取措施。

4.5.3监控范围

在B&R的系统中,远程维护不仅仅代表在软硬件意义上可以有灵活的实现,而且也包含了:

4.5.3.1针对各种参数的监控

不仅仅是电流、电压,事实上在风力发电场的每个参数,一个传感器的输入、I/O模块、CPU、甚至软件中的中间变量都可以被远程监控到。

4.5.3.2运行分析

通过灵活的软件平台,B&R也能为风力发电场提供整场运行的数据分析基础,包括设备维护、根源分析等管理级任务,这个可以由B&R APROL DCS系统来完成,贝加莱提供了不仅仅是整机控制、监控、也提供面向整场的管理级服务。

家用小型风力发电系统的初步设计

2015年度本科生毕业论文(设计) 家用小型风力发电系统的初步设计 院-系:工学院 专业:电气工程与其自动化 年级:2011级 学生姓名: 学号: 导师与职称: 2015年6月

2015 Annual Graduation Thesis (Project) of the College Undergraduate The preliminary design of small household wind power generation system Department:Electrical Engineering and Automation Major:Institute of Technology Grade:2011 Student’s Name:Xu Yun Dong Student No.:2 Tutor:The lecturer Hua Jing Finished by June, 2015

摘要 风能作为一种清洁的可再生能源正逐渐受到了人们的重视,风力发电也成为了时下的朝阳产业。本论文详细阐明了小型独立风力发电系统的设计方案,对风力发电机组的结构和电能的变换与继电控制电路做了初步的研究。 本论文首先介绍了课题的目的和意义,综述了国内外风力发电的发展概况,简要概括了风力发电相关技术的发展状况,论述了常见小型风力发电系统的基本组成和各部分的作用,同时对本论文的系统方案做了简要的概括,着重分析了整流电路与Buck降压电路的配合,蓄电池充放电继电保护以与电能输出的有效性等。还引入了市电切换电路,作为在发电机故障或蓄电池电量不足的情况下为负载供电。为了使能量的利用达到最大化,本系统还引入了并网电路。所以本论文设计的小型风力发电机组不但适合偏远的地区,也适合市区家庭使用。 本文提出的解决方案为:风力传动装置带动三相永磁交流发电机,然后通过AC—DC—DC—AC变换为交流电,并且考虑到风力的不稳定性,在系统中并入蓄电池组和稳压器,通过继电控制电路的监控以实现系统的自动控制,同时并入市电投切,保证系统在风能充足时可蓄能,在风能不充足时亦可为负载供电。系统的运行状况采用继电控制电路监控和切换。 本论文的重点在于继电控制电路的设计,并对各种不同风力情况下系统的运行状况进行了全面而严谨的分析。 关键词:小型风力发电机组;整流:逆变;继电控制:蓄电池

小型风力发电机的构造原理

小型风力发电机介绍 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (Z)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。 以上总耗能为285Wh。 这样,用电器日总耗能比风力发电机所能提供的能量超出了5Wh,也就是出现了所谓的“入不付出”用电;这种入不付出的用电,将会使蓄电池处在亏电的状态下工作。如果经常长时间地这么用电,将会使蓄电池严重亏电而损坏,缩短其使用寿命。 上例,是假定风力发电机在额定风速状击下的用电情况,而实际上,由于风的多变性,间歇性,风既有大小的不同(风速)又有吹刮时间长短的不同(风频)。所以,在使用用电器时要做到风况好时可适当多用电,风况差时少用电。这就需要用户在使用时认真总结经验。 另外,有条件的地区和用户可备一台千瓦级的柴油发电机组,当风况差的时候给蓄电池补充充电,做到蓄电池不间断地供电。 三,小型风力发电机的合理配套

太阳能发电和风力发电概述

太阳能发电和风力发电概述 上海力友电气有限公司专业为太阳能发电、风力发电、燃料电池发电、水力发电等各种可再生能源发电系统提供各种完美的工程方案,其产品主要应用于可再生能源并网发电系统、离网型村落供电系统及各类户用电源系统,并可为电网困难地区的通信、交通、路灯照明等提供电力帮助。 一、离网发电系统 风机和光伏组件为发电部件 控制器(光伏控制器和风光互补控制器)对所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量送往蓄电池组储存,当所发的电不能满足负载需要时,控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,控制器要控制蓄电池不被过放电,保护蓄电池。控制器的性能不好时,对蓄电池的使用寿命影响很大,并最终影响系统的可靠性。 蓄电池组的任务是贮能,以便在夜间或阴雨天保证负载用电。

逆变器负责把直流电转换为交流电,供交流负荷使用。逆变器是光伏风力发电系统的核心部件。由于使用地区相对落后、偏僻,维护困难,为了提高光伏风力发电系统的整体性能,保证电站的长期稳定运行,对逆变器的可靠性提出了很高的要求。另外由于新能源发电成本较高,逆变器的高效运行也显得非常重要。 产品包括 A、光伏组件 B、风机 C、控制器 D、蓄电池组 E、逆变器 F、风力/光伏发电控制与逆变器一体化电源 二、并网发电系统 可再生能源并网发电系统是将光伏阵列、风力机以及燃料电池等产生的可再生能源不经过蓄电池储能,通过并网逆变器直接反向馈入电网的发电系统。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用可再生能源所发出的电力,减小能量损耗,

250 小型风力发电机总体结构的设计

第一章 概述 1.1 风力发电机概况 风能的利用有着悠久的历史。 近年来, 资源的短缺和环境的日趋恶化使世界各国开始重 视开发和利用可再生、 且无污染的风能资源。自80年代以来, 风能利用的主要趋势是风力发 电。风力发电最初出现在边远地区, 应用的方式主要有: 1) 单独使用小型风力发电机供家 庭住宅使用; 2) 风力发电机与其它电源联用可为海上导航设备和远距离通信设备供电; 3) 并入地方孤立小电网为乡村供电。 随着现代技术的发展, 风力发电迅猛发展。以机组大型化(50kW~ 2MW )、集中安装和 控制为特点的风电场(也称风力田、风田) 成为主要的发展方向。20 年来, 世界上已有近30 个国家开发建设了风电场(是前期总数的3 倍) , 风电场总装机容量约1400 万kW (是前期总 数的100 倍)。目前, 德国、美国、丹麦以及亚洲的印度位居风力发电总装机容量前列, 且 未来计划投资有增无减。美国能源部预测2010 年风电至少达到国内电力消耗的10%。欧盟5 国要在2000~ 2002 年达到本国总发电量的10%左右, 丹麦甚至计划2030 年要达到40%。 中国是一个风力资源丰富的国家, 风力发电潜力巨大。据1998 年统计, 风力风电累计 装机22.36万kW , 仅占全国电网发电总装机的0.081% , 相对于可开发风能资源的开发率仅 为0.088%。 中国第一座风力发电场于1986 年在山东荣成落成, 总装机较小, 为3×55kW。到1993 年我国风电场总装机容量达17.1MW , 1999 年底, 我国共建了24 个风力发电场, 总装机 268MW。我国风力发电场主要分布在风能资源比较丰富的东南沿海、西北、东北和华北地区, 其中风电装机容量最多的是新疆已达72.35kW。在未来2~ 3 年内, 我国计划新增风电场装 机容量将在800MW 以上, 并且将会出现300~ 400MW 的特大型风力发电场。 1.2 风力发电机的研究现状 1.2.1 国外风力发电机的研制情况 美国从1974年起对风能进行系统的研究,能源部对风能项目的投资累计已达到25亿美 元。许多著名大学和研究机构都参加了风能的研究开发,目前己安装了8个巨型风力发电机 组。到19%年末,风力发电总装机容量己达到170x 4 10 kw,所提供的电力占全美电力需求量 的10%,居世界之首位,主要集中在加利福尼亚州。美国国会己通过了能源政策法,在能源 部的规划下, 将会改变风力发电集中于加利福尼亚的局面,在年平均风速达5.6m/s的中西部 12个州将建风力电站。据能源部预测,在未来15年内,风电将增加6倍。在今后2年内,在怀 俄明、伊阿华、明尼苏达、得克萨斯、佛蒙特、缅因州等修建大型风电场,这些风电场将使 美国风力发电能力再增加40x 4 10 kw, 预计到2010年, 风力发电总装机容量将达到630x 4 10 kw, 可满足全美电力需求量的25%。 德国是欧洲风力发电增长最快的国家,近年风力发电量急增,尤其沿海各州,风力发电 发展迅速,己超过丹麦,成为世界第二。到1995年己建成1035座风力发电装置,装机容量 49.4x 4 10 kw,1996年新装机约950座,装机容量为48x 4 10 kw,到19%年底德国己拥有4500座 风力发电装置,总装机容量达到约160x 4 10 kw,1997年估计可增加5x 4 10 kw,可为20多万个 家庭提供日常用电。这些风力发电装置中的1600个是政府投资建设的。装机容量超过1OO0kW 的风电场有250个,300OkW的最大风电场已投入使用,发电能力63x 4 10 kw,西部5x 4 10 kw风

2020年中国风力发电行业现状及未来发展趋势分析

2017年中国风力发电行业现状及未来发展趋势分析 风能是一种淸洁而稳定的新能源,在环境污染和温室气体排放日益严重的今天,作为 全球公认可以有效减缓气候变化、提高能源安全、促进低碳经济增长的方案,得到各国政府、 机构和企业等的高度关注。此外,由于风电技术相对成熟,且具有更高的成本效益和资源有 效性,因此,风电也成为近年来世界上增长最快的能源之一。 1、全球发展概况 2016年的风电市场由中国、美国、徳国和印度引领,法国、上耳其和荷兰等国的表现 超过预 期,尽管在年新增装机上,2016年未能超过创纪录的2015年,但仍然达到了一 个相当令人满意的水平。根据全球风能理事会发布的《全球风电发展年报》显示,2016年 全球风电新增装机容量 54.600MW,同比下降14.2%,英中,中国风电新增装机容量达 23328MW (临时数据),占2016年全球 风电新增装机容量的42.7%o 到2016年年底, 全球风电累计装机容量达到486J49MW,累计同比增长 12.5%。其中,截至2016年底, 中国总量达到16&690MW (临时数据),占全球风电累计装机总量的34.7%。 2001-2016年全球风电装机置计容量 450.000 400.000 350.000 300.000 土 250.000 W 200.000 150,000 1W.OOO 50.000 数据来源:公开资料整理 ■ ■ ■ ■ ■ 11 nUr l ■蛊计装机容蚤

按照2016年底的风电累计装机容量计算,全球前五大风电市场依次为中国、美国、徳国、印度和西班牙,在2001年至2016年间,上述5个国家风电累计装机容量年均复合增长率如下表所示: 数据来源:公开资料整理 2、我国风电行业概况 目前,我国已经成为全球风力发电规模最大、增长最快的市场。根据全球风能理事会(Global Wind Energy Council)统讣数据,全球风电累计装机容量从截至2001年12月31 日的23.9OOMW增至截至2016年12月31日的486.749MW,年复合增长率为22.25%, 而同期我国风电累计装机容量的年复合增长率为49.53%,增长率位居全球第一:2016年,我国新增风电装机容量23328MW (临时数据),占当年全球新增装机容量的42.7%,位居全球第一。 (1)我国风能资源概况 我国幅员辽阔、海岸线长,陆地而积约为960万平方千米,海岸线(包括岛屿)达32,000 千米,拥有丰富的风能资源,并具有巨大的风能发展潜力。根据中国气象局2014年公布的最新评估结果,我国陆地70米高度风功率密度达到150瓦/平方米以上的风能资源技术可开发量为72亿千瓦,风功率密度达到200瓦/平方米以上的风能资源技术可开发量为50 亿千瓦;80米高度风功率密度达到150瓦/平方米以上的风能资源技术可开发量为102亿千瓦,达到200瓦/平方米以上的风能资源技术可开发量为75亿千瓦。 ①风能资源的地域分布 我国的风能资源分布广泛,苴中较为丰富的地区主要集中在东南沿海及附近岛屿以及北部(东北、华北、西北)地区,内陆也有个别风能丰富点。此外,近海风能资源也非常丰富。 A. 沿海及其岛屿地区风能丰富带:沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10千米宽的地带,年风功率密度在200瓦/ 平方米以上,风功率密度线平行

2020-2025年风力发电行业市场竞争格局和产业链报告

2020-2025年风力发电行业市场竞争格局和产业链报告

目录 第一章风力发电行业概述 (3) 第一节风力发电行业定义 (3) 第二节风力发电行业特点分析 (3) 一、风力发电行业周期性特征分析 (3) 二、风力发电行业区域性特征分析 (3) 三、风力发电行业季节性特征分析 (4) 第二章风力发电行业市场竞争格局分析 (5) 第一节我国风力发电行业竞争状况分析 (5) 第二节我国风力发电行业竞争对手分析 (6) 第三章风力发电行业产业链上下游市场运行分析 (9) 第一节风力发电行业产业链介绍 (9) 第二节风力发电上下游行业发展状况对行业发展的影响 (9)

第一章风力发电行业概述 第一节风力发电行业定义 风力发电行业属于电力工业链的发电环节,其工作原理和流程是将空气动能首先通过叶轮转化为机械能,再通过发电机将机械能转化为电能,发电机组输出的电能通过升压变电站升压后输送到电网中,电网再将电能送至各用电单位。 风能是一种清洁而稳定的可再生能源,在环境污染和温室气体排放日益严重的今天,风力发电作为全球公认可以有效减缓气候变化、提高能源安全、促进低碳经济增长的方案,得到各国政府、投融资机构、技术研发机构、项目运营企业等的高度关注。相应地,风电也成为近年来世界上增长最快的能源。 第二节风力发电行业特点分析 一、风力发电行业周期性特征分析 就行业周期性而言,影响风电行业发展的主要因素是风资源、国家政策和电网条件,现阶段本行业正处于持续稳定发展期,无明显的行业周期性。 二、风力发电行业区域性特征分析 就行业的区域性而言,我国风电场项目具有区域性的特点,主要集中于风资源比较丰富的内蒙古、新疆、甘肃、河北、山东等省份。未来,随着低风速风机的成熟和应用,本行业的区域性特征将进一步减弱。

小型风力发电机基本常识

小型风力发电机基本常识 1.小型风力发电机一般都由那几部分组成的? 小型风力发电机部件很多,但一般都是由5部分组成的: 一是风轮,由二个或多个叶片组成,安装在机头上,是把风能转化为机械能的主要部件。 二是机头,主要是发电机和安装尾翼的支座等,它能绕塔架中的竖直轴自由转动。 三是尾翼,它一般装于机头之后,是用来保证在风向变化时,使风轮正对风向,现在也有不带尾翼的垂直轴发电机。 四是塔架,是支撑机头的构架,它把风力发电机架设在不受周围障碍物影响的空中。 五是控制系统,是用来控制发电机的输入输出和发电机工作状态的。 2.如何选购一台真正适合自已使用的风力发电机? 如何选购一台真正适合自已使用的风力发电机,其中是大有学问。首先,要看生产风力发电机的厂家。目前国内许多所谓的风力发电机生产厂家只是采购一些部件进行简单的组装,各部件之间根本不配套,故发电效率相对较小,故障也比较多,缺乏必要的科研能力,产品很难更新换代,还有一些厂家为了追求高利润.不惜偷工减料.其生产的发电机很难达到其标定的功率.更有一些产品经销商偷梁换柱.所以消费者在先购风力发电机时,一定要找正规的生产厂家.一般有能力有规模的生产厂家其产品大都配套齐全.其有较强的研发能力,其产品质量也都符合国家标准。

特别要查对电机的参数:(最好是拿几个厂家的对比就会很明显) 主要技术参数包括:起动风速,额定风速,额定电压,最大功率,额定功率,额定转速等。 其次用户要根据自已的使用要求和风力条件。选择相对应的风力发电机.比如在内地,由于风较小,更应选择一些功率小的发电机,因为他更容易被小风量带动而发电,特续不断的风,会比一时狂风更能供给较大的能量,而大功率的发电机.在小风的环境下动很难高效率的发电,甚至根本就无法发.这样,如果用户用电量大.可以选购几台小功率的发电机并联使用.其效果较购一台大功率的发电机效果好得多或者使用太阳板构成风光互补供电系统效果更稳定。同时,用户在选购风力发电机时还要注意以下几点:查看装箱单,数数配件是否齐全;用手转动一下各个转动部分,看是否转动灵活。 3.发电机的具体安装地点? 小型风力发电机安装场址的选择非常重要。性能很高的风力发电机,假如没有风,它也不会工作,而性能稍差一些的风力发电机,如果安装场址选择得好,也会使它充分发挥作用。关于小型风力发电机的选址条件包含着非常复杂的因素,原则上,在一年之中极强风及紊流少的地点应算最好,但有时很难选出这样的地点。 一般本着这样的原则: 第一风能丰富,年平均风速越大越好,其大体上数字是:年平均风速3m/s以上,3-20m/s有效风速累计时效3000h以上,全年3一20m /s平均有效风能密度100W/m2以上。只要能满足这个条件,小型

小型家用风力发电系统的设计

毕业设计(论文) 题目小型家用风力发电系统 的设计 姓名 学号 所在学院 专业班级 指导教师 日期年月日

原创性明 本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日学位论文版权使用授书 本学位论文作者完全了解学院有关保管、使用学位论文的规定,同意学院保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在年解密后适用本授权书。 2、不保密□ (请在以上相应方框内打“√”) 作者签名:日期:年月日导师签名:日期:年月日

摘要 随着环境问题和化石能源危机日益加剧,各国都在寻找新的可代替能源来解决能源危机和环境污染。风能和太阳能一样也是取之不尽的一种可再生能源,风力发电成为现在人们利用风能的一种主要形式,小型风力发电构成的家用分布式发电系统在未来更具有利用前景。因此对小型家用风力发电系统的研究有很多实用性和价值。 本文设计的家用风力发电系统选用单片机STC89C52为控制核心设计了系统电路,实现由蓄电池电能逆变为小型家用电器实用的24V50Hz的交流电。对风力发电原理及逆变的必要性做了重点介绍,分析了设计的电路各个模块工作原理,给出了系统的原理图和软件设计流程图。设计的家用发电系统经济成低、实用性强。 关键词:风力发电,单片机,蓄电池,逆变

小型风力发电机

怎样利用风力来发电呢? 我们把风的动能转变成机械能,再把机械能转化为电能,这就是风力发电。风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。(大型风力发电站基本上没有尾舵,一般只有小型(包括家用型)才会拥有尾舵) 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)由于风轮的转速比较低,而且风力的大小和方向经常变化着,这又使转速不稳定;所以,在带动发电机之前,还必须附加一个把转速提高到发电机额定转速的齿轮变速箱,再加一个调速机构使转速保持稳定,然后再联接到发电机上。为保持风轮始终对准风向以获得最大的功率,还需在风轮的后面装一个类似风向标的尾舵。 风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V 市电,才能保证稳定使用。 通常人们认为,风力发电的功率完全由风力发电机的功率决定,总想选购大一点的风力发电机,而这是不正确的。目前的风力发电机只是给电瓶充电,而由电瓶把电能贮存起来,人们最终使用电功率的大小与电瓶大小有更密切的关系。功率的大小更主要取决于风量的大小,而不仅是机头功率的大小。在内地,小的风力发电机会比大的更合适。因为它更容易被小风量带动而发电,持续不断的小风,会比一时狂风更能供给较大的能量。当无风时人们还可以正常使用风力带来的电能,也就是说一台200W风力发电机也可以通过大电瓶与逆变器的配合使用,获得500W甚至1000W乃至更大的功率出。 小型风力发电机介绍 一,小型风力发电机的使用条件 小型风力发电机一般应在风力资源较丰富的地区使用。即年平均风速在3m/s以上,全年3-20m/s有效风速累计时数3000h以上;全年3-20m/s平均有效风能密度lOOW/m2以上。在选择使用风力发电机时,要做到心中有数,避免盲目性,这样才能充分地利用当地的风力资源,最大限度地发挥风力发电机的效率,取得较高的经济效益。 应该指出的是,在风力资源丰富地区,最好选择风机额定设计风速与当地最佳设计风速相吻合的风力发电机。如能做到这一点无论是从风力机的选择上,还是利用风力资源的经济意义上都有重要的意义。风洞试验证明,风轮的转换功率与风速的立方成正比,也就是说,风速对功率影响最大。例如,在当地最佳设计风速为6m/s的地区,安装一台额定设计风速为8m/s的风力发电机,结果其年额定输出功率只达到原设计输出功率的42%,也就是说,风力发电机额定输出功率较设计值降低了58%。若选用的风力发电机额定设计风速越高,那么其额定功率输出的效果就越加不理想。但也必须指出,风力发电机额定设计风速偏低,其风轮直径、电机相对要增大,整机造价相应也就加大.从制造和产品的经济意义上考虑都是不合算的。 二,小型风力发电执使用的一般要求 目前,小型风力发电机都采用蓄电池贮能,家用电器的用电都由蓄电池提供。所以,用电时总的原则是,蓄电池放电后能及时由风力发电机给以补充。也就是说,蓄电池充入的电量和用电器所需消耗的电量要大致相等(一般以日计算)。下面举一例说明这一问题:某地区使用了一台风力发电机,额定风速输出功率为IOOW,假设,该地区某日相当于额定风速的风力吹刮时数连续为4h,则该风机日输出并贮存到蓄电池里的能量为400Wh。考虑到铅蓄电池的转换效率为70%,则用户用电器实际可利用的能量280Wh。如果该用户使用的电器有: (1)15W灯泡两只,使用4h,耗能为120Wh; (Z)35W电视机一台,使用3h,耗能为105Wh; (3)15W收录机一台,使用4h,耗能为60Wh。

第1章 风力发电概述

第1章风力发电概述(2学时) 1.1 前言 随着常规能源的减少,环境污染的加剧,可再生能源的开发利用越来越受到各国的高度重视。风能作为一种取之不尽、用之不竭的清洁能源,是可再生能源中最具有发展潜力的能源之一。发展风力发电,不仅可以节约常规能源,而且有利于环保,是改善能源结构,减少环境污染的有效途径之一,可带来直接的经济效益、社会效益和环境效益。 各工业化国家现代电力系统的特征之一是大规模接入风电机组。这一发展的共同推动力量是风电技术成功开发、政府目标、对进一步可再生能源的补贴和利用以及对降低污染和环境保护的强烈要求。 风电机组是环境友好型发电的最大来源,与其他可再生能源发电,如潮汐发电、波浪发电、光伏发电等相比,风电的效率最高,风电机组的最高效率可达50%。 现代电力系统的基础是常规发电厂,即通过常规发电厂控制电网的电压并维持发电与用电之间的平衡,故这些电力系统的安全可靠运行是基于常规发电厂的运行控制技术。 常规发电厂传统上是以同步发电机为基础。电网发生故障时,常规发电厂的励磁控制参与重建电网电压,而其频率控制则在此事件期间确保电网频率恒定。 风电机组是一种大有前途的替代技术,但在对馈入电网的运行与稳定性影响方面,人们通常还是一知半解。此外,大部分风电机组装有几种不同概念的感应发电机。风电机组越来越多地接入电网,在增加风电的同时减少了常规电厂的供电量及其份额。与这一过程对应的是从人们熟知且成熟的基于常规电厂的电网运行技术向人们一知半解的风电技术转移。因此,这会产生一些有关如何保持电网运行稳定和稳定性研究中如何表示风电机组的问题。 问题:风电所占份额的增加,常规电厂所占份额将下降,则基于常规电厂的电网运行

风力发电系统的基本原理(DOC)

风力发电系统的基本原理 一、风力发电的基本原理 风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。依据目前的风车技术,大约3m/s的微风速度便可以开始 发电。风力发电的原理说起来非 常简单,最简单的风力发电机可 由叶片和发电机两部分构成如 图1-1所示。空气流动的动能作 用在叶轮上,将动能转换成机械 能,从而推动片叶旋转,如果将 叶轮的转轴与发电机的转轴相 连就会带动发电机发出电来。 二、风力发电的特点 (1)可再生的洁净能源 风力发电是一种可再生的洁净能源,不消耗化石资源也不污染环境,这是火力发电所无法比拟的优点。 (2)建设周期短 一个十兆瓦级的风电场建设期不到一年。 (3)装机规模灵活

可根据资金情况决定一次装机规模,有一台资金就可以安装一台投产一台。 (4)可靠性高 把现代高科技应用于风力发电机组使其发电可靠性大大提高,中、大型风力发电机组可靠性从80年代的50%提高到了98%,高于火力发电且机组寿命可达20年。 (5)造价低 从国外建成的风电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。我国由于中大型风力发电机组全部从国外引进,造价和电价相对比火力发电高,但随着大中型风力发电机组实现国产化、产业化,在不久的将来风力发电的造价和电价都将低于火力发电。 (6)运行维护简单 现代中大型风力发电机的自动化水平很高,完全可以在无人职守的情况下正常工作,只需定期进行必要的维护,不存在火力发电的大修问题。 (7)实际占地面积小 发电机组与监控、变电等建筑仅占火电厂1%的土地,其余场地仍可供农、牧、渔使用。 (8)发电方式多样化 风力发电既可并网运行,也可以和其他能源如柴油发电、太阳能发电、水利发电机组形成互补系统,还可以独立运行,因此对于解决

小型风力发电装置的设计

济源职业技术学院 毕业设计 题目小型风力发电装置的设计 系别机电工程系 专业机电一体化 班级 0803班 袁泉 学号 08010315 指导教师高清冉 日期 2010年11月

设计任务书 设计题目: 小型风力发电装置设计 设计要求: 1、了解小型风力发电装置的基本设计原理和用途。 2、熟悉基本绘图软件的使用方法和技巧。 3、使用Solidworks绘画装配图、零件图。 设计进度要求: 第一周:选择课题,勾勒基本的设计思路 第二周:查找与其有关的资料; 第三周:进行螺旋传动的设计和计算; 第四周:进行发电机的设计; 第五周:绘制草图 第六周:完善初稿及草图使其语言更加简练、布局更加合理; 第七周:整理电子稿; 第八周:再次修改论文,进行答辩 指导教师(签名):

摘要 风能是一种无污染、可再生的清洁能源。早在公元前200年,人类就开始利用风能了。提水、碾米、磨面及船的助航都有利用风能的记载。自第一次世界大战之后,丹麦仿造飞机的螺旋桨制造二叶和三叶高速风力发电机发电并网使用直至现在,风力发电机经历了近百年的发展里程。20世纪80年代之后,世界工业发达国家率先研究、快速发展了风力发电机,建设了风电场。现在风力发电机制造成本不断下降,已接近水力发电机的水平,制造及使用技术也日趋成熟。20世纪末,世界每年风电装机容量以近20%的增长速度发展,风电现在已成为世界能源中发展最快的能源。如果在总面积0.6%的地方安装上风力发电机,就能提供全部电力消耗的20%,可以关闭供电能力20%的以燃烧煤、重油等碳氢化合物为燃料而排放SO2、CO2和烟尘对大气和地球环境造成污染和破坏的火电场。 在今后10年,风力发电将成为世界各国重点发展的能源之一,风力发电机的制造业也必将成为新兴的机械制造业。也将带动诸如大型钢管、钢板等冶金行业,发电机制造,电器控制,液压机械,复合材料等行业的发展;势必推动蓄电池向大容量、小体积、高效方向发展势必拓宽微机在风力发电机自动控制方面的应用和发展。风力发电机的发展及其拉动的行业发展将成为数以万计的人创造就业机会。可见,发展风力发电机及风力发电对于发展经济,保护环境,有着重要意义。 我国地域辽阔,风能资源丰富,风能储量达25.3亿MW。1991年国家计委实施了“乘风计划”和“光明工程”,为中国全面发展大、中、小型风力发电机及风力发电创造了条件。至2010年,我国在风能资源丰富地区先后建了249个风电场,总装机容量1546MW,已形成一定的风力发电基础及积累了较丰富的风力发电的经

我国风力发电现状及发展趋势

我国风力发电现状及发展趋势 摘要:随着环境和能源问题的日益严峻,可再生能源的开发,尤其是风力发电技术已被国家政府所重视。本文概述了风力发电的基本现状,分析了风电在国内外的发展状况、主要面临的问题及其解决途径和发展前景。 关键词:风力发电;现状;发展趋势 1.风力发电概述 众所周知, 可再生能源有水能、风能、太阳能、生物质能、潮汐能、地热能六大形式。其中, 风能源于太阳辐射使地球表面受热不均、导致大气层中压力分布不均而使空气沿水平方向运动所获得的动能。据估计, 地球上可开发利用的风能约为2*107 MW, 是水能的10倍, 只要利用1%的风能即可满足全球能源的需求[1] 。据中国气象科学研究院估算,在中国,10m 高度可开发的风能为10亿kW 以上(陆地亿kW ,海上亿kW )[2]。 在石油、天然气等不可再生能源日益短缺及大量化石能源燃烧导致大气污染、酸雨和温室效应加剧的现实面前, 风力发电作为当今世界清洁可再生能源开发利用中技术最成熟、发展最迅速、商业化前景最广阔的发电方式之一已受到广泛重视[3]。 2.风力发电原理风力发电机的分类 .风力发电原理 力发电是将风能转换为机械能进而将机械能转换为电能的过程。风吹动风力机叶片旋转, 转速通常较低, 需要齿轮箱增速, 将高速转轴连接到发电机转子并带动发电机发电, 发电机输出端接一个升压变压器后连接到电网中。典型的风力发电系统包括风力机(叶片、轮毅等部分)及其控制器、转轴、换流器、发电机及其控制器等。风速、作为风力机及其控制器的输入信号, 风力机控制器将风速与参考值进行比较, 向风力机输出桨距角信号, 调整输出机械转矩T 和机械功率 。转轴输出的机械功率输入到发电机中, 发电机的输出功率经过换流器输送到变压器中, 最终输送至电网。 风能的表达式为: 32 1νρts E = (式1-1) 式中:s —单位时间内气流流过截面积(m 2) ρ—空气密度(kg/m 3 ) v —风速(m/s)

小型风力发电机性能测试

小型风力发电机性能测试 1.2 小型风力机开发背景 近三十年来随着世界资源的过度消耗,人类可用资源日益减少,石油价格不断上涨,世界各地频发石油短缺信号,并且由于化学能源的应用,人类居住环境日益恶化,人类迫切需要一种清洁的持续能源。由于风能取之不尽,用之不竭,不消耗资源,清洁卫生,分布范围广等特点,风能发电成为世界许多国家可持续发展战略的组成部分,由于在过去十年间,风能发电的年增长率达到28%,全球安装总量达到7,400万KW,意味着每年在该领域的投资额达到180亿欧元。2006年,全球风度资金9%投向了中国,总额打16.2亿欧元(约162.7亿元人民币)[1],中国有望成为全球最大的风力市场。 我国可开发的风力资源十分丰富,东南沿海及其附属岛屿属于风能资源丰富区,这些地区的年有效风能在200W/㎡以上,并且每年有7000——8000h的风速超过3.5m/s。东北、华北和西北北部,黑龙江、吉林东部,辽宁山东半岛的沿海地区,青藏高原北部,东南沿海20-100KM 的内陆地区,海南西部,台湾南北两端及新疆阿拉山等地区风能资源比较丰富,年有效风能在150W/㎡以上,全年有4000h的风速大于3.5m/s。长江、黄河中下游,西北和华北除上述资源丰富地区以外的地区,这类地区分布较广,属于风能资源可利用区[2][3]。 据统计,截止2005年底全国大概还有300万无电户(约1300万无电人口)[4],其中大部分人口居住在低风区,且居住相对分散,如果采用常规电网来供电,从经济效益上是不可行的,只有采用小型风力发电系统才能解决偏远地区的农、牧、渔民的供电问题。近几年来,各大城市在电力供应紧张时,经常采用拉闸限电的方式来解决电力供应不足的问题,由此给广大居民带来诸多不便,采用小型风力发电机组给居民供电,一方面可用大大缓解供电不足的困难,另一方面,小型风力发电设备属于一次性投资产品,后期维护费用低,可用大大节省家庭用户在电费上的开支。另外,若采用小型风能发电系统给城市路灯供电,给城市供电减少不小负担,由此带来的经济效益十分可观。由此看来小型风力机有着巨大的市场前景。 1.2 风力发电技术介绍 早在几千年前,中国人在明代就开始使用风车带动磨面,灌溉,提盐,直到公元12世纪欧洲才使用风车来磨面和车水[5]。中世纪后荷兰才发明了水平轴风车,并成为著名的风车王国,十九世纪末丹麦人首先研制了世界第一台风力发电机组,建成了世界第一台风力发电站[6],但是由于当时设计制造的局限性,风力发电发展缓慢,真正意义上的现代风力发电技术发展始于上世纪70年代。 风力发电机是将风能转化为电能的装置,按风能轴的安装位置不同可用将其分为两类:能量驱动链(风轮、主轴、增速箱、发电机)呈水平轴方向称之为水平轴风力机,能量驱动链呈垂直方向称之为垂直轴风力发电机[7]。 1.2.1水平轴风力发电机 水平轴风力发电机是目前国内研究最多、最常见、技术最成熟的一种风力机,水平轴风力发电机的叶片数一般为1-4片,水平轴风力机一般在风速较高时有较高的风能利用率(风能利用率表示风力机从自然风中吸取能量的多少),在大容量风力发电行业应用十分广泛。近些年来水平轴风力机的研究趋势主要集中在变浆距调节和变速恒发电机两方面。 按来流风向分,水平轴风力机分为上风向风力机和下风向风力机,上风向风力机需要加装一个调向装置,使风机和风向始终保持一致,下风向风力机能够自动跟随风向,无需安装调向装置,但是风流过塔架后载流向风轮,塔架会对流向风轮的风产生干扰,从而使分离机的效率下降[8]。水平风力发电机的技术已经非常成熟,在大型风力发电市场应用十分广泛,目前最大的水平轴风力发电机单机容量已经达到5MW。水平风力机叶片尖速比(尖速比表示风力机运行速度的快慢,

小型风力发电机控制器设计

电子设计竞赛教程 考试(设计报告) 题目:小型风力发电机控制器设计

摘要 现有的小型风力发电系统存在能量转换效率低、蓄电池使用寿命短、控制简单和缺乏完整的系统功率控制等问题。因此提高对蓄电池的充电速度,减少充电损耗,正确地监控蓄电池状态,确保蓄电池的正确使用、延长蓄电池的使用寿命对小型风力发电有着重要意义。本设计的目的是在分析现有的小型风力发电系统的基础上,设计简单、高效、高可靠性的风机控制器,实现风电系统可靠及优化运行。 本设计以单片机8051的加强版STC12C5A60S2为核心控制整个电路,具体由风力发电机、控制系统、整流电路、斩波电路、蓄电池充放电控制电路、蓄电池及其用电设备组成,功能上能保证系统安全运行,在电气特性和机械特性允许范围内运行。减少风速随机变化对输出电能的影响,使输出电压稳定,减少纹波。合理调度系统电能,保证向负载提供连续电能。保护蓄电池,防止过充和过放,提供足够充电能量进行快速充电。 综上所述,本设计将具有可靠性更高、价格更廉等优势,对于增强市场竞争能力,加速小型风力发电的普及和应用,节约能源和保护环境都具有重要意义。 关键词:发电机整流锂电池环保

目录 一绪论 0 二小型风力发电系统原理 (1) 2.1 风力发电系统组成 (1) 2.2 风电系统的运行特点 (1) 2.3 电能变换单元和控制单元 (3) 2.3.1 整流器 (3) 2.3.2 DC/DC 变换器 (4) 2.4 锂电池 (4) 2.4.1 锂电池的介绍 (4) 2.4.2 锂电池的种类 (5) 2.4.3 锂电池的充电方法 (5) 三小型风力发电机控制器的设计 (6) 3.1 电机的选择 (6) 3.1.1 手摇发电机 (6) 3.1.2 电机特性曲线 (8) 3.2 单片机(单片机STC12C5A60S2) (10) 3.2.1 产品介绍 (10) 3.2.2 单片机STC12C5A60S2的特点 (10) 四流程图和电路图 (13) 4.1流程图和控制原理图 (13) 4.2 显示屏 (17) 4.3 锂电池选择 (19) 4.4 检测电路 (20) 4.4.1 电压检测 (20) 4.4.2 电流检测 (21) 五调试 (21)

小型家庭用风力发电机设计资料 (1)

家庭用风力发电机 一、市场背景 由于目前石油等不可再生能源价格一直上涨,所以各国都在大力发展可再生能源,而风能便是其中之一,因风能不会产生污染,加上国家政策的支持,相关技术上的日益成熟,故风力发电前景十分良好。 1.行业现状 (1)发展起步。我国从20世纪80年代初就把小型风力发电作为实现农村电气化的措施之一,主要研制、开发和示范应用小型充电用风力发电机,供农民一家一户使用。目前,1 kw以下的机组技术已经成熟并进行大量的推广,形成了年产1万台的生产能力。近10年来,每年国内销售5000~8000台,100余台出口国外。目前可批量生产100、150、200、300和500w及1、2、5和10 kw的小型风力发电机,年生产能力为3万台以上,销售量最大的是100~300w的产品。在电网不能通达的偏远地区,约60万居民利用风能实现电气化。截至1999年,我国累计生产小型风力发电机组18 .57万台,居世界第一。 (2)从事小型风力发电产业的开发、研制、生产单位不断扩大。自中国第一部《可再生能源法》于2005年2月28日在全国人大十一届十四次大会通过以来,可再生能源的开发应用出现了新的机遇,大家看好可再生能源的发展前景,从事小型风力发电产业研制、开发、生产的单位达到70家。其中,大专院校、科研院所35家,生产企业23家,配套企业(含蓄电池、叶片、逆变控制器等)12家。 (3)小型风力发电机组产量产值利润有新的增长。2005年据23个生产企业报表统计,共生产30kW以下独立运行的小型风力发电机组共33253台,比上年增长34.4%,其中200W、300W、500W机组共生产24123台,占全年总产量的72.5%,机组容量为12020kW,总产值8472万元,利税992.9万元。2006年,预计小型风力发电行业无论是产量、产值、利税等方面将有较大增长,目前正在统计中 (4)出口外销数量增加,国际市场看好。2005年15个单位共出口小型风力发电机组5884台,比上年增长40.7%,创汇282.7万美元,主要出口到菲律宾、越南、巴基斯坦、朝鲜、印尼、波兰、缅甸、蒙古、韩国、日本、加拿大、英国、美国、荷兰、智利、格鲁吉亚、匈牙利、新西兰、比利时、澳大利亚、南非、阿根廷、香港、台湾等24个国家和地区。 (5)推广应用范围不断扩大。除了传统的广大农牧区用户应用小型风力发电机组照明看电视以外,由于汽油、柴油、煤油价格飞涨,且供应渠道不畅通,内陆、江湖、渔船、边防哨所、部队、气象、微波站等使用柴油发电的用户,逐步改用风力发电或风光互补发电。此外,生态环保公园、林荫小道、别墅庭院等地方,也购买安装小型风力发电机组,作为景观,供人们休闲欣赏。 2 行业发展趋势 由于广大农牧民生活水平提高、用电量不断增加,因此小型风力发电机组单机功率在继续提高,50W机组不再生产,100W、150W机组产量逐年下降,而200W、300W、500W、1000W机组逐年增加,占总年产量的80%。 由于广大农民迫切希望不间断用电,因此“风光互补发电系统”的推广应用明显加快,并向多台组合式发展,成为今后一段时期的发展方向。 风光互补多台组合式系列发电系统是将多台小功率风力发电机安装在同一个地方,集中向配套的多个大容量蓄电池组同时充电,并由一台大功率的控制逆变器统一控制输出。这种配置优点是(1)小型风力发电机组的技术成熟,结构简单、质量稳定、安全可靠、经济实惠; (2)装拆、搬运、维护方便,操作简单;

中国风力发电的发展现状及未来前景.

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

相关主题
文本预览
相关文档 最新文档