当前位置:文档之家› 矩阵论——三维图形应用

矩阵论——三维图形应用

矩阵论——三维图形应用
矩阵论——三维图形应用

矩阵在计算机三维图形变换中的应用

矩阵在计算机三维图形变换中的应用

摘要:论述如何利用矩阵的变换性质实现计算机的三维图形变换,主要是通过平移、缩放和旋转三种基本变换的组合来实现的,利用矩阵可以是图形处理高速化。

关键词:平移、缩放、旋转

1 引言

三维图形图像的处理,显示和形体构造需要使用三维几何变换,这些变换是通过基本的平移,缩放和旋转组合而成的,每一个变化都可以表示为矩阵变换的形式,通过矩阵的相乘或连续可以构造复杂的变换。

2 矩阵与图形变换

计算机对图形的处理,经常用到各种变换,若用解析式表示坐标变换,计算过程和缩放程序都很复杂,用矩阵表示图形的坐标变换,特别是复合变换就显得比较简单,利用矩阵进行计算,可使图形处理高速化。

事实上,对于一个空间图形,图形上每一个点都对应着唯一的坐标(x,y,z),它的标准化齐次坐标为一个四维的向量。

设T为4 X 4变换矩阵:

其个元素的性质为:a,b,c,d,e,f,g,h,i产生比例,反射,旋转,错位变换,l,m,n

产生沿x轴,y轴,z轴的平等移动。P,q,r产生透视变换,s产生全比例变换。

利用变换矩阵T可以对三维坐标进行各种变换,其基本关系式为:

一般地,对图形对平移变换的变换矩阵为:

其中l,m,n分别沿x轴,y轴,z轴的方向的平移量,其坐标关系式为:

对图形做比例变换矩阵为:

a,e,i分别表示坐标x,y,z的放大率,其坐标关系为:

当a,e,i均等于1时,则变换矩阵为:

T=

1000 0100 0010 000s ?? ? ? ? ???

这时T产生全比例变换,其中S为整个图形的放大率,当s>1时整个图形缩小,当s<1时整个图形放大。对图形作错移变换的变换矩阵为:

T=

10

10

10 000

d g

b h

c f

s ?? ? ? ? ???

对图形作关于xoy平面的反射变换的变换矩阵为:

T=

1000 0100 0010 0001?? ? ? ?

-

???

将图形绕x轴旋转角α的变换矩阵为:

T=

1000 0cos sin0 0sin cos0 0001?? ?

αα

? ?-αα

???

将图形绕y轴旋转角α的变换矩阵为:

T=

cos0sin0

0100 sin0cos0

0001

α-α

?? ? ? ?αα

???

如果要对图形连续施行几种变换,则它的变换矩阵就是几个相应变换后矩阵的乘积,如对点A(x,y,z)先作比例变换,然后再绕y轴旋转角α,则新旧坐标关系为:

(x,y,z,1)

000

000

000

0001

a

e

i

??

?

?

?

?

??

cos0sin0

0100

sin0cos0

0001

α-α

??

?

?

?

αα

?

??

=()

*

**1

y

x z

3 利用矩阵进行三维图形变换

设三维孔家那种任意一点的齐次坐标p(x,y,z,1),作三维图形得打的点的齐次坐标为p’(x’,y’,z’,1)可得下面三维图形集合变换矩阵。

3.1 平移变换

平移变换课将指定形体从当前位置移到一个新的位置,而不改变其方向和大小。

式中,D x,D y,D z分别是沿x轴,y轴,z轴方向上的平移量,图1是三维平移变换示意图。

3.2 比例变换

比例缩放变换指定形体的大小,该比例变换以坐标原点为参考点,上式中的分别是沿x轴,y轴,z轴方向上的缩放比例,图2是以坐标原点为参考点的三维比例变换示意图。

如果要以三维空间中的任意一点(x0,y0,z0)为参考点作比例变换,先平移至原点作比例变换后再平移回到点(x0,y0,z0),比例变换矩阵为:

3.3 旋转变换

三维旋转变换是指空间形体绕坐标轴旋转角,旋转的正方向通常按右手定则确定,即右手拇指指向转轴方向,其余四指指向便是旋转角θ的正交(如图3)。旋转变换后形体的大小和形状不发生变化,只是空间位置相对原位置发生了变化。

绕x轴旋转:

,其中θ为图形绕x轴旋转的角度;

绕y轴旋转:

其中θ为图形绕y轴旋转的角度;

绕z轴旋转:

其中θ为图形绕z轴旋转的角度。

4 旋转矩阵

设o-x 1y 1z 1和o-x k y k z k 是以o 为同一原点的不同坐标系,对应的基向量分别为l e

k

e

,则同一矢量可以用两种不同的基表示出来。

,其中

为向

的坐标阵列,右边等式的两边用1e 点乘,得到:,其中A lk

为3X3标量矩阵,定义为:由此式可

以判断,相同元素之间的选择矩阵为三阶单位矩阵,即A ll (A kk )=E ,并且于实际

情况

符合。我们用以下算例来实现旋转阵的应用:

5 三维图形变换的统一矩阵面

计算机绘制物体的投影图,是将三维空间的物体用二维平面上的图形来表示,因此,需要进行图形变换,而进行图形变换行之有效的方法是矩阵机器运算。常用的三维图形变换矩阵有绕z轴的旋转矩阵S1,绕x轴的旋转矩阵S2,平移矩阵S3,向y面的正投影矩阵S4,它们分别为

其中, φ分别为绕z轴和x轴旋转的角度,l,m,n为平移参数

6 计算机三维变换使用矩阵

Direct 3D使用矩阵来执行3—D变换,解释了矩阵是如何来建立三维变换。描述了一些变换的基本用法以及如何通过矩阵合并来完成复杂的变换,平移Translation旋转Rotation,缩放Scaling。

在Direct 3D程序中,平移矩阵也可以使用D3dutil.cpp矩阵中的Translate辅助函数来创建此矩阵,下面的例子展示了Translate函数的源码:D3DMATRIX Translate(canst float dx. Const float dy. Const float dz)

{

D3DMTR x ret=identity Matrix();

Ret(3. 0)=dx;

Ret(3. 1)=dy;

Ret(3. 2)=dz;

Return=ret;

} end of Translate()

使用D3dutil.cpp 文件中的Rotate x 和Rotate y 和Rotate z 辅助函数来创建放置矩阵,下面是Rotate x

函数的代码:

D3DMATRIX.Rotatex(const float rads)

{ floatconst sine;

const =cos(rads);

sine =sin(rads);

D3DMATRIX ret=identity Matrix();

Ret(1 .1)=consine;

Ret(2 .2)=consine;

Ret(1 .2)=-sine;

Ret(2 .1)=sine;

Rerurn ret;

}//end of Rotatx()

7 结语

上述推导出的计算机三维图形变换,怎样利用矩阵的变换性质,可以通过平移比例变化和旋转

三种基本变换的组合来实现,尤其是它的旋转变换需要知道旋转角和旋转轴。

参考文献:

[1]王汝传.计算机图形学[M].北京:人民邮电出版社,2002.180~189

[2]何援军.计算机图形学[M].北京:机械工业出版社,2006.87~91

[3]焦永广.计算机图形学教程[M].北京:理工大学出版社,2001.109~114

[4]孙家广.计算机图形[M].北京:清华演出版社,1998

[5]李新友.计算机图像综合技术[M].北京:机械工业出版社,1997

[6]杨钟藩.微型计算机绘图及其程序设计[M],1987

[7]上海交通大学.计算机制图[J].北京:高等教育出版, 1985.138~166

矩阵理论在信号系统中的应用

五邑大学研究生矩阵理论论文

矩阵理论在信号系统中的应用 摘要:在20世纪50年代蓬勃兴起的航天技术的推动下,现代控制理论在上世纪60年代开始形成并得到了迅速的发展。现代控制理论的重要标志和基础就是状态空间方法。现代控制理论用状态空间法描述输入、状态、输出等各种变量间的因果关系。不但反映系统输入与输出的外部特性,而且揭示了系统内部的结果特性,可以研究更复杂而优良的控制算法。现代控制理论及使用于单变量控制系统,有适用于多变量控制系统,既可以用于线性定常系统,又可以用于线性时变系统,还可用于复杂的非线性系统。 本文主要介绍了连续时间线性时不变系统零输入响应运动分析,如何利用数学模型,求解线性定常系统的零输入响应问题。是矩阵理论中约当标准形和对角线标准形在线性系统理论中的一个很典型的应用。 状态与状态变量:系统在时间域中运动信息的集合称为状态。确定系统状态的一组独立(数目最少的)变量称为状态变量。它是能完整地确定地描述系统的时间行为的最少的一组变量。 状态向量:如果n 个状态变量用()1x t 、()2x t 、…()n x t 表示,并把这些状态变量看做是 向量X (t )的分量,则向量X (t )称为状态向量,记为()()()()12n x t x t X t x t ????? ?=???????? 或者()()()()12T n X t x t x t x t =???? 状态空间:以状态变量()1x t 、()2x t 、…()n x t 为坐标轴构成的n 维空间。 状态方程:描述系统的状态变量之间及其和系统输入量之间关系的一阶微分方程组 线性系统:满足叠加原理的系统具有线性特性 零输入响应:若输入的激励信号为零,仅有储能元件的初始储能所激发的响应,称为零输入响应。 一、线性系统状态方程: A :表示系统内部状态关系的系数矩阵 B :表示输入对状态作用的输入矩阵 从数学的角度上,就是相对于给定的初绐状态x0和外输入u (t ),来求解状态方程的解,即系统响应。解的存在性和唯一条件:如果系统A 、B 的所有元在时间定义区间 []0t t α上均为 t 的实值连续函数,而输入u(t)的元在时间定义区间[]0t t α上是连续 实函数,则其状态方程的解X(t)存在且唯一。 ()()[] ()()0 )0(x t t :)(x t t :0 000≥=+=∈=+=t x Bu A t t t x t Bu A x x x x 时不变时变α

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课 。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n 个节点,b 条支路的电路图, 每条支路的电压和电流均为未知,共有2b 个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL 我们也可以列 出(b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我们还可以可以列出b 个方程;总共2b 个方程要解出b 个支 路电流变量和b 个支路电压变量。当b 的数值比较大时,传统 的解数学方程组的方法已经不再适用了,因此我们需要引入矩 阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵 图 1 1. 关联矩阵 在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?? ???-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵

矩阵论在神经网络中的应用详解

矩阵论论文 论文题目:矩阵微分在BP神经网络中的应用 姓名: 崔义新 学号: 20140830 院(系、部): 数学与信息技术学院 专业: 数学 班级: 2014级数学研究生 导师: 花强 完成时间: 2015 年 6 月

摘要 矩阵微分是矩阵论中的一部分,是实数微分的扩展和推广.因此,矩阵微分具有与实数微分的相类似定义与性质.矩阵微分作为矩阵论中的基础部分,在许多领域都有应用,如矩阵函数求解,神经网络等等. BP网络,即反向传播网络(Back-Propagation Network)是一种多层前向反馈神经网络,它是将W-H学习规则一般化,对非线性可微分函数进行权值训练的多层网络. 它使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.在其向前传播的过程中利用了矩阵的乘法原理,反传的过程中则是利用最速下降法,即沿着误差性能函数的负梯度方向进行,因此利用了矩阵微分. 关键词:矩阵微分;BP神经网络;

前 言 矩阵微分(Matrix Differential)也称矩阵求导(Matrix Derivative),在机器学习、图像处理、 最优化等领域的公式推导过程中经常用到.本文将对各种形式下的矩阵微分进行详细的推导. BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一.BP 网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小.BP 神经网络模型拓扑结构包括输入层(input )、隐层(hiddenlayer)和输出层(outputlayer). BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成.输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果.当实际输出与期望输出不符时,进入 误差的反向传播阶段. 误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传.周而复始的信息正向传播和 误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止. 1 矩阵的微分 1.1 相对于向量的微分的定义 定义1 对于n 维向量函数,设函数 12 ()(,,,)n f f x x x =X 是以向量X 为自变量的 数量函数,即以n 个变量 x i 为自变量的数量函数. 我们将列向量 1n f x f x ???????? ???????????? 叫做数量函数f 对列向量X 的导数, 记作 1n f x df f f d f x ??? ?????= = =????? ???????? grad X 12T n df f f f d x x x ?? ???=? ?????? X (1.1)

矩阵论在电气工程中的应用

题目: 矩阵论在电气工程中的应用指导老师: xxx 学生姓名:xxx 所属院系:电气工程学院 专业:电气工程 学号:xxx 完成日期:20xx年x月x日

矩阵论在电气工程中的应用 摘要 电路分析是电气专业领域人员必需的一项能力。该知识具有概念性强、电路分析繁杂求解计算量大的特点。为了解决这个问题,因此引入了矩阵理论,并结合软件对矩阵分析的良好支持,以期达到优化分析电路的目的。本文就矩阵理论中的网络拓扑知识展开,介绍了网络拓扑在电路中的应用,并以给予求解。 关键词:电路分析矩阵法网络拓扑 ABSTRACT: Circuit analysis is an essential ability of professional personnel in the field of electronic. The concept of strong, complex circuit analysis calculation with the knowledge of the characteristics of large amount. In order to alleviate this problem, so we introduced matrix theory, combined with good support analysis software for matrix, in order to achieve the purpose of optimization of circuit analysis. In this paper, the network topology in matrix theory unfolds, introduces the application of network topology in circuit, and to give the solution. KEY WORDS:circuit analysis;matrix method;network topology 0 前言 矩阵是线性代数里的一个重要概念,在电路网络分析、工程结构分析等面,矩阵都是一个强自力的工具,因为它能使较复杂的计算过程简化成一系列的四则运算,便于用计算机的算法语言或程序进行描述和解答。当运行这些程序时,能迅速地得到较准确的计算结果。在电子领域基础知识电路分析中,经过理论分析

矩阵分析在通信中应用

矩阵论在通信领域中的应用 基于多输入多输出技术(MIMO)信道容量的分析 1 背景分析 频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。一方面,是可用的频谱有限;另一方面,是所使用的频谱利用率低下。因此,提高频谱利用率就成为解决实际问题的重要手段。多进多出(MIMO)技术即利用多副发射天线和多副接收天线进行无线传输的技术的提出很好地解决了这个问题。 多输入多输出(MIMO)技术能极大增加系统容量与改善无线链路质量的优点。通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO的信道容量具有巨大的指导意义。但是对信道容量的推导分析是一个很复杂的过程,但是应用矩阵的知识进行分析能很好的解决这个问题,本文把矩阵理论知识与MIMO技术信道容量中的应用紧密结合,首先建立了MIMO信道模型,利用信息论理论和矩阵理论建立系统模型详细推导出MIMO信道容量,通过程序仿真反应实际情况,可以更直观正确的得出重要结论,这些结论的得出没有矩阵的知识是很难实现的。 2 问题的提出 基于MIMO的无线通信理论和传输技术显示了巨大的潜力和发展前景。MIMO 技术的核心是空时信号处理,利用在空间中分布的多个天线将时间域和空间域结合起来进行信号处理,有效地利用了信道的随机衰落和多径传播来成倍的提高传输速率,改善传输质量和提高系统容量,能在不额外增加信号带宽的前提下带来无线通信性能上几个数量级的提高。目前对MIMO技术的应用主要集中在以空时编码(STC,Space-Time Codes)为典型的空间分集(diversity)和以BLAST(Bell LAyered Space-Time architecture)为典型的空间复用(multiplexing)两个方面。MIMO作为未来一代宽带无线通信系统的框架技术,是实现充分利用空间资源以提高频谱利用率的一个必然途径。 可问题是,MIMO系统大容量的实现和系统其它性能的提高以及MIMO系统中

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n个节点,b条支路的电路图, 每条支路的电压和电流均为未知,共有2b个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL我们也可以列出 (b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我 们还可以可以列出b个方程;总共2b个方程要解出b个支路电 流变量和b个支路电压变量。当b的数值比较大时,传统的解数学方程组的方法已经不再适用了,因此我们需要引入矩阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵图 1 1.关联矩阵

在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?????-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵 在电路图中,基本回路和支路的关联性质可以用基本回路矩阵][ij f b B =来表示。当选定电路图中的一个树,额外再增加一个连枝的时候,就会形成一个基本回路。选取基本回路的方向与它所关联的连枝方向一致,矩阵f B 的元素为: ?? ???-+=个回路无关联条支路与第第反方向和基本回路方向相个回路相关联,且支路条支路与第第同方向和基本回路方向相个回路相关联,且支路条支路与第第i j i j i j b ij 0 1 1 图1中电路图的基本回路矩阵为 ???? ??????=1 0 0 1- 1 0 0 0 1 0 1- 1 1- 1 0 0 1 0 1- 1 1-f B 3. 基本割集矩阵 在电路图中,基本割集和支路的关联性质可以用基本割集矩阵][ij f q Q =来表示。当选

矩阵应用简介

矩阵应用简介 The introduction of Matrix application 作者:刁士琦 2015/12/27

摘要 本课题以线性代数的应用为研究对象,通过网络、书籍查询相关知识与技术发展。 全文分为四部分,第一部分是绪论,介绍本课题的重要意义。第二部分是线性代数的发展。第三部分是经典矩阵应用。第四部分是矩阵应用示例。第五部分为结论。 关键词:莱斯利矩阵模型、希尔密码

目录 摘要 (2) 1 引言 (4) 2 矩阵的发展 ............................................................................................ 错误!未定义书签。 3 经典矩阵应用 (4) 3.1矩阵在经济学中的应用 (4) 3.2矩阵在密码学中的应用 (7) 3.3莱斯利矩阵模型 (5) 4 矩阵应用示例 (6) 4.1经济学应用示例 (6) 4.2希尔密码应用示例 (7) 4.3植物基因分布 (7) 6 结论 (8) 参考文献 (9)

1引言 线性代数是以向量和矩阵为对象,以实向量空间为背景的一种抽象数学工具,它的应用遍及科学技术的国民经济各个领域。 2矩阵的发展 1850年,西尔维斯特在研究方程的个数与未知量的个数不相同的线性方程时,由于无法使用行列式,所以引入了Matrix-矩阵这一词语。现代的矩阵理论给出矩阵的定义就是:由mn 个数排成的m行n列的数表。在此之后,西尔维斯特还分别引入了初等因子、不变因子的概念[5]。虽然后来一些著名的数学家都对矩阵中的不同概念给出了的定义,也在矩阵领域的研究中做了很多重要的工作。但是直到凯莱在研究线性变化的不变量时,才把矩阵作为一个独立的数学概念出来,矩阵才作为一个独立的理论加以研究。 矩阵概念的引入,首先是由凯莱发表的一系列和矩阵相关的文章,将零散的矩阵的知识发展为系统完善的理论体系。矩阵论的创立应归功与凯莱。凯莱在矩阵的创立过程中做了极大的贡献。其中矩阵的转置矩阵、对称矩阵和斜对称矩阵的定义都是由凯莱给出的。“从逻辑上来说,矩阵的概念应限于行列式的概念,但在历史上却正好相反。”凯莱如是说。1858年,《A memoir on the theory of matrices》系统阐述了矩阵的理论体系,并在文中给出了矩阵乘积的定义。 对矩阵的研究并没有因为矩阵论的产生而停止。1884年,西尔维斯特给出了矩阵中的对角矩阵和数量矩阵的定义。1861年,史密斯给出齐次方程组的解的存在性和个数时引进了增广矩阵和非增广矩阵的术语。同时,德国数学家弗罗伯纽斯的贡献也是不可磨灭的,他的贡献主要是在矩阵的特征方程、特征根、矩阵的秩、正交矩阵、矩阵方程等方面。并给出了正交矩阵、相似矩阵和合同矩阵的概念,指明了不同类型矩阵之间的关系和矩阵之间的重要性质。 3经典矩阵应用 3.1矩阵在经济学中的应用 投入产出综合平衡模型是一种宏观的经济模型,这是用来全面分析某个经济系统内

矩阵论在人口迁移问题中的应用矩阵论报告

研究生“矩阵论”课程课外作业 姓 名: 学 号: 学 院: 专 业: 类 别: 上课时间: 成 绩: 矩阵论在人口迁移问题中的应用 摘要 本文根据矩阵论的理论解决实际中的人口迁移问题,做出简单的分析和概括。文中运用方阵函数()f A 的相关基本理论来解决这一实际问题,使得实际问题得到简化解决,最终得出人口迁移问题的最终结论。 1、待解决问题内容: 假设有两个地区—如北方和南方,之间发生人口迁移,每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:这个移民过程持续下去,北方的人会不会全部搬到南方?如果会请说明理由;如果不会,那北方的人最终人口分布会怎样? 2、基本术语解释 方阵函数()f A :最简单的方阵函数是矩阵多项式 01()n n B f A a E a A a A ==+++,其中,n n i A C a C ?∈∈。一般运用复变幂级数的和函数定义方阵幂级数和函数—方阵函数。 3、基本理论阐述:

1、Hamilton-Cayley 定理: 设矩阵A 的特征多项式为 ()f λ,则有()0f A =。 设A 的特征多项式为:()1101n n n f a a a λλλλ--=++++ Hamilton-Cayley 定理表明: ()11010n n n f A A a A a A a E --=++++=,即方阵函数可以由1,,,,n n A A A E -的线性组合表示。 方阵函数是多项式()01f A a E a A =++,其中,n n i A C a C ?∈∈。 2、最小多项式的相关理论: 定义1:A 是n 阶方阵, ()f λ是方阵A 的特征多项式。如果有()0f A =,则称()f λ是方阵A 的零化多项式。由Hamilton-Cayley 定理知一个矩阵的零化多项式一定存在。 定义2:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式。 设n n A C ?∈的最小多项式为1212()()()()s t t t s m λλλλλλλ=--- 其中12s t t t t +++=,(,,1,2, ,)i j i j i j s λλ≠≠=,而方阵函数()f A 是收敛的方阵幂级数 0k k k a A ∞=∑的和函数,即 设1011()t t T b b b λλλ--=+++,使 ()()()()l l i i f T λλ= 1,2,,0,1, ,1i i s l t =?? ?=-??,则0()()k k k T A f A a A ∞===∑ 3、运用()f z 在A 上的谱值计算方阵函数()f A 的理论: 设n 阶方阵A 的最小多项式为12 12()()()()s t t t s m λλλλλλλ=---,其中2,,,s λλλ是A 的互不相同的特征根。如果复函数()f z 及其各阶导数()()l f z 在(1,2, ,)i z i s λ==处的导数值,即 均为有限值,便称函数 ()f z 在方阵A 的谱上给定,并称这些值为()f z 在A 上 的谱值。 4、报告正文

矩阵论在机械工程中的应用

西安理工大学 研究生课程论文/研究报告 课程名称:矩阵论 任课教师:XXX 论文/研究报告题目: 矩阵论在机械工程中的应用 完成日期:2013 年10 月22 日 学科:矩阵轮 学号: 姓名:袁XX 成绩:

矩阵论在机械工程中的应用 摘要:矩阵论在机械工程中无论是在设计、制造、运行、试验、测试过程中都有广泛应用。矩阵论使得机械工程的许多计算变得简便。 关键词:矩阵论;机械设计;机械制造、机、电、液复合系统;数控机床;机器人; 引言:机械工程上无论在设计、制造、运行、试验、测璧等过程巾,经常要处理许多变量和变量之间的关系,这些变量间常存在着线性关系,而某些非线性关系的问题,在一定条件下也可以用线性关系近似表示,因而许多问题就涉及求解线性方程组。例如描述液压或机械系统运动微分方程组的求解,各种机械部件强度设计或应力求解,汽轮机、柴油机气缸等部件用有限元素法求解温度场等等.又例如,从一组测量数据 y x i i ,,(i=0,1,2…)去求出表示变量y 与二函数关系的近似公式x a a a n n x x f y +++==....)(10解的问题,可归结为求解以多项式系数 a a a a n ......,,210为未知量的线性方程组;再如,用有限元素法求构件应力分布,就要建立并 求解以节点位移为未知量的线性方程组,这类方程组中也常有几百个未知量,构成大型线性方程组;另外在推导一复杂控制系统的数学模型时,由于其输入和输出的数量可达数百个,使描述系统运动的微分方程组非常复杂综上所述,如果我们利用“矩阵运算”来表达这些大型线性方程组,可以具有符号简单、运算简易、分析方便、求解迅速等优点,因而它已得到了广泛 的应用.本文拟对矩阵论在机械工程中的应用作一简要介。【1】 矩阵论在机械设计过程中的应用 在机械设计过程中矩阵的应用,十分广泛。在机械结构的校核阶段需要对机械结构的强度、刚度、柔度进行设计、校核计算,在运用弹性力学,理论力学等复杂力学知识进行校验时存在许多变量之间的关系,用普通数学方程来表示会显得十分冗杂,并且求解过程也不是很方便,往往通过矩阵来表示他们之间的关系,通过矩阵来求解未知变量。例如:摩擦接触在工程中很普遍,如齿轮传动、摩擦传动等。摩擦的影响给原本就很复杂的接触分析带来了巨大困难,所以,摩擦接触行为的分析,被认为是固体力学中最具挑战性的问题之一,国内外许多学者致力于摩擦接触问题的研究,有人采用增量解法,理论阐述严谨,算例解答合理,具有一定的权威性,许多学者都引用它的算例和分析结果,不足之处是占内存大,迭代求解过程繁琐,计算量大。这也是摩擦接触分析面临的普遍困难,在一定程度上限制了它的工程应用。有人提出三维弹性接触分析的边界元柔度矩阵法来解决这个问题,这种方法计算也是矩阵在机械工程中应用的一大体现,矩阵的应用大大减少了边界元处理的数据量、建模简便、求解精度高而且由于柔度矩阵的使用使得在用计算机进行运算时占用内存少,迭代速度明显提升 【2】。在机械动力学设计过程中,由于要计算各点在每一时刻的位姿,必须引入矩阵来描述各个构建的位姿、速度、加速度。虽然可以通过各种仿真软件来进行仿真,但其内部计算都是通过一系列的矩阵运算、变换来完成的。例如:凸轮一连杆组合机构是纺织、轻工等多种工作机械中应用非常广泛的一种组合机构。它除可以保持原来凸轮机构和连杆机构的基本功能外,还能在运动学、动力学和传动性能等方面获得优良的性能,它能分别或同时准确地实现

矩阵论的实际应用(朱月)

“矩阵论”课程研究报告科目:矩阵理论及其应用教师:舒永录 姓名:朱月学号:20140702057t 专业:机械工程类别:学术 上课时间:2014 年9月至2014年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

相关变量的独立变换 摘要:用矩阵的理论及方法来处理实际生活中或现代工程中的各种问题已 越来越普遍。在工程中引进矩阵理论不仅是理论的表达极为简洁,而且对理论的实质刻画也更为深刻,这一点是毋庸置疑的。本文将矩阵论的知识用于解决实用机械可靠性设计问题。 正文 一、问题描述 在建立机械系统可靠性模型时,一般总假设个元素间关于强度相互独立。但是实际中,各元素间关于应力和强度又往往是相关的,并且这种相关性有时会对系统的可靠度产生显著影响。对于一些随机变量之间不是完全相关,但也不是完全独立的情况,就要进行相关变量的独立变换。 二、方法简述 设系统的基本变量为),,(21n x x x X ,??,各变量之间相关,则随机变量x 的 n 维正态概率密度函数为[1] )1()()(21exp ||2()(1 2 12 ? ??--???-=---X X T X X n X C X C X f μμπ) 式中 ?? ? ???????????=2321232212131212 ),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(),cov(21n X n n n n X n X X x x x x x x x x x x x x x x x x x x C σσσ 称为随机变量X 的协方差矩阵。矩阵中的任意元素),cov(j i x x 是变量i x 与变 量j x 的协方差,|C X |是协方差矩阵的行列式,1 -X C 是协方差矩阵的逆矩阵,X ,X μ及 )X X μ-(是n 维列向量 ?? ? ?? ?????--=-????? ?????=?? ??? ?????=n n X n X n x x X x x μμμμμμ 1111, , X

浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用 摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天, 数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。我们在学习数学知识的同时,不能忘记把数学知识应用于生活。在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。 关键词:线性代数矩阵实际应用 Abstract:From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform. Keywords: linear algebra matrix practical application

矩阵理论在控制系统稳定性分析中的应用

矩阵理论在控制系统稳定性分析中的应用 【摘要】在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用,随着科技的发展,自动控制理论跨入了一个全新的阶段——现代控制理论,它主要研究具有高性能、高精度的多变量变参数系统的最优控制问题,而研究多变量系统的主要工具是矩阵理论。因此,矩阵理论及其矩阵函数理论在现代控制理论中有着广泛而重要的应用。 本文主要介绍了矩阵理论在控制系统稳定性分析中的应用,重点讨论了两种李亚普诺夫方法。 【关键词】线性定常系统;非线性定常系统;矩阵函数;矩阵理论;雅可比矩阵 1.引言 一个自动控制系统要能正常工作,必须是一个稳定的系统。例如,电压自动调节系统中保持点击电压为恒定的能力;电机自动调速系统中保持电机转速为一定的能力以及火箭飞行中保持航向为一定的能力等。 稳定性的定义为:当系统受到外界干扰后,显然它的平衡被破坏,但在外扰消失以后,它仍有能力自动地在平衡态下继续工作。一个动态系统的稳定性,通常指系统的平衡状态是否稳定。简单地说,是指系统在扰动消失后,由初始偏差状态恢复到原平衡状态的性能,它是系统的一个自身动态属性。如果一个系统不具有上述特性,则称为不稳定系统。 稳定性和能控性、能观测性一样,均是系统的结构性质。稳定性是子弹控制系统能否正常工作的先决条件,因此判别系统的稳定性及如何改善其稳定性是系统分析和综合的首要问题。 1892年,俄国学者李亚普诺夫在他的博士论文“运动稳定性的一般问题”中借助平衡状态稳定与否的特征对系统或系统运动稳定性给出了严格定义,提出了解决稳定性问题的一般理论,即李亚普诺夫稳定性理论。该理论基于系统的状态空间描述法,是对单变量、多变量、线性、非线性、定常、时变系统稳定性分析皆适用的通用方法,是现代稳定性理论的重要基础和现代控制理论的重要组成部分。 基于输入-输出描述法描述的是系统的外部特性,因此,经典控制理论中的稳定性一般指输出(外部)稳定性;状态空间描述法不仅描述了系统的外部特性,且全面揭示了系统的内部特性,因此,借助平衡状态稳定与否的特征所研究的系统稳定性指状态(内部)稳定性。 李亚普诺夫将判断系统稳定性的问题归纳为两种方法,即李亚普诺夫第一法和李亚普诺夫第二法。 李雅普诺夫第一法(简称间接法)是通过解系统的微分方程式,然后根据解的性质来判断系统的稳定性,其基本思路和分析方法与经典控制理论一致。对线性定常系统,只需解出全部特征根即可判断稳定性;对非线性系统,则采用微偏线性化的方法处理,即通过分析非线性微分方程的一次线性近似方程来判断稳定性,故只能判断在平衡状态附近很小范围的稳定性。 李雅普诺夫第二法(简称直接法)的特点是不必求解系统的微分方程式,就可以对系统的稳定性进行分析判断。该方法建立在能量观点的基础上:若系统的某个平衡状态是渐近稳定的,则随着系统的运动,其存储的能量将随时间增长而不断衰减,直至系统运动趋于平衡状态而能量趋于极小值。由此,李亚普诺夫创立了一个可模拟系统能量的“广义能量”函数,根据这个标量函数的性质来判断系统的稳定性。由于该方法不必求解系统的微分方程就能直

矩阵论在电气工程中的应用

. 题目: 矩阵论在电气工程中的应用指导老师: xxx 学生姓名: xxx 所属院系:电气工程学院 专业:电气工程 学号: xxx 完成日期: 20xx年x月x日

矩阵论在电气工程中的应用 摘 要 电路分析是电气专业领域人员必需的一项能力。该知识具有概念性强、电路分析繁杂求解计算量大的特点。为了解决这个问题,因此引入了矩阵理论,并结合软件对矩阵分析的良好支持,以期达到优化分析电路的目的。本文就矩阵理论中的网络拓扑知识展开,介绍了网络拓扑在电路中的应用,并以给予求解。 关键词 : 电路分析 矩阵法 网络拓扑 ABSTRACT : Circuit analysis is an essential ability of professional personnel in the field of electronic. The concept of strong, complex circuit analysis calculation with the knowledge of the characteristics of large amount. In order to alleviate this problem, so we introduced matrix theory, combined with good support analysis software for matrix, in order to achieve the purpose of optimization of circuit analysis. In this paper, the network topology in matrix theory unfolds, introduces the application of network topology in circuit, and to give the solution. KEY WORDS :circuit analysis ;matrix method ;network topology 0 前言 矩阵是线性代数里的一个重要概念,在电路网络分析、工程结构分析等方面,矩阵都是一个强自力的工具,因为它能使较复杂的计算过程简化成一系列的四则运算,便于用计算机的算法语言或程序进行描述和解答。当运行这些程序时,能迅速地得到较准确的计算结果。在电子领域基础知识电路分析中,经过理论分析后形成线性方程组,求未知解是电路分析的一项基本技能。而求解线性方程组使用矩阵理论优势十分明显。 例如某电路网孔法求网孔电流ia ,ib ,ic ,其中电阻供电电压为已知网孔方程为: 2 3 3 1 )(a b s R u R R i R i ++-= 33 4 5 5()0a b c R i R R R i R i +++-=- (1)

浅析矩阵论的发展与应用1解读

浅析矩阵论的发展和应用

摘要:矩阵是数学中的一个重要的基本概念。起初的矩阵式作为线性代数中的一个小分支慢慢发展而来的,但随着其在图论、代数、组合数学和统计上的广泛应用,使之逐渐成为数学中一个不可替代的组成部分,并发展为一个独立的分支。矩阵理论体系的形成,也推广了矩阵论在不同领域的发展和应用。本文从矩阵论发展过程的角度出发,浅析了矩阵论在不同领域的应用。关键字:矩阵论,矩阵分解,实际应用 1矩阵论的发展 “Matrix”这一词语由西尔维斯特首先使用的,但是他并没有给出明确的概念。矩阵的现代概念在19 世纪初期逐渐形成。19世纪初期,德国数学家高斯、爱森斯坦等已经使用了矩阵中的有关线性变换和矩阵乘积等的相关知识。矩阵(Matrix)的明确概念是由英国数学家凯莱在1858年在著作《关于矩阵理论的研究报告》中给出的。在这份报告中,凯莱率先将矩阵作为一个独立的数学对象加以研究,他被认为是矩阵论的创立者,并为矩阵理论的发展奠定了良好的基础。随后,弗罗伯纽斯等人逐渐完善了矩阵的理论体现形成了矩阵的现代理论[1]。 然而,矩阵理论思想的萌芽却由来已久。早在公元前1世纪的《九章算术》中[2],矩阵形式解方程组已经运用的相当成熟,但也仅仅是作为线性方程组系数的排列形式解决实际问题,并未建立起独立的矩阵理论。直到18世纪和19世纪中叶,这种排列形式在线性方程组和行列式计算中的应用日益广泛并为矩阵的发展提供了良好的条件。矩阵理论的早起的概念是独立于矩阵理论本身而存在的,它从不同的领域和思想研究中的逐步发展,并逐步形成了后来的矩阵理论。首先是在17世纪的欧洲,克莱姆和范德蒙等数学家将行列式在线性方程组的求解中做了极大的应用,并最终形成现代矩阵论中的克莱姆法则和范德蒙行列式。到18世纪末,拉格朗日、达朗贝尔等数学家将矩阵(此时矩阵的概念还没有明确提出)的维度空间从单维扩展到了四维或者n维,并提出了n个变量(12,n x x x)的二次型。直到19世纪的初期,伴随着行列式理论的蓬勃发展,与矩阵理论密切相关的线性空间、线性变换理论等也趋于成熟。但是在1844年之前n维空间的概念一直未能从代数中独立出来。在此之前,它一直被认为是符号化的算术。n维空间概念的真正脱离出来成为一个脱离空间直观的纯数学概念是以1844格拉斯曼发表的《张量演算》为节点的。19世纪初到19世纪3、40年代,以柯西、雅可比、凯莱以及哈密顿等人为代表的数学家都为矩阵理论的形成和发展做了很多突出的贡献。

矩阵论的应用

广义逆在多元分析中的应用 刘雯雯信通院学号:B098035 摘要:多元分析的一个重要内容就是研究随机向量之间的关系,在一元统计中,用相关系数来描述随机变量之间的关系,Hotelling[1]和张尧庭教授[2]先后定义了度量两个随机向量相关程度的数量指标,并称之为广义相关系数。这一章主要利用Moore-Penrose广义逆矩阵来引人了随机向量之间的相关系数—广义相关系数,并探讨了随机向量的典型相关系数和广义相关系数之间的关系。 关键词:特征值广义相关系数典型相关系数正交阵可逆矩阵 1.引言 矩阵概念和线性代数学科的引进和发展是源于研究线性方程组系数而产生的行列式的发展.莱布尼兹,微积分学的两个奠基者之一,在1693年使用了行列式,克莱姆于1750年提出了用行列式求解线性方程组的公式(即今天著名的克莱姆法则).相对比地,行列式的隐含使用最早出现在18世纪晚期拉格郎日关于双线性型的著作里.拉格郎日希望刻画多变量函数的极大值与极小值.他的方法今天以拉格郎日乘数法闻名.为此,他首先要求第一个偏导数为0,再需要关于第二个偏导数的矩阵成立一个条件.这个条件今天称之为正定或负定,尽管拉格郎日没有明显地使用矩阵. 在1800年左右,高斯发现了高斯消去法,他用此方法解决了天体计算和后来大地测量(关于测量或确定地球形状或定位地球表面一个点的应用数学分支,称之为大地测量学)计算中的最小平方问题.尽管高斯的名字相伴随从线性方程组逐次逍去变量的这项技术,但从发现的早在几个世纪前的中文手稿中解释了如何用"高斯的"消去法解带有三个未知量的三个方程构成的线性方程组.多年来,高斯消去法被认为是大地测量学,而非数学,发展的一部分.首次印刷出来的高斯—约当消去法是在W. 约当写的关于大地测量学的手册里.许多人错误地认为著名数学家 C.约当是"高斯—约当"消去法中的约当. 为了矩阵代数的丰富发展,人们既需要适当的概念,还需要适当的矩阵乘法.这两种需要在同一时间和同一地点交汇了.在1814年于英格兰,J.J.西勒维斯特首先引进了术语"Matrix",作为一列数的名称,这是胚胎的拉丁词.矩阵代数于1855年由亚瑟凯莱的工作得到了发展.凯莱研究了线性变换的合成,导致定义了矩阵乘法,使得合成变换ST的系数矩阵是S的矩阵与T的矩阵的乘积.他继续研究这些合成包括矩阵逆的代数.著名的凯莱—哈密尔顿定理断言,一个方阵是它的特征多项式的根.这个定理于1 858年在凯莱的"关于矩阵理论备忘录"的著作里给出.代表矩阵的单个字母A的使用对于矩阵代数的发展是关键的.早期的公式det(AB)=det(A)det(B)提供了矩阵代数与行列式的联系.凯莱写下了"有许多事情说明关于矩阵的理论,似乎对我而言,比行列式理论重要". 数学家们也试图发展向量代数,但没有任意维数的两个向量积的自然定义.涉及到非交换向量积(亦即VW×不一定等于WV×)的第一个向量代数由赫尔曼格拉斯曼在他的书"维数理论"(1844)提出来的.格拉斯曼的书也引进了一个列矩阵与一个行矩阵的乘积,导致了今天所谓的单纯的或秩1的矩阵.在19世纪晚期,美国数学物理学家W.吉布斯发表了关于向量分析的著名论文.在那篇论文里,吉布斯把一般的矩阵,他称之为并向量(dyadics),表示为单纯矩阵(吉布斯称为并向量(dya ds))的和.后来物理学家P.A.M.迪拉克引进了术语"行-列"(bra-ket)来表示我们现在称之为行向量乘以列向量的纯量积,术语"列-行(ket-bra)"表示一列向量乘以行向量的积,从而导致如同上

基于矩阵论的电路网络拓扑分析

基于矩阵论的电路网络拓扑分析 【摘 要】电路分析是电子专业领域人员必需的一项能力。该知识具有概念性强、电路分析繁杂、求解计算量大的特点。为了缓解此问题,因此引入了矩阵理论,并结合 MATLAB 软件对矩阵分析的良好支持,以期达到优化分析电路的目的。 本文就矩阵理论中的网络拓扑知识展开,介绍了网络拓扑在电路中的应用,并以给予 MATLAB 求解。 【关键词】电路分析;矩阵法;网络拓扑 0 前言 矩阵是线性代数里的一个重要概念,在电路网络分析、工程结构分析等方面,矩阵都是一个强自力的工具,因为它能使较复杂的计算过程简化成一系列的四则运算,便于用计算机的算法语言或程序进行描述和解答,当运行这些程序时,能迅速地得到较准确的计算结果。 电子领域基础知识电路分析中, 经过理论分析后形成线性方程组,求未知解是电路分析的一项基本技能。而求解线性方程组使用矩阵理论,优势十分明显。 例如某电路网孔法求网孔电流 a i 、b i 、c i ,其中电阻、供电电压为已知。 网孔方程为: ()()()?????=+++-=-+++-=++0i 0i u i -i c 765555433b 3a 321R R R i R i R R R R i R R R R R b c b a s (1) 上述方程(1)在求解过程中相对简单,但如果未知量继续增多,则利用初等代数方法求解线性方程组就比较困难,相当繁杂。借助矩阵理论,可将方程式 (1)变换为如下矩阵形式: s c b a u i i R R R R R R R R R R R R ??????????=????????????????????++--++--++001R 1i 00 765555433332 矩阵形式方程(2)可表述为 s u B AI =。(A 表示方程组系数矩阵;I 表示网孔电流列向量 ;s Bu 表示网孔电源列向量。) 1 网络拓扑性质的矩阵表示 当电路结构比较简单时,直接利用 KCL 、KVL 或网络的各种方法列出必要的方程并不十分困难,但当电路结构比较复杂时,前述方法就显得很不适应,特别是如何在计算机上把输入的数据自动地转换为所需要的方程,就需要利用网络拓扑和矩阵代数的概念去完成这一任务。 网络图论又称为网络拓扑学,适应用图的理论,对电路的结构及其连接性质进行分析和研究。 在网络分析中,列写网络方程的主要问题是如何正确地选择其独立变量,“网络图论 ” 的基本概念为选取这种独立变量提供了理论依据。

相关主题
文本预览
相关文档 最新文档