当前位置:文档之家› 纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备
纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备

--工业催化剂小论文

姓名:蒋应战

班级:化工091

学号:0806044111(32号)

指导老师:宫惠峰老师

学校:邢台职业技术学院

目录

1.纳米材料作催化剂的特点 (2)

2.纳米催化剂制备……………………………….. ..2-3

3.微乳液法制备纳米催化剂………………………...4-9

4.纳米粒子催化剂的应用 (10)

5.纳米催化剂的展望................................. . (11)

参考文献................................. . .. (11)

纳米催化剂的介绍及其制备

纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。

1. 纳米材料作催化剂的特点

工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。

1.1 纳米催化剂的表面与界面效应

纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。

1.2纳米催化剂的量子尺寸效应

当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。

1..3纳米粒子宏观量子隧道效应

量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。

2. 纳米催化剂制备

目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

制备纳米催化剂的常用方法有:

2.1 气相法

气相法主要包括:溅射法、气体冷凝法、混合等离子法、化学气相沉积法等等。化学气相沉积技术(CVD)是其中一种比较好的化学方法,它是以气体为原料,在气相中通过化学反应形成物质的基本离子,然后经过成核和生长两个阶段合成纳米材料。用该方法制成的纳米粒子纯度高、粒度分布均匀。

2.2 液相法

液相化学法制备纳米催化剂已成为纳米催化剂制备技术发展的主要方向之一,其合成法主要包括:水热法、沉淀法、溶胶—凝胶法、离子交换过程、喷雾法、溶剂挥发分解法、微乳液法等等。这类方法可以选择一种或多种合适的可溶性金属盐类,计量配制溶液,使各种成份在溶液中以离子或分子的形式均匀分散,再通过合适的沉淀剂或采用蒸发、升华、水解等操作,使金属离子均匀沉淀或结晶出来,最后将沉淀或结晶产物进行脱水或加热分解制得纳米材料。这类方法主要有以下优点:成本低,反应温度低,设备简单且要求不高;反应容易控制,可以通过对温度、反应时间等工艺参数来控制催化剂的晶型及颗粒尺寸;过程相对简单,不需添加表面稳定剂,易于实现工业化生产。

2.2.1沉淀法沉淀法是通过化学反应使原料的有效成分沉淀,然后经过过滤、洗涤、干燥、加热分解而得到纳米粒子,沉淀法包括直接沉淀法、共沉淀法、均匀沉淀法、配位沉淀法等,其共同的特点是操作简单方便。

2.2.2水解法它是在高温下先将金属盐的溶液水解,生成水合氧化物或氢氧化物沉淀,再加热分解得到纳米粒子的一种方法。水解法包括无机水解法、金属醇盐水解法、喷雾水解法等,其中以金属醇盐水解法最为常用,其最大特点是从物质的溶液中直接分离所需要的粒径细、粒度分布窄的超微粉末。该法具有制备工艺简单、化学组成能精确控制、粉体的性能重复性好及得率高等优点,其不足之处是原料成本高,若能降低成本、则具有极强的竞争力。

2.2.3溶剂热合成法该法是于高温高压下在水溶液或蒸汽等流体中合成氧化物,再经分离或热处理得到纳米粒子。此法具有原料易得、粒子纯度高、分散性好、晶型好且可控、成本相对较低等优点。

2.2.4溶胶—凝胶法该法利用金属醇盐的水解或聚合反应制备氧化物或金属非氧化物的均匀溶胶,再浓缩成透明凝胶,使各组分分布达到分子水平,凝胶经干燥、热处理即可得到纳米粒子。该法优点是粒径小、纯度高、反应过程易控、均匀度高、烧结温度低,缺点是原料价格高、有机溶剂有毒、处理时间较长等

2.2.5微乳液法该法利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,剂量小的溶剂被包裹在剂量大的溶剂中,形成许多微泡,微泡表面由表面活性剂组成,微泡中的成核、生长、凝结、团聚等过程局限在一个微小的球型液滴内,从而形成球型颗粒,避免了球型间的进一步团聚,微乳液法具有制备的粒子粒径小、单分散性好、实验装置简单、易操作等优点,有很好的发展前景。

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

纳米加工技术

纳米加工技术及其应用江苏科技大学机械学院 学号:1 姓名:原旭全

纳米尺度的研究作为一门技术,是80年代刚刚兴起的.它所研究的对象是一般研究机构很难涉猎的即非宏观又非微观的中间领域,有人称之为介观领域.所谓纳米技术通常指纳米级~l00nm)的材料、设计、制造、测量、控制和产品的技术.纳米技术主要包括纳米级精度和表面形貌的测量;纳米级表层物理、化学、机械性能的检测;纳米级精度的加工和纳米级表层的加工一一原子和分子的去除、搬迁和重组;纳米材料;纳米级微传感器和控制技术;微型和超微型机械;微型和超微型机电系统;纳米生物学等;纳米加工技术是纳米技术的一个组成部分.纳米加工的含义是达到纳米级精度(包括纳米级尺寸精度,纳米级形位精度和纳米级表面质量)的加工技术. 其原理使用极尖的探针对被测表面扫描(探针和被侧表面不接触),借助纳米级的三维位移控制系统测量该表面的三维微观立体形貌. 材料制造技术. 著名的诺贝尔奖获得者Feyneman在20世纪60年代曾预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化.他说的材料即现在的纳米材料.纳米材料是由纳米级的超微粒子经压实和烧结而成的.它的微粒尺寸大于原子簇,小于通常的微粒,一般为l一100nm.它包括体积份数近似相等的两部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面.纳米材料的两个重要特征是纳米晶粒和由此产生的高浓度晶界.这导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变.如:纳米陶瓷由脆性变为100%的延展性,甚至出现超塑性.纳米金属居然有导体变成绝缘体.金属纳米粒子掺杂到化纤制品或纸张中,可大大降低静电作用.纳米Tiq按一定比例加入到化妆品中,可有效遮蔽紫外线.当前纳米材料制造方法主要有:气相法、液相法、放电爆炸法、机械法等. l)气相法:1热分解法:金属拨基化合物在惰性介质(N2或洁净油)中热分解,或在H冲激光分解. 此方法粒度易控制,适于大规模生产.现在用于Ni、Fe、W、M。等金属,最细颗粒可达3一10nm.o真空 蒸发法:金属在真空中加热蒸发后沉积于一转动圆的流动油面上;可用真空蒸馏使颗粒浓缩.此法平均颗粒度小于10nm. 2)液相法:1沉积法:采用各种可溶性的化合物经混合,反应生成不溶解的氢氧化物、碳酸盐、硫酸盐或有机盐等沉淀.把过滤后的沉淀物热分解获得高强超纯细粉.采用此工艺制备出均质的玻璃和陶瓷.由于该法可制备超细(10nm一100nm)、化学组成及形貌均匀的多种单一或复合氧化物粉料.已成为一种重要的超细粉的制备方法. 3)放电爆炸法:金属细丝在充满惰性气体的圆筒内瞬间通人大电流而爆炸.此法可制造等难熔金属的超细颗粒(25一350nm),但不能连续操作. 4)机械法:利用单质粉末在搅拌球磨(AttritorMill)过程中颗粒与颗粒间和颗粒与球之间的强烈、 频繁的碰撞粉碎.近几年大量采用搅拌磨,即利用被搅拌棍搅拌的研磨介质之间的研磨,将粉料粉碎粉碎效率比球磨机或振动磨都高. (3)三束加工技术:可用于刻蚀、打孔、切割、焊接、表面处理等. l)电子束加工技术:电子束加工时,被加速的电子将其能量转化成热能,以便除去穿透层表面的原子,因此不易得到高精度.但电子束可以聚焦成很小的束斑(巾

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

纳米金属催化剂的制备方法及其比较_宁慧森

纳米催化材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质[1 ̄2],在催化领域的应用为广大催化工作者开拓了一个广阔空间,国际上已把纳米粒子催化剂称为第四代催化剂,因此纳米材料在催化领域的应用日益受到重视。许多发达国家都相继投入大量人力、财力开展纳米粒子作为高性能催化剂的研究,如美国的Nano中心,日本的Nano ST均把纳米材料催化剂的研究列为重点开发项目。我国对纳米材料的研究也给以高度重视,国家“863”计划、“973”计划大力支持纳米材料及纳米催化剂的研究,已取得了可喜成果[3 ̄5]。目前,国内外纳米催化剂的制备和应用逐步拓展到催化加氢[6]、脱氢[7 ̄9]、聚合、酯化、化学能源[10]、污水处理[11]等方面。纳米金属催化剂制备方法分为化学法及物理法:化学法包括溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法包括气相凝聚法、溅射法和机械研磨法等。 1 化学法制备金属纳米催化剂 1.1 溶胶-凝胶法 该法一般是以金属盐或半金属盐作前驱体,将适当的烷氧化物如四甲氧基硅烷与水、酸性或碱性催化剂与共熔剂,在搅拌超声下进行水解和缩聚反应形成SiO2三维网络结构。在成胶过程中引入的金属组分包埋在三维网络结构中,再进行凝胶老化过程,即将凝胶浸于液体中,继续聚合反应,凝胶强度增加。最后通过干燥,将溶剂从相互关联的多孔网格中蒸发掉,即可得到纳米尺寸的网格结构。溶胶-凝胶技术已成为实现化学剪裁合成纳米材料的主要手段[12 ̄13]。但该法使用的原料价格较昂贵;通常整个溶胶-凝胶过程所需时间较长,有时长达几天或几周;而且凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩。溶胶-凝胶法还被用来制备复合纳米金属催化剂,如Keiji Hashimoto等人[14]利用溶胶-凝胶工艺制备了K+[Zn3(SiO3Al)10(OH)2]-纳米粒子用于醇脱氢反应。李永丹等人[15]还利用溶胶-凝胶法制备了镍基催化剂,并对其进行了甲烷分解制备碳纳米管的研究,所制备的纳米管直径为10 ̄20nm。雷翠月[12]也利用此法,直接制备出了高比表面积、低堆积密度的纤维状纳米级负载型CuO-Al2O3 超细粒子,活性组分以远低于纳米级的微晶粒子簇状态均匀地分散在纳米级氧化铝载体表面,在500℃内具有较高的稳定性,晶粒未聚集长大,在十二醇催化胺化反应中表现出了较高的催化活性。陈立功等人[16]在醇催化胺化反应研究中开发了一种改进的溶胶-凝胶法,利用这种方法制备的铜基纳米催化剂的活性和稳定性都有了显著提高。 1.2 沉淀法 沉淀法是指包括1种或多种离子的可溶性盐溶液,加入沉淀剂(如OH-、C2O42-等)于一定温度下使溶液水解,形成不溶性的氢氧化物、水合氧化物或盐类而从溶液中析出,将溶剂和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化物粉料。此法是传统制备氧化物方法之一[17],主要包括以下4种。 1.2.1 共沉淀法 将过量的沉淀剂加入混合后的金属盐溶液中, 纳米金属催化剂的制备方法及其比较 宁慧森,白国义 (河北大学化学与环境科学学院,河北保定 071002) 摘 要:纳米金属催化剂的制备方法包括化学法和物理法。化学法中主要有溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法主要有气相凝聚法、溅射法和机械研磨法等。其中化学法 中的溶胶-凝胶法及沉淀法应用最广。对纳米金属催化剂的制备方法进行了比较,并简要论述了制备及应 用过程中存在的主要问题。 关键词:纳米催化剂;催化;制备 中图分类号: TQ426.8 文献标识码: A 文章编号: 1672-2191(2007)03-0015-04 收稿日期:2007-03-25 基金项目:河北大学博士基金资助项目(2005046) 作者简介:宁慧森(1976-),男,河北保定人,在读硕士研究生,研究方向为精细化工和催化领域。 电子信箱:nhs-lyq@163.com 2007年第5卷第3期 Chemical Propellants & Polymeric Materials · 15 ·

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

纳米科学与微纳制造》复习材料.docx

《纳米科学与微纳制造》复习材料1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性: 1)在常态下对动植物体友好的金,在纳米态下则有剧毒; 2)小于 100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存; 3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1nm~100nm范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。 纳米材料有两层含义: 其一,至少在某一维方向,尺度小于 100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结 构单元的尺度小于 100nm ,如纳米晶合金中的晶粒 ; 其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在1-100nm 内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和 微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的 源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的 学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大 的好奇心和探索欲望。 5、纳米材料有哪 4 种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒

SCR催化剂简介

SCR脱硝系统,主要是在催化剂作用下,还原剂NH3在相对较低的温度下讲NO和NO2还原成,而几乎不发生NH3的氧化反应,从而提高了脱硝效率,减少了NH3的消耗。SCR系统由氨供应系统、氨气/空气喷射系统、催化反应系统以及吹灰系统等组成,催化反应系统中的催化剂是SCR工艺的核心。目前商业上应用比较广泛的是运行温度处于320~450 ℃的中温催化剂,该催化剂以TiO2 为载体,上面负载钒、钨和钼等主催化剂或助催化剂。 SCR催化剂生产工艺 通常将催化剂固定在不锈钢板表面或制成蜂窝陶瓷状,形成了不锈钢波纹板式和蜂窝陶瓷的结构形式。板式催化剂的生产过程为,将催化剂原料(载体、活性成分与助催化剂)混合后均匀地碾压在不锈钢板上,切割并压制成带有褶皱的单板,煅烧后组装成模块,便于安装和运输。蜂窝式催化剂的主要生产步骤为,将催化剂原料混合均匀,通过挤出成型设备按所要求的孔径制成蜂窝状长方体,进行干燥和煅烧,再切割成一定长度的蜂窝式催化剂单体,组装成模块。 SCR催化剂重要指标 1、温度活性。催化剂的活性温度范围是最重要的指标。反应温度不仅决定反应物的反应速度,而且决定催化剂的反应活性。如V2O5-WO3/TiO2催化剂,反应温度大多设在280~420℃之间。如果温度过低,反应速度慢,甚至生成不利于NOx 降解的副反应;如温度过高,则会出现催化剂活性微晶高温烧结的现象。 2、几何参数 ○1节距。对蜂窝式催化剂,如蜂窝孔宽度为(孔径)为d,催化剂内壁壁厚为 t, 则: P=d+t 。对平板和波纹式催化剂,如板与板之间宽为d,板的厚度为t,则: P=d+t ○2比表面积。比表面积是指单位质量催化剂所暴露的总表面积,或用单位体积催化剂所拥有的表面积来表示。 2.3孔隙率和比孔体积。孔隙率是催化剂中孔隙体积与整个颗粒体积之比。。比孔体积则指单位质量催化剂的孔隙体积。 2.4平均孔径和孔径分布。通常所说的孔径是由实验室测得的比孔体积与比表面相比得到的平均孔径。催化剂中的孔径分布很重要,反应物在微孔中扩散时,如果各处孔径分布不同,会表现出差异很大的活性,只有大部分孔径接近平均 孔径时,效果最佳。 3机械强度参数。主要体现了催化剂抵抗气流产生的冲击力、摩擦力、耐受上层催化剂的负荷作用、温度变化作用、及相变应力作用的能力。机械强度参数共有3个指标,即轴向机械强度、横向机械强度和磨耗率。前2个分别是指单位面

纳米催化剂及其应用(可编辑修改word版)

纳米催化剂及其应用 四川农业大学化学系应用化学201401 徐静20142672 摘要:近年来,纳米科学与技术的发展已广泛地渗透到催化研究领域,其中最典型的实例就是纳米催化剂(nanocatalysts——NCS)的出现及与其相关研究的蓬 勃发展。纳米材料具有独特的晶体结构及表面特性,其催化活性和选择性大大高于传统催化剂,目前已经被国内外作为第 4 代催化剂进行研究和开发。本文简要 介绍了纳米催化剂的基本性质、独特的催化活性等;并较详细地介绍了纳米催 化剂分类以及常见的制备方法;最后对其研究动态进行了分析,预测了其可能 的发展方向。 关键词:纳米催化剂材料制备催化活性应用 Nano - catalyst and its application Abstract: In recent years, the development of nano-science and technology has been widely penetrated into the field of catalysis research. The most typical example is the emergence of nanocatalysts (NCS) and the flourishing of related research. Nanomaterials have unique crystal structure and surface characteristics, and their catalytic activity and selectivity are much higher than those of traditional catalysts. At present, they have been researched and developed as the 4th generation catalyst at home and abroad. In this paper, the basic properties of nanocatalysts and their unique catalytic activity are briefly introduced. The classification of nanocatalysts and their preparation methods are introduced in detail. At the end of this paper, the research trends are analyzed and the possible development trends are predicted. Key words: nanocatalyst material preparation catalytic activity application 催化剂又称触媒,其主要作用是降低化学反应的活化能,加速反应速率, 因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动 这些行业发展的最有效的动力之一。一种新型催化材料或新型催化剂工业的问世,往往引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913 年,

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经

洗涤、干燥和活化后即可使用。 (8)离子交换法 NaY 制HY (9)滚涂法和喷涂法 (10)均相络合催化剂的固载化 (11)金属还原法 (12)微波法 (13)燃烧法(高温自蔓延合成法) 常用尿素作为燃烧机 (14)共沸蒸馏法 通过醇和水的共沸,改变沉淀的形貌、孔结构。 2、催化剂制备新技术 (1)溶胶-凝胶法(水溶液Sol-gel 法和醇盐Sol-gel 法) 金属醇盐 醇 水水解聚合胶溶剂解胶陈化溶胶 a 胶体凝胶法(胶溶法) 胶体凝胶法是通过金属盐或醇盐完全水解后产生无机水合金属氧化物,水解产物与胶溶剂(酸或碱)作用形成溶胶,这种溶胶转化成凝胶是胶粒聚集在一起构成网络,胶粒间的相互作用力是静电力(包括氢键)和范德华力。 b 聚合凝胶法(分子聚合法) 聚合凝胶法通过金属醇盐控制水解,在金属上引入OH 基,这些溶胶转化成凝胶时,在介质中继续缩合,靠化学键形成氧化物网络。 两种方法的区别在于加入水量的不同, 注意事项:1)水的加入量;2)醇的加入量;3)水解温度;4)胶溶剂加入量 (2)超临界技术 a 气凝胶催化剂的制备(超临界干燥) b 超临界条件下的催化反应 能够改进反应的传质、传热性能,改进产物的分离过程 c 用于因结焦、积垢和中毒而失活催化剂的再生。 具有温度低、不发生局部过热现象的特性,从而有效地防止催化剂的烧结失活。 (3)纳米技术 a 固相合成法 1)物理粉碎法(又称为机械研磨法或机械合金化法) 采用超细磨制备超微粒,很难使粒径小于100 nm 。

微光刻与微纳米加工技术

万方数据

万方数据

万方数据

万方数据

陈宝钦:微光刻与微/纳米加工技术 源的选择),选择相应的分辨率增强技术,以及分析相关的数据并对已有模型进行校准等工作。光刻模型主要包括光刻胶模型、()PC模型以及成像模型等。随着光刻设备的升级换代、RET的广泛应用,精确的模型需要充实。如超高数值孔径的浸没式光刻中的光学极化效应等。DFM可理解为,以快速提升芯片成品率及降低生产成本为目的,统一描述芯片设计中的规则、工具和方法,从而更好地控制设计电路向物理芯片的复制。是一种可预测制造过程中工艺可变性的设计,使得从设计到芯片制造的整个过程达最优化。DFM包括参数成品率、系统成品率和随机成品率的设计,以及可靠性、测试和诊断的设计,而相关EDA算法工具的开发应用是解决问题的关键所在。 1.3浸没透镜与两次曝光光刻技术 提高光刻分辨率有三种途径。一是缩短曝光光源波长,需要价格高昂的原理性设备换代;二是改善工艺因子K,。其代价是缩小了制造工艺窗口,同时还需要改变集成电路版图的设计规则、改善光刻胶的工艺和分辨率增强技术。对于目前主流的193nm光源的光刻技术来说,还难以满足45nm节点生产的需求;第三种途径就是在改善光学系统数值孔径上继续做文章。由于目前曝光镜头数值孔径已经接近1,再要提高光学透镜的数值孔径就需要设计更大口径、更复杂的镜头,这已经不太现实了。因此光刻专家们根据高倍油浸显微镜提高分辨率的原理,设法在曝光镜头的最后一个镜片与硅片之间增加高折射率的液体(如水)作为介质,以达到提高分辨率的目的。因为提高该介质的折射率町以加大光线的折射程度,等效地加大镜头口径尺寸与数值孔径,同时可以显著提高焦深(DOF)和曝光工艺的宽容度(El。)。浸没光刻技术莺点需要解决的问题是水迹、气泡和污染等缺陷困扰。目前采用193nm光源的浸没光刻(Immersion,193i)技术已经成为65nm和45nm光刻的主流技术。要想把193i技术进一步推进到32nm和22nm的技术节点,光刻专家还在寻找新技术,在没有更好的新光刻技术出现前。两次曝光技术(或叫两次成型技术,DPT)成为人们关注的热点。DPT的原理很简单,就是把原来一次光刻难以分辨的掩模图形交替式地分成两块掩模,每块掩模上图形的分辨率可以减少一半,减少了曝光设备分辨率的压力,同时还可以利用第二块掩模版对第一次曝光的图形进行修整。两次曝光有效地拓展了,现有曝光设备干法光刻的应用,不必等待更高的分辨率和更高数值孔径系统的出现就可以投入下一个节点产品的生产。两次曝光技术在使用中。很像移相掩模技术中的位相冲突问题,需要重点解决分色冲突问题。为此还有可能需要三次曝光光刻(TPT)。两次曝光技术可以是两次曝光两次刻蚀方式(1itho—etch—litho—etch);也可以是第一次曝光显影后进行抗蚀剂固化处理后再涂胶进行第二次曝光显影,最后一起刻蚀的方式(1itho-process—litho—etchalterna-tives)。此外。过去经常使用的牺牲体结构侧墙技术的自对准两次成型技术(self—aligned(spacer)doublepatterning)也可以归入两次曝光技术中。当然,两次曝光技术也有问题,如对套刻精度要求更苛刻和生产效率降低等问题。 (未完待续) 作者简介: 陈宝钦(1942一)男,福建人.中国 科学院微电子研究所研究员,博士生导师。 主要从事光掩模、电子束光刻、微光刻与 微纳米加工与技术的研究。 -??..-?-卜_?-..-—卜-?卜-—卜-?..。+-?卜-?卜??..-?..-—..-—-.-。+。+‘+*?卜-?—卜-—..-?卜-?..。+-—..?—-卜-?..。+-—.-?—-..-?.. 下期部分目次预告 高压I.DM()s两层金属场板的优化设计 高方块电阻发射区单晶硅太阳电池的性能优化 AlGaN/GaNHEMT器件工艺的研究进展 大孔Ti02一ZnO复合纳米材料的制备及其光催化性能一种适用于高灵敏微磁传感器的I,M()膜制备与分析 2011年1月聚苯胺纳米材料的合成与应用 基于MEMS的新型高场不对称波形离子迁移谱 纳米磁性液体合成装置的研制及其应用 基于光诱导介电泳的微粒自动化操作方法研究 MEMS集成宽町调范围滤波器的设计与制作 微纳电子枝术948卷第1期 5 万方数据

纳米材料及纳米催化剂的制备

纳米材料及纳米催化剂的制备 纳米技术是一门崭新的综合性科学技术,当物质被“粉碎”到纳米级并制成纳米材料时,不仅光、电、热、磁等性能发生变化,而且具有辐射、吸收、催化、吸附等许多新特性,可较大地改变目前的产业结构[1],纳米技术有着广阔的发展前景。 1纳米材料科学的基本原理 200年来,人们对宏观物体与微观基本粒子进行了深入的研究,发现它们虽然化学组成相同,但理化性质却相差很大,因此想象,处于宏观物质与微观粒子之间应该有一个过度状态,物质处于这个颗粒尺寸为0~100nm的过度状态即为纳米微粒(NanoParticles)和纳米团族(NanoClusters)。随着显微技术发展到扫描隧道显微镜(STM)和原子显微镜(AMF),使观察、制备、表征纳米材料成为可能,又由于处于纳米过度状态的物质与处于宏观状态的物质,在电子性质、表面性质等方面异差非常大,一门新的学科—纳米科学技术随即问世。 1.1纳米材料 纳米材料包括纳米颗粒、纳米薄膜、纳米晶体、纳米非晶体、纳米纤维、纳米块体等。纳米颗粒尺寸大于原子族,小于超细微粒,在1至100nm之间。纳米颗粒沿一维方向的排布则形成纳米丝;沿二维方向排布则形成纳米膜;沿三维方向排布则形成纳米块体。由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒经的减小,表面光滑程度较差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。这些性质恰恰满足了纳米催化材料和助剂材料所要求的其颗粒大小、表面积大小、电子性质、吸附性能和催化反应性能等。 1.2纳米材料的制备方法 1.2.1超声波震荡法制备纳米材料 例如将材料A和材料B一起加热至全部熔化,保持熔融状态,用超声波震荡粉碎,直到材料A的纳米液分散在材料B中,然后固化成纳米固体颗粒和纳米复合材料,这是一种易于人为控制、简便的制备纳米材料的方法。 1.2.2固相化学反应制备纳米材料 例如制备过渡金属超细微粒就是用这种方法。它是用固态的金属氯化物和固态的硼氢化钾(钠)一起研磨,然后在氮气气氛下200~450℃下焙烧,再经水洗得到非晶态的超细微粒。 1.2.3熔胶—凝胶法制备纳米级α-AL2O3颗粒 此方法是采用一般铝盐为材料,加入一定的添加剂形成溶胶,在溶胶中加入高氯物单体、关联剂或引发剂,在高温下经溶胶—凝胶过程形成高聚凝胶,再经1200℃热处理得到10~50nm尺寸的α-AL2O3颗粒。1.2.4沉淀法制备纳米结构的氧化物和氢氧化物[6]。此方法是使反应剂溶液喷雾雾化进入前体溶液中,以形成纳米结构的氧化物或氢化物沉淀溶液,然后对该沉淀物进行热处理,接着是声处理;或者是先声处理,接着再热处理。可得到掺杂和未掺杂的氢氧化镍、二氧化锰以及氧化钇稳定的氧化锆。可得到不寻常形态的超细结构,包括完好的圆柱体或纳米棒状物,以及氢氧化镍和二氧化锰的新结构,包括纳米结构纤维的组合、纳米结构纤维和纳米结构粒子的附聚物以及纳米结构纤维和纳米结构粒子的组合。这些纳米材料具有高渗透速率和高密度的活性部位,特别适合于作催化剂。 2纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而上文中介绍的纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例

催化剂论文

负载型金催化剂的研究及应用 化工07-3 张波 摘要讨论了有关金属催化剂的相关知识并着重介绍了负载型金催化剂的发展、常用的制备方法及应用,金催化剂的性能,展望了金催化剂的前景。 关键词负载型金催化剂制备性能应用 Supported Gold Catalysts for Research and Application chemicial engineering and technology class of 073 zhangbo Abstract This paper discusses the metal catalyst-related knowledge and highlights the development of supported gold catalysts, commonly used preparation methods and application of the performance of gold catalysts and looking forward to the prospect of the gold catalyst. Key words supported gold catalyst preparation, performance, application 1金属催化剂的概述 存在少量就能显着加速反应而不改变反应的总标准吉布斯函数变的物质称为该反应的催化剂。金属催化剂是一类重要的工业催化剂。主要包括块状催化剂,如电解银催化剂、融铁催化剂、铂网催化剂等;分散或者负载型的金属催化剂,如Pt-Re/-Al2O3重整催化剂,Ni/Al2O3加氢催化剂等。?几乎所有的金属催化剂都是过渡金属,这与金属的结构、表面化学键有关。金属适合于作哪种类型的催化剂,要看其对反应物的相容性。发生催化反应时,催化剂与反应物要相互作用。除表面外,不深入到体内,此即相容性。如过渡金属是很好的加氢、脱氢催化剂,因为H2很容易在其表面吸附,反应不进行到表层以下。但只有“贵金属”(Pd、Pt,也有Ag)可作氧化反应催化剂,因为它们在相应温度下能抗拒氧化。 2金催化剂的发展 金一直被认为是化学惰性最高的金属[1] ,由于其化学惰性和难于高分散,一般不被用来作为催化剂。但是到80年代,Haruta 发现担载在过渡金属氧化物上的金催化剂,不仅对CO 低温氧化具有很高的催化活性,而且还具有良好的抗水性、稳定性和湿度增强效应[2 ,3 ] , 另一方面, 作为一种贵金属催化剂, 金催化剂具有商业化的经济优势,致使人们对其催

纳米加工技术

纳米加工技术 学院 学号 姓名 日期

纳米技术的背景 纳米技术是一门方兴未艾的学科和领域。纳米技术的迅猛发展在21世纪将对人类社会的文明进步及社会的发展起到极其重要的作用,可能将带来第五次技术革命。世界各发达国家都在为这个21世纪的基础技术抢占科技战略制高点。纳米技术的强大生命力在于纳米效应(如量子效应、巨大的表面和界面效应等),它能使物质的许多性能发生质变,而实现纳米效应的关键首先是具有纳米结构,任何纳米技术均须依赖通过纳米加工技术将物体加工至纳米尺度。因此,纳米结构加工技术是整个纳米技术的核心基础,是当前世界科学研究巫待解决的难题之一。 纳米技术的定义 所谓纳米技术通常指纳米级(0.1nm~100nm)的材料、设计、制造、测量、控制和产品的技术.纳米技术主要包括纳米级精度和表面形貌的测量;纳米级表层物理、化学、机械性能的检测;纳米级精度的加工和纳米级表层的加工一一原子和分子的去除、搬迁和重组;纳米材料;纳米级微传感器和控制技术;微型和超微型机械;微型和超微型机电系统;纳米生物学等;纳米加工技术是纳米技术的一个组成部分纳米加工的含义是达到纳米级精度(包括纳米级尺寸精度,纳米级形位精度和纳米级表面质量)的加工技术. 纳米加工技术的特点 众所周知,欲得到1纳米的加工精度,加工的最小单位必然在亚微米级。由于原子间的距离为0.1-0.3nm,纳米级加工实际已到加工的极限。纳米级加工是将试件表面的一个个原子或分子作为直接的加工对象,所以,纳米级加工的物理实质就是要切断原子间的结合。实现原子或分子的去除。而各种物质是以共价键、金属键、离子键或分子结构的形式结合而组成,要切断原子间的结合需要很大的能量密度。在机械加工中,工具材料的原子间结合能必须大于被加工材料的原子间结合能。而传统的切削、磨削加工消耗的能量较小,实际上是利用原子、分子或晶体间连接处的缺陷而进行加工的,但想要切断原子间的结合就相当困难的。因此,纳米加工的物理实质与传统的切削、磨削加工有很大区别。直接利用光子、电子、离子等基本能子的加工是纳米级加工的主要方向和主要方法。 纳米级加工精度

纳米催化剂简介

纳米催化剂简介 摘要 催化剂的作用主要可归结为三个方面:一是提高反应速度,增加反应效率;二是决定反应路径,有优良的选择性,例如只进行氢化、脱氢反应,不发生氢化分解和脱水反应;三是降低反应温度。纳米粒子作为催化剂必须满足上述的条件。近年来科学工作者在纳米微粒催化剂的研究方面已取得一些结果,显示了纳米粒子催化剂的优越性。 纳米微粒由于尺寸小,表面所占的体积百分数大,表面的键态和电子态与颗粒内部不同,表面原子配位不全等导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。最近,关于纳米微粒表面形态的研究指出,随着粒径的减小,表面光滑程度变差,形成了凸凹不平的原子台阶,这就增加了化学反应的接触面。有人预计超微粒子催化剂在下一世纪很可能成为催化反应的主要角色。尽管纳米级的催化剂还主要处于实验室阶段,尚未在工业上得到广泛的应用,但是它的应用前途方兴未艾。 关键词:性质,制备,典型催化剂,表征技术,应用,

目录 绪论-----------------------------------------------------------1 1. 纳米催化剂性质----------------------------------------------1 1.1 纳米催化剂的表面效应-------------------------------------1 1.2 体积效应-------------------------------------------------1 1.3 量子尺寸效应---------------------------------------------1 2. 纳米催化剂的制备--------------------------------------------2 2.1 溶胶凝胶法-----------------------------------------------2 2.2 浸渍法---------------------------------------------------2 2.3 沉淀法---------------------------------------------------3 2.4 微乳液法-------------------------------------------------3 2.5 离子交换法-----------------------------------------------3 2.6 水解法---------------------------------------------------3 2.7 等离子体法----------------------------------------------3 2.8 微波合成法-----------------------------------------------4 2.9 纳米材料制备耦合技术-------------------------------------4 3. 几种典型催化剂----------------------------------------------4 3.1 纳米金属粒子催化剂---------------------------------------4 3.2 纳米金属氧化物催化剂-------------------------------------5 3.3 纳米半导体粒子的光催化-----------------------------------5 3.4 纳米固载杂多酸盐催化剂-----------------------------------5 3.5 纳米固体超强酸催化剂-------------------------------------6 3.6 纳米复合固体超强酸催化剂---------------------------------6 3.7 磁性纳米固体酸催化剂-------------------------------------6 3.8 碳纳米管催化剂-------------------------------------------7 3.9 其它纳米催化剂-------------------------------------------7 4. 纳米催化剂表征技术------------------------------------------7

相关主题
文本预览
相关文档 最新文档