当前位置:文档之家› 科林粉煤气化技术

科林粉煤气化技术

科林粉煤气化技术
科林粉煤气化技术

科林粉煤气化技术(CCG)简介

德国科林工业集团

二零一零年七月

1. 公司简介

德国科林工业集团是全球著名的煤气化、煤干燥和生物质气化技术提供商。该集团是前东德燃料研究所 (DBI)和黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)气化厂最大的后裔公司。

科林(CHOREN)名称的由来是:“C-Carbon-碳H-Hydrogen-氢O-Oxygen-

氧REN-RENewable-可再生”。

科林集团总部位于德国弗莱贝格市,原东德燃料研究所旧址,著名的黑水泵气化厂就在附近。戴姆勒奔驰汽车公司、德国大众汽车公司为科林的战略投资者。

目前集团拥有近300名研发及工程技术人员,其中主要技术骨干为前徳燃所和黑水泵厂的员工。科林公司的发起人Wolf博士即为前东徳燃料研究所研发部部长,煤气化运行总监贡瓦先生是前黑水泵气化厂厂运行主任。

科林集团拥有40多年气流床气化技术研发、设计、设备制造、建设以及运行的经验,可以为客户提供粉煤气化技术(CCG)和生物质气化技术(Carbo-V®)从工艺包设计到关键设备制造和开车运行等一系列综合性服务。

此外,科林集团也是蒸汽流化床煤干燥技术的创始人和专利持有人,在全世界煤干燥领域,特别是褐煤干燥领域具有多年成功运行经验。

科林能化技术(北京)有限公司是科林集团的全资子公司,负责集团在亚太地区的业务。

2. 技术来源及技术开发背景

科林高压干粉煤气化炉简称为CCG炉(Choren Coal Gasifier),该技术起源于前东德黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)下属的燃料研究所,于上世纪70年代石油危机时期开始开发,目的是利用当地褐煤提供城市燃气。1979年在弗莱贝格市建立了一套3MW中试装置,完成了一系列的基础研究和工艺验证工作。试验煤种来至于德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家。1984年在黑水泵市(SCHWARZ PUMPE)建立了一套130MW(日投煤量为720吨)的水冷壁煤气化炉工业化装置,气化当地褐煤用作城市燃气,有运行8年的工业化生产经验。之后改用工业废液废油作为进料,继续运行至今。燃料研究所和黑水泵工厂的技术骨干后来发起成立了科林的前身公司,继续致力于煤气化技术的研发,并把运行中出的问题进行了设计更改和完善,推出了一套完整优化的新气化技术

-

CCG。

3. CCG技术介绍

(A)气化工艺

CCG气化工艺过程主要是由给料、气化与激冷系统组成。原料煤被碾磨为100%<200μ,90%<65μ的粒度后, 经过干燥, 通过浓相气流输入系统送至烧嘴,在

反应室内与工业氧气(年老煤种还需添加少量水蒸气)在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气。

根据灰组份和灰熔融特性,气化温度操作控制在1400℃--1700℃之间(高于灰熔点200度左右)。反应温度可通过氧气流量进行调节(控制炉内化学反应剧烈程度)。反应室内壁为水冷壁,由于形成了固态渣层保护,所以反应产生的液态灰渣不会直接接触水冷壁。

生成的合成气及液态灰渣离开燃烧室向下流动,在激冷室中直接被水冷却,液态灰渣被水浴固化成颗粒状,冷却后的灰渣经过锁斗排出系统,从排放的水中分离并通过捞渣机运出。合成气被蒸汽饱和,以大约210 ℃温度离开气化炉。气化炉外壳由水夹套保护,表面温度小于100℃。

原料气化和达到气体平衡所需的热量由原料碳氧化成CO2和CO所释放。气化温度的选择主要由煤的灰熔点确定, 气化压力的确定主要取决于产品煤气的利用工艺,通常为

4.0MPa。

(B)CCG气化炉结构

气化炉由烧嘴、燃烧室、激冷室、水冷壁、外壳等部分组成。日投煤量为1500吨的气化炉的尺寸大约是16米高,直径3.2米,重量约200吨。右图是气化炉的示意图。

i 烧嘴

CCG气化炉为多喷嘴顶置的形式,分为引燃烧嘴和煤粉烧嘴。在开车和停车时候,利用液化气混合氮气作为引燃烧嘴的燃气。在气化炉运行过程中,出于安全的考虑,引燃烧嘴在较小的功率下运行(长明灯)。可以利用循环回送的合成气作为引燃烧嘴的燃料。由于长明灯反应放热也是气化反应所需要的,所以并不会造成额外的能量损耗。

由于烧嘴是一个承载高温的部件,故每个烧嘴自身都有冷却循环系统。经由泵、泵接收器和热交换器组成一个循环,形成强制冷却,使热量间接传导到冷却水系统。烧嘴顶部寿命一般为4年,每年半年检修一次烧嘴的顶部。如有损坏仅需更换烧嘴顶部。下图为400MW (日投煤量1500吨)烧嘴分布图、引燃烧嘴示意图和粉煤烧嘴示意图。

ii 气化室水冷壁结构

煤粉、氧气和水蒸气通过烧嘴进入燃烧室,发生部分氧化反应。燃烧室是由齿形蛇管卷水冷壁围成的圆柱形空间, 上部为烧嘴, 下部为排渣口, 原料与氧气、水蒸气的气化反应就在此空腔内进行。第一次开车后水冷壁被挂上一层渣,在后续运行中利用以渣抗渣的原理保护水冷壁。正常运行时炉体内温度为1 400-1700 ℃, 经过渣层以后, 温度降低到500℃左右, 再经过16.5 mm 厚的屏壁和SiC填充物, 温度降低到270 ℃左右, 水冷壁内的加压冷却水的温度为250 ℃左右。水冷壁气化炉体的优点是炉体实际承受的温度较低,水冷壁承温< 500 ℃,外层壳体内壁的温度< 250 ℃ , 气化炉外壳的表面温度小于100°C,不容易损坏,故可以气化灰熔点较高的煤种。该水冷壁在黑水泵厂使用8年后, 没有破坏性的损坏。科林CCG炉还对原有水冷壁结构做了改善,分别设立了4处吹扫口,使炉壁间的吹扫更充分,大大延长了水冷壁的寿命。

iii 激冷室

激冷室是一个上部为圆形筒体的空腔。高温粗煤气和熔渣、从气化室下部一个喇叭形的排渣口进入激冷室, 高温合成气和熔渣在激冷室内用水进行冷却,冷却后的合成气进入洗涤系统进行洗涤,冷却后的灰渣经过锁斗排出系统。

(C)气化炉规格

目前, CCG工艺的气化炉规格有3 种。规格分别为200MW,400MW,600MW。规格为200MW、日投煤量720 吨的小型气化炉已经在黑水泵气化厂工业化。另一种气化炉规格为400MW、日投煤量约为1500吨,每小时有效合成气产气量约为100000标准立方。科林公司还可以提供600MW,日投煤量为2250吨的气化炉。

2007年签约的兖矿贵州开阳化工50万吨合成氨项目采用了两台400MW、日投煤量为1500吨CCG气化炉,总产气量为每小时20万标准立方,下游工序需求是每小时14万立方

有效合成气。正常运行时两台炉均以70%的负荷运行,如果一台炉停车,则另一台炉可以满负荷运行以保证下游连续生产所需的最低气量。

(D)CCG气化技术的优势

CCG气化技术的主要特点是干粉进料,以水冷壁保护气化炉,采用水激冷流程以冷却合成气、烧嘴顶置下喷。

i 干粉进料(与水煤浆进料比较)有如下优势

1). 克服了部分煤种难以制浆的问题,与水煤浆技术相比,煤种适应性有所增强。

2). 避免将大量的水带入气化炉。与水煤浆技术相比,氧耗降低约15-20%。粗合成气中有效气(CO+H2)浓度可高达90 - 93%,冷煤气效率可达80-83% ,碳转化率≥99%。这些效率指标均大大高于水煤浆技术。

3). 煤粉在干粉煤烧嘴内移动的速度仅约5米每秒,主要是靠高速的氧气带动煤粉形成旋流参加反应,无严重磨蚀,烧嘴头部寿命可达4年以上,仅需每半年检修头部向火面。而水煤浆烧嘴内煤浆以固液混合物形式存在,流速高,磨蚀严重,1-3个月就需更换,以保证雾化效率和碳率。

ii 水冷壁结构(与耐火材料热壁炉比较)有如下优势

1). 寿命长,检修少,在线率高。水冷壁的寿命可达25年,每半年检修一次。如果是采用耐火砖结构则需每年更换,拱顶砖的寿命更短

2). 采用水冷壁结构,在开停车时不存在热壁炉的烘炉问题,从冷态开车到满负荷仅需要一个小时,可以快速响应下游对合成气需求

3). 采用水冷壁进行以渣抗渣,气化反应的温度可以较高,不会对炉体有所损害,而对于热壁炉则需要考虑气化温度对耐火材料的影响。故水冷壁气化炉可以气化灰熔点较高的煤种,进一步提高了煤种的适应性。而且气化炉操作温度高于灰熔点200摄氏度,完全可以应付煤质一定范围内的变化。CCG 气化工艺可以气化高达35% 灰分的煤种

4). 因为气化反应温度高,基本不会形成任何碳氢化合物(如甲烷等),因而简化了对气体净化的要求

5). 水冷壁采用间接副产低压蒸汽,通过监控水冷壁的进出水温差,判断炉壁的挂渣状况,有利用于气化炉稳定操作及设备的寿命延长。

iii 激冷流程(与废锅流程比较)

1). 采用激冷工艺流程,设备结构简单,外形尺寸小,装置投资少。投煤量相同的气化炉,激冷流程气化框架只有废锅流程气化框架的约一半高度,重量只有其20%左右。气化岛投资只有其50-60%。

2). 由于采用全激冷方式,整个化工流程较废锅流程大大缩短(没有废热锅炉,陶瓷过滤器,循环气压缩机等),故整个装置的可靠率增加。而且由于装置投资成本较低,能够负担双炉运行,大大提供了气化岛在线率。

3). 经过激冷和水洗,粗合成气含尘量低<1mg/Nm3,粗合成气夹带的水蒸汽可以满足变换工艺所需90-100%的蒸汽。而废锅流程虽然以高投资产生高品位蒸汽,但如用于化工用途则其下游变换工艺还需要同样加入蒸汽,在经济上并不合算。

iv 多烧嘴同向顶置下喷

1). 烧嘴顶置下喷在德国黑水泵厂的气化炉有过实际运转经验。

2). 将引燃烧嘴和煤粉烧嘴分开使得烧嘴结构较简单,降低故障率。

3). 烧嘴顶置下喷的方案可以使高温粗气及灰渣方向流向相同以确保燃烧室排渣顺畅,可以克服气渣上下分流工艺的固有排渣困难。

4). 烧嘴同向布置可以克服对置烧嘴间相互磨蚀的问题,

5). 多喷嘴布置保证了粉煤在反应空间分布均匀,流场形成比单喷嘴方案要好。

6). 多喷嘴方案可在开车过程实现各个烧嘴先后点火,开车过程中就能够完全配合后续设备合成气需求逐步升量的方案。

7). 多喷嘴方案的负荷调节余地比单喷嘴方案要大。而且放大更为容易。2000吨以上投煤量的气化炉基本上很难使用用单喷嘴方案。

8). 如某一烧嘴故障,系统还可短时间继续运行,以排除故障带压连投。

(E) CCG技术与其他技术的比较

以下是某化工设计院所做的水煤浆气化技术、干粉煤废锅气化技术及科林CCG气化工艺比较:

水煤浆气化工艺、干粉煤废锅气化工艺与科林CCG气化工艺气化室出口处的典型气体成份如下:

综合以上分析,这三种气流床气化工艺都是很好的煤气化技术。但干粉煤废锅气化气化效率较高,煤种适应性强。但其工艺流程长,设备结构复杂,国产化率低,设备运输和安装难度大,建设周期长;一次投资大;干法过滤器的使用寿命短。进入中国时间较短,在国内开车还不太顺利。

水煤浆气化工艺开发和进入中国的时间较早,在国内外的合成气生产中得到了更加广泛的应用,可靠性更高,在技术开发、工程设计、设备制造、工程建设、生产管理和运行操作等方面,积累了丰富的经验,设备的国产率高,国内的技术支持性更好,装置的建设投资较低;但存在耐火砖和烧嘴连续使用寿命短,气化炉难以长周期连续运行,煤种的适应性相对较差。

CCG粉煤气化工艺与干粉煤废锅气化粉煤气化工艺相比,两者采用的都是水冷壁,干粉煤进料,有效气含量相当;煤种适应性、氧气消耗、碳转化率、热效率等方面,基本一致,能耗相近;建设投资较小;建设周期稍短。与水煤浆相比,气化后工艺流程相似(激冷流程),更适合生产氨和醇需要的合成气;设备结构简单;煤种的适应性更宽;煤、水、电耗量少;连续运行的时间长;总的来说 CCG煤气化技术效率和消耗基本与干煤粉废锅技术相同,优于水煤浆技术,但其投资却接近水煤浆技术,大大低于干煤粉废锅技术。可以说CCG兼有其他两种气化技术的优点。

(F) CCG气化炉的应用业绩

i 黑水泵厂粉煤气流床气化炉

日投煤量720吨,煤种为褐煤。用作城市燃气。从1984年运行到1990年。1990年东西德合并,东德城市燃气改为天然气,故原黑水泵厂改造成为综合物料处理中心,其粉煤

气化装置改为浆体进料,用于处理液态有机废料,产生的合成气用于75MWIGCC发电并联产12万吨甲醇。

ii 兖矿贵州开阳项目

于2007年8月底科林与兖矿贵州开阳化工公司的年产50万吨的合成氨项目签订技术转让、工艺包设计和烧嘴供应合同。该项目位于贵州开阳县境内,采用两台日投煤量为1500吨的CCG气化炉。气化炉由业主自行招标委托大连金州重型机械厂制造,将于2010年三季度完工。该项目将于2011年6月试车。该项目气化岛(含磨煤干燥,气化激冷,灰水处理和气体洗涤)总投资不超过5亿人民币。

4. 科林工业集团在煤气化业务方面的优势

(A)人力资源

科林是前东德燃料研究所和黑水泵厂最大的后裔单位。科林公司发起人、科林主要的技术团队、研发团队大部分来源于黑水泵气化厂和前德国燃料研究所。2008年,黑水泵厂清算解散,科林由于自身在建设生物质气化示范装置,所以又接收了大量的工厂操作人员。也就是说,科林拥有气化技术方面的大批拥有Know-How(专有技术)的人员。他们具有40余年研发、设计、制造、运转方面的理论和实践经验。他们是科林公司最宝贵的财富。

(B)设备制造能力

科林全资拥有的科林设备制造公司(CHOREN Components GmbH)的前身为前德国燃料研究所下属的设备制造车间。3MW和5MW气化试验装置的绝大部分设备,科林公司生物质气化厂的大部分设备,黑水泵厂气化装置的部分设备包括所用烧嘴都是由该公司制造。CCG 关键设备的生产专有技术是由科林公司掌握的。

(C)装置运行和培训能力

科林自行投资建立和运行生物质气化厂,这使得科林的装置运行能力保持着领先。这也为客户的操作员工实习培训提供了现成的实习场地以及实习指导人员。科林正在开发操作模拟系统,可提供如同真实操控环境下的模拟培训。

5. 科林煤气化技术CCG在中国的业务模式

Ø 科林在中国的业务通过其在中国的全资子公司科林能化技术(北京)有限公司来开展。通常的业务模式是科林向客户提供技术许可,工艺包设计,气化炉的详细设计,以及供应烧嘴等少量最关键核心部件。气化炉等大型设备可以由客户委托合格生产厂家在国内制造。此种方式可以最大限度地节约客户的投资,并将所有的设备采购置于可控。设备国产化率可以达到95%左右。

Ø 兖矿项目气化岛总投资(含软硬件,建设安装等)不超过5亿人民币。基本和水煤浆技术持平。和其他引进干煤粉技术,或者国产的炉外激冷干煤粉技术相比较,科林气化技术具有绝对的竞争力。和国产的炉内激冷干煤粉技术相比,科林气化技术也具有相当的竞争力。

科林气化技术

科林CCG粉煤加压气化技术 技术拥有单位:德国科林工业技术有限责任公司 2014-5-20来源:《中国煤化工》编辑部作者:德国科林工业技术有限责任公司德国科林工业技术有限责任公司(简称科林公司)是世界著名的洁净煤利用技术的研发者、拥有者及工业解决方案供应商,全部拥有科林粉煤气化(CHOREN Coal Gasification)技术。科林的前身是欧洲洁净煤利用技术领域的先驱和领导者——前德国燃料研究所(DBI)。上世纪90年代,前德国燃料研究所研发部部长Wolf博士创立了科林,科林名称的由来是:“C-Carbon-碳,H-Hydrogen-氢,O-Oxygen-氧,REN-RENewable-可再生”。科林核心技术团队来自于前德国燃料研究所及黑水泵气化厂。公司总部及技术研发工程中心位于德国萨克森州的德累斯顿。科林在干粉煤气流床气化技术领域拥有40多年的研发、设计、制造、建设及运行经验,能够为业主提供全方位、立体化的煤气化解决方案。 科林CCG粉煤气化工艺过程主要是由给料、气化与激冷等系统组成,采用干粉煤加压进料,以纯氧作为氧化剂(部分煤种需添加少量水蒸气),在气化室内在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气,并实现高温液态排渣。原料气化和达到气体平衡所需的热量由原料碳氧化成一氧化碳和二氧化碳所释放。气化温度的选择主要由煤的熔融特性及粘温特性确定,气化压力的确定主要取决于产品煤气的利用工艺,通常为4.0MPa。通过科林CCG气化工艺可以把原煤、石油焦等转化为清洁的、高附加值的一氧化碳和氢气,可用于生产合成氨、甲醇、合成油、合成天然气等化工产品,还可用于发电或者生产城市煤气。

航天炉煤气化技术运行情况

航天炉煤气化技术运行情况 航天, 煤气化, 技术, 运行 HT-L煤气化技术的生产应用 HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。现将该工艺在煤化工项目中的应用介绍如下: 一、工艺介绍 1、磨煤与干燥系统 磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。 2、加压输送系统 加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。 3、气化及净化 烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。设计气化温度1400-1600℃,气化压力4.0MPa。热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。 4、渣及灰水处理系统 渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。 二、技术特点 1、原料的适应性 据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。龙宇生产用过两种煤,神木炭厂和永煤新桥,工况稳定,有效气含量基本能够达到设计要求,但由于神木炭厂的煤灰分含量低(<10%),挂渣情况不是太好,炉膛上部还可以,下部基本挂不上渣。永煤新桥煤运行时间较短,还不能完全反应其结渣性。附神木炭厂和永煤新桥

粉煤加压气化技术的开发现状和应用前景

第1期(总第90期)煤 化 工No.1(Tota l No.90) 2000年2月 Coa l Che m ica l I ndustry Feb.2000 干法粉煤加压气化技术的开发现状和应用前景 门长贵 西北化工研究院 710600 摘 要 干法粉煤加压气化是一种高效低污染的先进煤气化方法。本文简要介绍了干法粉煤加压气化的工艺原理、技术特点及开发现状,并指出了这种煤气化工艺技术在联合循环发电和煤化工等领域内的应用前景。 关键词 干法粉煤气化 技术特点 开发现状 应用前景 引 言 目前我国一次能源消费中煤炭约占75%,在今后相当长的一段时间内煤炭仍是我国的主要能源,国家已把煤的高效、洁净利用技术列入21世纪的发展计划,因此发展先进的煤气化技术是当前的重要课题。 近年来,为了减少环境污染,提高煤炭的利用率,增加装置的生产能力,降低氧耗和煤耗,拓宽原料煤种的使用范围,充分利用煤炭资源,先后成功地开发出了新一代先进的煤气化工艺技术,有代表性的主要为鲁奇公司的碎煤移动床熔渣气化(B GL)工艺,水煤浆进料的T exaco气化工艺,干法粉煤进料的SCGP(Shell)气化工艺和P renflo、GSP工艺。上述几种煤气化工艺中,干法粉煤进料的加压气化工艺因其技术经济性具有明显的优势和较强的竞争力,预计它是今后煤气化工艺技术的发展方向。 1 干法气化的原理及技术特点 原料煤经破碎后在热风干燥的磨机内磨制成< 100Λm(90%)的煤粉,由常压料斗进入加压料斗,再由高压惰性载气送至气化炉喷嘴,来自空分的高压氧气预热后与过热蒸汽混合送入喷嘴。煤粉、氧气和蒸汽在气化炉高温高压的条件下发生碳的部分氧化反应,生成CO与H2总含量大于90%的高温煤气,经废热回收、除尘洗涤后的粗合成气送后序工段。 干法气化工艺具有如下技术特点: (1)对原料煤的适应性广,可气化褐煤、烟煤、无烟煤及石油焦。对煤的反应活性几乎没有要求,对高灰熔点、高灰分、高水分、高含硫量的煤种同样也适应。 (2)氧耗和煤耗低,与湿法进料的水煤浆气化工艺相比较,氧气消耗降低15%~25%,原料煤消耗降低10%~15%。 (3)单位重量的原料煤可以多产生10%的合成气,合成气中的有效气体成分(CO+H2)高达94%左右。 (4)原料煤能量的83%转换在合成气中(水煤浆气化工艺只有70%~76%),约15%的能量被回收为蒸汽。由此可见干法气化的热效率高。 (5)干法气化工艺的气化炉一般采用水冷壁结构,以渣抗渣,无昂贵的耐火砖衬里,水煤浆气化工艺气化炉耐火砖的费用约为10美元 tN H3,因多喷嘴操作,干法工艺气化炉运行安全可靠。 (6)单台气化炉生产能力大,目前已投入运行的气化炉操作压力3.0M Pa,日处理煤量2000t。如Shell干法进料气化工艺可采用多喷嘴加料(4只~8只),喷嘴的设计寿命可保证达到8000h,气化装置可以长周期运行。 (7)碳转化率高,可达99%,气化炉排出的熔渣为玻璃状的颗粒,对环境没有污染。气化污水中不含酚、氰、焦油等有害物质,容易处理,可做到零排放。 (8)工艺操作采用先进的控制系统,自动化程度高,利用专有的计算机控制技术可使工艺操作处于最佳状态下运行。 2 干法气化技术的现状 第一代干法粉煤气化技术是K2T炉,目前在南非和印度等国仍有部分装置在运行,该炉型为常压气化,已基本停止发展。我国80年代由西北化工研究院在临潼完成了K2T炉的中间试验,后在山东黄

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

HT-L粉煤加压气化炉

航天炉又名HT-L粉煤加压气化炉 长期以来,国内煤化工之所以不能大规模地发展,就是因为国内缺乏自主的粉煤加压气化技术。而进口的技术也不能完全满足国内煤化工的需求——如果选用德士古煤气化技术,无法实现原料煤的本地化;选用壳牌煤气化技术的投资又太大。所以,开发具有自主知识产权的高效、洁净、煤种适应性广的国内煤气化技术,一直是业界的梦想。 气化炉的核心部件是气化炉燃烧喷嘴,该喷嘴必须具有超强的耐高温特性,这个特性要实现起来难度较大。而与此类似,火箭上天时喷嘴所经受的温度也很高,而且比气化炉燃烧喷嘴要经受的温度高得多。如果把航天技术“嫁接”到煤化工产业,那就有点像杀鸡用上宰牛刀,技术难度上是没有问题的。 航天炉的主要特点是具有较高的热效率(可达95%)和碳转化率(可达99%);气化炉为水冷壁结构,能承受1500℃至1700℃的高温;对煤种要求低,可实现原料的本地化;拥有完全自主知识产权,专利费用低;关键设备已经全部国产化,投资少,生产成本低。据专家测算,应用航天炉建设年处理原煤25万吨的气化工业装置,一次性投资可比壳牌气化炉少3亿元,比德士古气化炉少5440万元;每年的运行和维修费用比壳牌气化炉少2500 万元,比德士古气化炉少500万元。 它与壳牌、德士古等国际同类装置相比,有三大优势:一是投资少,比同等规模投资节省三分之一;二是工期短,比壳牌炉建设时间缩短三分之一;三是操作程序简便,适应中国煤化工产业的实际,易于大面积推广。 HT-L粉煤气化煤质要求 HT-L粉煤气化工艺对煤种的适应性广泛,从较差的褐煤、次烟煤、烟煤到石油焦均可作为气化的原料。即使是高灰分、高水份、高硫的煤种也能使用。但从经济运行角度考虑,并非所有煤种都能够获得好的经济效益。因此,使用者应该认真细致地选择合适的煤种,在满足设计要求的前提下,保证装置的稳定运行。 HT-L粉煤气化装置对煤种的一般要求 煤种分析项目数据范围 总水(AR;%) 4.5~30.7

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

科林粉煤气化技术

科林粉煤气化技术(CCG)简介 德国科林工业集团 二零一零年七月 1. 公司简介 德国科林工业集团是全球著名的煤气化、煤干燥和生物质气化技术提供商。该集团是前东德燃料研究所 (DBI)和黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)气化厂最大的后裔公司。 科林(CHOREN)名称的由来是:“C-Carbon-碳H-Hydrogen-氢O-Oxygen- 氧REN-RENewable-可再生”。 科林集团总部位于德国弗莱贝格市,原东德燃料研究所旧址,著名的黑水泵气化厂就在附近。戴姆勒奔驰汽车公司、德国大众汽车公司为科林的战略投资者。

目前集团拥有近300名研发及工程技术人员,其中主要技术骨干为前徳燃所和黑水泵厂的员工。科林公司的发起人Wolf博士即为前东徳燃料研究所研发部部长,煤气化运行总监贡瓦先生是前黑水泵气化厂厂运行主任。 科林集团拥有40多年气流床气化技术研发、设计、设备制造、建设以及运行的经验,可以为客户提供粉煤气化技术(CCG)和生物质气化技术(Carbo-V®)从工艺包设计到关键设备制造和开车运行等一系列综合性服务。 此外,科林集团也是蒸汽流化床煤干燥技术的创始人和专利持有人,在全世界煤干燥领域,特别是褐煤干燥领域具有多年成功运行经验。 科林能化技术(北京)有限公司是科林集团的全资子公司,负责集团在亚太地区的业务。 2. 技术来源及技术开发背景 科林高压干粉煤气化炉简称为CCG炉(Choren Coal Gasifier),该技术起源于前东德黑水泵工业联合体(Gaskombinat Schwarze Pumpe,简称GSP)下属的燃料研究所,于上世纪70年代石油危机时期开始开发,目的是利用当地褐煤提供城市燃气。1979年在弗莱贝格市建立了一套3MW中试装置,完成了一系列的基础研究和工艺验证工作。试验煤种来至于德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家。1984年在黑水泵市(SCHWARZ PUMPE)建立了一套130MW(日投煤量为720吨)的水冷壁煤气化炉工业化装置,气化当地褐煤用作城市燃气,有运行8年的工业化生产经验。之后改用工业废液废油作为进料,继续运行至今。燃料研究所和黑水泵工厂的技术骨干后来发起成立了科林的前身公司,继续致力于煤气化技术的研发,并把运行中出的问题进行了设计更改和完善,推出了一套完整优化的新气化技术 - CCG。 3. CCG技术介绍 (A)气化工艺 CCG气化工艺过程主要是由给料、气化与激冷系统组成。原料煤被碾磨为100%<200μ,90%<65μ的粒度后, 经过干燥, 通过浓相气流输入系统送至烧嘴,在 反应室内与工业氧气(年老煤种还需添加少量水蒸气)在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气。

13种煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下

的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%),环境污染及飞灰综合利用问题有待进一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。 5、恩德粉煤气化技术 恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求原料为不粘结或弱粘结性、灰分小于25%-30%,灰熔点高(ST大于1250℃)、低温化学活性好的煤。至今在国内已建和在建的装置共有9套,14台气化炉。属流化床气化炉,床层温度在1000℃左右。目前最大的气化炉,用富氧气化,最大产气量为40000m3/h半水煤气。缺点是气化压力为常压,单炉气化能力还比较低,产品气中CH4含量高达1.5%-2.5%,飞灰量大、对环境的污染及飞灰综合利用问题有待解决。 6、GE德士古(Texaco)水煤浆加压气化技术 GE德士古(Texaco)水煤浆加压气化技术,属气流床加压气化技术,原料煤经磨制成水煤浆后用泵送进气化炉顶部单烧嘴下行制气,原料煤运输、制浆、泵送入系统比Shell和GSP等干粉煤加压气化要简单得多,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉日投煤量为2000t,国内已投产的最大气化炉日投煤量为1000t。国内设计中的气化炉能力最大为1600t/d。该技术对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能作气化原料。但要求原料煤含灰量较低,煤中含灰量由20%降至6%,可节省煤耗5%左右,氧耗10%左右。另外,要求煤的灰熔点低。由于耐火砖衬里受高温抗渣的限制,一般要求煤的灰熔点在还原性气氛下的T4<1300 ℃,对于灰熔点稍高的煤,可以添加石灰石作助熔剂,降低灰熔点。还要求灰渣粘温特性好,粘温变化平稳,煤的成浆性能要好。气化压力从2.7、4.0、6.5到8.5 MPa 皆有工业性生产装置在稳定长周期运行,装置建成投产后即可正常稳定生产。气化系统的热利用有两种形式,一种是废热锅炉型,可回收煤气中的显热,副产高

粉煤加压气化技术

粉煤加压气化技术简介 一、背景 “九五”期间华东理工大学、兖矿鲁南化肥厂(水煤浆气化及煤化工国家工程研究中心)、中国天辰化学工程公司共同承担了国家“十五”科技攻关计划课题“粉煤加压气化制合成气新技术研究与开发”,建设具有自主知识产权的粉煤加压气化中试装置。装置处理能力为15~45吨煤/天,操作压力2.0~2.5Mpa,操作温度1300~1400℃。 该课题于2001年年底启动,2002年10月完成研究开发阶段中期评估,中试装置进入设计施工阶段。2004年7月装置正式投运,首次在国内展示了粉煤加压气化技术的运行结果,填补了国内空白,技术指标达到国际先进水平。中试装置于2004年12月6日至9日顺利通过科技部组织的现场72 小时运行专家考核,2004年12月21日于北京通过科技部主持的课题专家验收。同年,该成果入选2004年度煤炭工业十大科学技术成果。 二、装置流程与技术优势 1、整个工艺流程如图1,具体流程为:原煤除杂后送入磨煤机破碎,同时由经过加热的低压氮气将其干燥,制备出合格煤粉存于料仓中。加热用低压氮气大部分可循环使用。料仓中的煤粉先后在低压氮气和高压氮气的输送下,通过气化喷嘴进入气化炉。气化剂氧气、蒸汽也通过气化喷嘴进入气化炉,并在高温高压下与煤粉进行气化反应。出气化炉的高温合成气经激冷、洗涤后并入造气车间合成气管线。熔融灰渣在气化炉激冷室中被激冷固化,经锁斗收集,定期排放。洗涤塔出来的黑水经过二级闪蒸,水蒸汽及一部分溶解在黑水中的酸性气CO 2、H2S 等被迅速闪蒸出来,闪蒸气经冷凝、分离后与气化分厂生产系统的酸性气一并处理,闪蒸黑水经换热器冷却后排入地沟,送气化分厂生产装置的污水处理系统。

煤气化技术那种最好

煤气化技术那种最好? 煤气化是煤化工的关键技术和龙头技术,核心是煤气化炉,包括固定床(移动床,记者误写,固定床是鲁奇气化或BGL等加压气化工艺,移动床就是传统的固定层气化工艺,概念不同)、流化床、气流床3 种类型,其中气流床成为当今煤气化技术发展的主流。近10年来,我国煤气化技术开发明显加快,相继开发成功清华气化炉、多喷嘴对置式水煤浆气化炉、航天加压粉煤气化炉、两段式干粉煤气化炉以及灰熔聚流化床粉煤气化炉等煤气化技术,形成了与国外技术竞相发展的局面。 “新型煤气化技术主要指粉煤加压气化技术和新型水煤浆气化技术。与固定床煤气化技术相比,新型煤气化技术在节能环保、煤种适应性等方面具有十分突出的优势。”中国化工信息中心副主任李中说,在此次煤气化技术/经济发展论坛上,国内自主煤气化技术与美国GE、壳牌、西门子GSP、科林CCG 等国外先进技术同台竞技,各展风采。由于是商业性会议、用户业主只来了10家左右、基本上是参会众多技术单位和专家自我欣赏居多! 记者注意到,国产化技术毫不逊色,一些甚至达到国际领先水平。“在第一代清华气化炉应用世界首个氧气分级气流床煤气化技术的基础上,我们又创新将燃烧凝渣保护和自然循环膜式壁技术引进气化领域,成功开发了新一代清华水冷壁气化炉,装置全部采用我国自主技术和国产设备,解决了水煤浆气化技术的煤种限制和高能耗点火问

题,形成了世界第一个水煤浆水冷壁煤气化工艺。” 清华大学盈德气体煤气化联合研究中心主任张建胜教授自豪地说,水冷壁保护结构水煤浆气化技术,具有水煤浆耐火砖和干粉水冷壁气化炉的优点,比如气化炉操作温度不再受耐火砖的限制,可以使用灰熔点更高的煤作为原料,煤种适应性更宽,覆盖了褐煤、烟煤到无烟煤全煤阶。除此以外,清华水冷壁气化炉的水冷壁按照自然循环设计,强制循环运行。即便在停电、停泵等事故状态下无法强制供水,水汽系统仍可自然循环,水冷壁不会损坏,保证气化炉安全停车。采用水冷壁结构,也不必每年停车更换锥底砖和全炉向火面砖,单炉年运转可达8000小时以上。与其他水冷壁炉相比,清华水冷壁气化炉系统压力高50%~100%,粗合成气中H2 含量高50%以上,后续变换、净化、合成等工序能耗降低,设备投资和运行成本大幅下降。去年9 月,清华水冷壁气化炉技术通过中国石油和化学工业联合会组织的科技成果鉴定,总体技术处于国际领先水平。 华东理工大学洁净煤技术研究所所长于广锁告诉记者,其多喷嘴对置式水煤浆气化炉由于采用四喷嘴对置设计,不存在短路物流现象,具有高效节能、碳转化率高等优点。今年4月,日处理煤2000吨级多喷嘴对置式水煤浆气化技术通过了中国石油和化学工业联合会成果鉴定,专家给予高度评价,认为该成果创新性强,总体处于同类技术的国际领先水平。 中国华能集团清洁能源技术研究院研发的两段式干煤粉加压气化技术,创新采用两室两段多喷嘴反应、分级气化,有效气含量可

科林气化技术

科林气化技术

科林CCG粉煤加压气化技术 技术拥有单位:德国科林工业技术有限责任公司 2014-5-20 来源:《中国煤化工》编辑部作者:德国 科林工业技术有限责任公司 德国科林工业技术有限责任公司(简称科林公司)是世界著名的洁净煤利用技术的研发者、拥有者及工业解决方案供应商,全部拥有科林粉煤气化(CHOREN Coal Gasification)技术。科林的前身是欧洲洁净煤利用技术领域的先驱和领导者——前德国燃料研究所(DBI)。上世纪90年代,前德国燃料研究所研发部部长Wolf博士创立了科林,科林名称的由来是:“C-Carbon-碳,H-Hydrogen-氢,O-Oxygen-氧,REN-RENewable-可再生”。科林核心技术团队来自于前德国燃料研究所及黑水泵气化厂。公司总部及技术研发工程中心位于德国萨克森州的德累斯顿。科林在干粉煤气流床气化技术领域拥有40多年的研发、设计、制造、建设及运行经验,能够为业主提供全方位、立体化的煤气化解决方案。 科林CCG粉煤气化工艺过程主要是由给料、气化与激冷等系统组成,采用干粉煤加压进料,以纯氧作为氧化剂(部分煤种需添加少量水蒸气),在气化室内在高温高压的条件下反应,产生以一氧化碳和氢气为主的合成气,并实现高温液态排渣。原料气化和达到气体平衡所需的热量由原料碳氧化成一氧化碳和二氧化碳所释放。气化温度的选择主要由煤的熔融特性及粘温特性确定,气化压力的确定主要取决于产品煤气的利用工艺,通常为4.0MPa。通过科林CCG气化工艺可以把原煤、石油焦等转化为清洁的、高附加值的一氧化碳和氢气,可用于生产合成氨、甲醇、合成油、合成天然气等化工产品,还可用于发电或者生产城市煤气。

航天炉粉煤加压气化装置运行分析

航天炉粉煤加压气化装置运行分析 伴随着航天事业的不断进步,各种新型工艺技术、材料以及设备得以出现,其中航天炉粉煤加压气化技术便是最为关键的高端技术之一,其主要根据煤制合成气技术加以研发,不但在航天炉方面具有一定的技术创新性,而且还充分发挥出传统技术的优势和作用,效果良好。有关调查资料信息显示,尽管航天炉相关技术没有通过大量的实验检测过,不过在针对航天工程项目的基本需要满足方面却表现突出,十分有助于推进我国的工业化发展进程。因此,深入探讨航天炉粉煤加压气化装置运行状况具有重要意义。 2 航天炉粉煤加压气化工作开展的装置要求 对于航天炉粉煤加压气化工作而言,一般来说,为了保证良好的运行效果,要求粉煤加压气化的装置功能正常、覆盖全面,主要涵盖四个不同的单元,具体来说依次为:以磨煤与干燥处理为主要任务的15单元;以粉煤加压与运输为主要任务的16单元;以粉煤气化为主要任务的17单元;以灰水与渣处置为主要任务的18单元。对于15单元而言,其中包括了两条生产运行线,即1开1备,以便达到维持装置持续运行的效果。对于装置当中的16单元来说,可以实现针对所储存粉煤的加压处理,完成之后,使粉煤被运输到料罐当中。对于17单元来说,属于粉煤加压气化装置的核心组成部分,可以发挥出一定的燃烧作用,并合理进行气激冷與相关设施的清洁处理。对于18单元而言,可以对装置实施黑水的有效处理,并且能够反复循环使用,节约了资源。 3 航天炉粉煤加压气化装置的运行状况分析 本次研究将以安徽昊源化工集团企业的两套航天炉粉煤加压气化装置运行情况作为分析案例,该项目粉煤加压气化装置工程项目在2021年10月份正式开工,其中一期项目气化炉于2021年4月14日首次成功点火。该项目从基建到首次点火成功花费了一年多的时间。

主流煤气化技术及市场情况系列展示-4--航天粉煤加压气化技术

主流煤气化技术及市场情况系列展示(之四) 航天粉煤加压气化技术 技术拥有单位:航天长征化学工程股份有限公司 航天粉煤加压气化技术(HT-L)是中国运载火箭技术研究院开发出的具有自主知识产权的煤气化技术。 2005年2月,针对我国煤化工领域的技术现状,中国运载火箭技术研究院经过深入探讨,决定利用自身技术优势和军转民多年的技术储备,研发我国自主知识产权的煤气化技术。2005年3月,完成了HT-L的专利申请。截至目前,HT-L拥有发明及实用新型专利共计30多项,并通过了多家跨国公司的专利独立性审查。 为了项目的迅速开展,中国运载火箭技术研究院选择了安徽临泉化工股份有限公司和河南永煤集团濮阳龙宇公司作为HT-L工业化示范工程依托单位,并决定垫资研发示范工程气化装置,采用炉型均为日投煤量750吨航天炉。 2008年10月13日,濮阳示范工程投煤成功,产出合格的合成气。2008年10月31日,临泉示范工程投煤成功,11月2日打通全部工艺流程,成功产出甲醇。2009年10月,HT-L通过中国石油和化学工业协会组织的科技成果鉴定。鉴定委员会认为:该装置操作简便、维护方便,煤种适应性广、投资费用和运行成本低、开工率高、气化炉的故障率低。该技术拥有自主知识产权,总体技术水平处于国际领先。 2012年10月,日投煤量1500~2000吨航天炉于晋开集团一次投产成功,当年3台相同型号航天炉投入运行,各项指标良好。2012年3月,新建成的航天煤化工产业基地投用,占地面积540000平方米。目前正在进行上海主板IPO 上市工作。 一、技术特点 HT-L包括磨煤及干燥(1500)、煤加压及进煤(1600)、气化及合成气洗涤(1700)、渣及灰水处理(1800)、气化公用工程(1900)5个单元,该技术具有如下特点: 1、煤粉为原料、纯氧和过热蒸汽为气化剂 其中,原料煤粉为5~90微米;输送介质为氮气或二氧化碳;气化压力在4.0~6.5MPa;以粉煤为原料,块煤、面煤均可利用;单位有效气体氧耗低、煤耗低,热效率高;粗合成气中有效气体(一氧化碳+氢气)成分高,氮氧化物含量低,对环境影响小;惰性气体浓相输送,除合成氨装置外,原则上均可以二氧化碳作为煤粉输送介质,实现二氧化碳循环利用,减少碳排放;浓相输送煤粉,实现DCS、ESD系统对气化过程的精确控制。 2、盘管水冷壁结构,副产中压蒸汽,高温气化 气化炉气化段盘管水冷壁结构,可以实现高的气化温度(1200~1700℃),适应原料煤宽泛的灰熔点范围,适当添加碳酸钙助溶剂,可以适应各种原料煤,实现原料煤本地化;水冷壁气化炉,升温、降温迅速,与热壁气化炉相比,可以大大缩短停车检修时间;盘管水冷壁结构,强制两相流汽包水

煤气化技术简介及装置分类

煤气化技术简介及装置分类 煤气化是清洁利用煤炭资源的重要途径和手段。目前,国内自行开发和引进的煤气化技术种类众多,但总体上可以分为以下三大类: 一、固定床气化技术 以鲁奇为代表的加压块煤气化技术。鲁奇加压气化炉是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂最多的煤气化技术。鲁奇气化炉是制取城市坑口煤气装置中的心脏设备。它适应的煤种广﹑气化强度大﹑气化效率高﹑粗煤气无需再加压即可远距离输送。鲁奇气化技术的特点为:采用碎煤加压式填料方式,即连接在炉体上部的煤锁将原料制成常温碎煤块,然后从进煤口经过气化炉的预热层,将温度提高至300℃左右。从气化剂入口吹进的助燃气体将煤点燃,形成燃烧层。燃烧层上方是反应层,产生的粗煤气从出口排出。炉篦上方的灰渣从底部出口排到下方连接的灰锁设备中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。鲁奇炉的代表炉型即第三代MARK-IV/4型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,是一种技术先进﹑结构更为合理的炉型。我公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。 图1 鲁奇加压块煤气化装置

二、流化床气化技术 以恩德炉、灰熔聚为代表的气化技术。恩德炉粉煤流化床气化技术是朝鲜恩德“七.七”联合企业在温克勒粉煤流化床气化炉的基础上,经长期的生产实践,逐步改进和完善的一种煤气化工艺。灰融聚流化床粉煤气化技术根据射流原理,在流化床底部设计了灰团聚分离装置,形成床内局部高温区,使灰渣团聚成球,借助重量的差异达到灰团与半焦的分离,在非结渣情况下,连续有选择地排出低碳量的灰渣。目前,中科院山西煤化所山西省粉煤气化工程研究中心开发的加压灰熔聚气化工业装置已经成功应用于晋煤集团天溪煤制油分公司1 0万吨/年煤基MTG合成油示范工程项目,该项目配备了6台灰熔聚气化炉(5开1备),气化炉操作压力0.6MPa,日处理晋城无烟煤1600吨,干煤气产量125000Nm3/h(配套30万吨/年合成甲醇)。 图2 灰熔聚气化反应装置 三、气流床气化技术 1、以壳牌、GSP、科林、航天炉、伍德、熔渣-非熔渣为代表的气流床技术 壳牌干煤粉气化工艺于1972年开始进行基础研究,1978年投煤量150 t/d的中试装置在德国汉堡建成并投人运行。1987年投煤量250~400 t/d的工业示范装置在美国休斯敦投产。在取得大量实验数据的基础上,日处理煤量为2000 t的单系列大型煤气化装置于1993年在荷兰Demkolec电厂建成,煤气化装置所产煤气用于联合循环发电,经过3年多示范运于1998年正式交付用户使用。目前,我国已经引进23套

粉煤气化机理

粉煤气化机理 一、气化反应热力学粉煤加压气化炉是气流床反应器,也称之为自热式反应器,在加压 无催化剂条件下,煤和氧气发生部分氧化反应,生成以CO和H2为有效组分的粗合成气,部分氧化反应一词是相对完全氧化而言的。整个部分氧化反应是一个复杂的多种化学反应过程。此反应的机理目前尚不能完全作以分析。我们只可以大致把它分为三步进行。 第一步:裂解及挥发分燃烧。当粉煤和氧气喷入气化炉内后,迅速被加热到高温,粉煤发生干馏及热裂解,释放出焦油、酚、甲醇、树脂、甲烷等挥发分,水分变成水蒸气,粉煤变成煤焦。由于这一区域氧气浓度高,在高温下挥发分完全燃烧,同时放出大量热量。因此,煤气中不含有焦油、酚、高级烃等可凝聚物。 第二步:燃烧及气化。在这一步,煤焦一方面与剩余的氧气发生燃烧反应,生成CO2和CO等气体,放出热量。另一方面,煤焦和水蒸气和CO2发生气化反应,生成H2和CO。在气相中,H2和CO又与残余的氧气发生燃烧反应,放出更多的热量。 第三步:气化。此时,反应物中几乎不含有O2。主要是煤焦、甲烷等和水蒸气、CO2发生气化反应,生成H2和CO。 其总反应可写为: C n H m + (n/2)O2 →nCO + (m/2)H2 + Q 气化炉中发生的主要反应可分为: ①非均相水煤气反应 C + 2H2O →2H2 + CO2 - Q ②变换反应CO + H2O →CO2 + H2 + Q ③甲烷化反应CO +3 H2 →H2O + CO2 + Q ④加氢反应 C + 2 H2 →CH4 +Q ⑤部分氧化反应 C + 1/2O2 →CO + Q ⑥氧化反应 C + O2 →CO2 + Q ⑦CO2还原反应 C + CO2 →2CO – Q ⑧热裂解反应C n H m →(n/4)CH4 + [(4m-n)/4]C - Q 气化炉内的反应相当复杂,既有气相反应,又有气-固双相反应,对于复杂 物系的平衡,我们引入独立反应数的概念,只要讨论独立反应即可。因为其他反应可通过独立反应的组合而替代。 所谓独立反应数,就是构成物系的物质数与构成物质的元素种数之差。假定煤气化反应在气化炉出口组成达到平衡,气体中含有CO2、CO、H2、O2、H2S、CH4、COS和C等八中物质,而这些物质是由C、H、O和S等四种元素构成,因此,气化反应只有四个独立反应,也就是说,在上述的反应中,我们只要讨论其中任意四个反应就够了。 另外,对于煤气化来说,S含量很低,基本上是一确定值(对于生成H2S、COS的比值),这样独立反应数就只有三个了。由于碳转化率在98%以上,于是独立反应数就只有两个了。所以,对于煤气化反应,只着重讨论变换反应和甲烷化反应两个反应。 煤气化反应的化学平衡: ①变换反应的化学平衡 CO + H2O →CO2 + H2 + 9838Kcal/Kmol 平衡常数计算式如下: K P=PCO2*PH2/PCO*PH2O 式中:K P为该反应平衡常数。PCO2、PH2、PCO、 PH2O分别表示CO2、H2、CO、H2O的平衡分压。LgK P=2182/T – 0.0936LgT +0.000632T – 1.0806×10-7T2-2.2967 式中:T 为平衡温度。从平衡上讲,变换反应为放热反应,降低温度对平衡有利。 但在高温条件 下,CO 变换反应接近平衡。

5壳牌煤气化技术

主流煤气化技术及市场情况系列展示(之五) 壳牌煤气化技术 技术拥有单位:壳牌全球解决方案国际私有有限公司 壳牌是世界知名的国际能源公司之一。壳牌煤气化技术可以处理石油焦、无烟煤、烟煤、褐煤和生物质。气化炉的操作压力一般在4.0MPa,气化温度一般在1400~1700摄氏度。在此温度压力下,碳转化率一般会超过99%,冷煤气效率一般在80~83%。对于废热回收流程,合成气的大部分显热可由合成气冷却器回收用来生产高压或中压蒸汽;如配合采用低水气比催化剂的变化工艺,在变换单元消耗少量蒸汽即可保证变换深度要求,剩余大量蒸汽可送入全厂蒸汽管网,获得可观的经济效益。 目前,壳牌全球解决方案国际私有有限公司负责壳牌气化技术的技术许可,工艺设计以及技术支持。2007年壳牌成立了北京煤气化技术中心,2012年初,壳牌更是将其全球气化业务总部也从荷兰移师中国,这充分体现了壳牌对中国现代煤化工蓬勃发展的重视,同时壳牌也能更好地利用其全球气化技术能力,贴近市场,为中国客户提供更加快捷周到的技术支持。目前,在北京的壳牌煤气化技术团队可提供从研发、工程设计、培训、现场技术支持以及生产操作和管理的全方位技术支持和服务。 一、整体配套工艺 根据不同的煤质特性以及用户企业的不同生产需求和规划,壳牌开发了下面3种不同炉型:

壳牌废锅流程是当前工业应用经验最丰富的干粉气化技术。它的效率和工艺指标的先进性已经得到了验证和认可,而且在线率也在不断创造新的世界纪录,大部分客户已实现满负荷、长周期、安全、稳定运转。如果业主比较关注热效率,全厂能效和环保效益的话,采用壳牌废锅流程并配合已成功应用的低水气比变换技术应该是最合适稳妥的方案。 壳牌上行水激冷流程特别适合处理有积垢倾向的煤种;适合大型项目,此外投资低,可靠性高。对于比较关注在线率和低投资的业主,采用壳牌上行水激冷流程应该是最合适稳妥的方案。 壳牌下行水激冷流程在煤种的适应性方面与市场上其它下行水激冷技术相似,特别适合处理有积垢倾向的煤种;由于其采用了壳牌废锅流程成熟的对臵多烧嘴布臵,气化炉内流场分布合理,温度场均匀,使得碳转化率高,负荷调节灵活。同时采用经过工业验证的竖管式水冷壁设计,气化炉规模易于放大,能满足大型项目的需求。 1、工艺简介 壳牌废锅流程工艺流程如下:

科林高压干粉煤气化工艺技术分析_赵小倩

科林高压干粉煤气化工艺技术分析 赵小倩,胡长胜 (大唐能源化工有限责任公司 北京 100000) 摘要 介绍了科林高压干粉煤气化的工艺流程、工艺特点。对该气化技术的可操作性进行了分析,并与国内应用的2种煤气化工艺(干粉煤废锅气化工艺和水煤浆加压气化工艺)数据进行了简单对比。科林高压干粉煤气化工艺具有设备结构简单、煤种适用性更宽、消耗低和设备国产化程度高的特点。 关键词 粉煤气化 工艺特点 技术分析 本文作者的联系方式:changs h engzydh @163.co m Technol ogical Anal ysis on Choren H igh -Pressure Pulverized Coal G asification Process Zhao X iaoqian ,H u Changsheng (Datang Energy and Che m ica l I ndustry Co .,Ltd . Beiji n g 100000) Abst ract The process and features of Choren h i g h -pressure pulveried coal gasifi c ation are presented .Operab ility o f the gasification techno logy is ana l y sed .And t h e operati o n data as co m pared w it h the other t w o coal gasification pr ocesses ,.i e .pulverized coal gasification processw it h w aste heat bo iler and coa-l w ater slurry pressure gasification process ,usi n g i n Ch i n a are described briefly .Cho ren h igh -pressure pu l v erized coal gasification process is featured w ith si m ple i n equip m ent str ucture ,w ider app licab ility of coal variety ,lo w er consum ption and high loca liza ti o n of equip m en.t K eyw ords pulver ized coal gasification process feature techno l o g ica l analysis 煤气化工艺在很大程度上影响到煤化工产品(电力)的成本和效益,选择高效、低耗、无污染的煤气化技术是发展煤化工的前提。现就国内近期引进的激冷流程的科林高压干粉煤气化技术进行总结,以供参考。 1 技术来源及发展历程 科林高压干粉煤气化炉简称为CCG 炉(Cho ren Coal Gasifier)。该技术起源于前东德燃料研究所,于20世纪70年代末开始开发,目的是利用当地褐煤生产城市燃气。1979年在弗莱贝格市建立了1套3MW 中试装置,完成了一系列基础研究和工艺验证工作,试验煤种分别来自德国、中国、前苏联、南非、西班牙、保加利亚、澳大利亚、捷克等国家。1984年在黑水泵市(SC HWARZ PUM PE)建立了1套130MW (日投煤量为720t) 水冷壁煤气化炉工业化装置,气化当地褐煤制取 城市燃气,有8年的工业化生产经验。燃料研究所和黑水泵厂的技术骨干发起成立了科林的前身公司,继续致力于煤气化技术的研发,并把运行中出现的问题进行了设计更改和完善,推出了一套完整优化的气化技术。 2 科林CCG 技术与西门子GSP 技术的 联系和区别 科林公司和西门子公司所提供的煤气化技术均是在前东德燃料研究所早年的过期专利和黑水泵厂130MW 气化炉的基础上进行放大和改进, 然后形成了各自新的专利体系。 两种技术均以干粉煤进料,磨煤和干燥的要求相似;均采用环状盘管水冷壁结构;化工项目均采用全激冷流程,西门子为I GCC 发电项目也开 6

相关主题
文本预览
相关文档 最新文档