当前位置:文档之家› 正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳
正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳

Pleasure Group Office【T985AB-B866SYT-

●高考明方向

掌握正弦定理、余弦定理,

并能解决一些简单的三角形度量问题.

★备考知考情

1.利用正、余弦定理求三角形中的边、角问题是高考

考查的热点.

2.常与三角恒等变换、平面向量相结合出现在解答题

中,综合考查三角形中的边角关系、三角形形状的

判断等问题.

3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62

知识点一 正弦定理

(其中R 为△ABC 外接圆的半径)

变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222=

==a b c A B C R R R

变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充)

关于边的齐次式或关于角的正弦的齐次式

均可利用正弦定理进行边角互化。

知识点二 余弦定理

222

222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=??

b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充)

(1)关于边的二次式或关于角的余弦

均可考虑利用余弦定理进行边角互化。

(2)勾股定理是余弦定理的特例

(3)在?ABC 中,222090??

<+?<

用于判断三角形形状

《名师一号》P63问题探究 问题3

判断三角形形状有什么办法

判断三角形形状的两种途径:

一是化边为角;

二是化角为边, 并常用正弦(余弦)定理实施边、角转换.

知识点三 三角形中常见的结论

△ABC 的面积公式有:

①S =12

a ·h (h 表示a 边上的高); ②S =12a

b sin C =12a

c sin B =12bc sin A =abc 4R

--知两边(或两边的积)及其夹角可求面积

③S =12

r (a +b +c )(r 为内切圆半径). (补充)

(1)++=A B C π

(2)在三角形中大边对大角,大角对大边.

(3)任意两边之和大于第三边,

任意两边之差小于第三边.

(4)有关三角形内角的常用三角函数关系式

sin()sin ,cos()cos ,tan()tan sin cos ,cos sin 2222

+=+=-+=-++==B C A B C A B C A B C A B C A 利用++=A B C π及诱导公式可得之

(5)在△ABC 中的几个充要条件:

《名师一号》P63问题探究 问题4

sin A >sin B a 2R >b 2R

a >

b A >B . (补充) cos cos A B A B >?< 若R ∈、αβ

或2k απβπ=-+(k Z ∈)

或2k αβπ=-+(k Z ∈)

《45套》之7--19

(6)锐角△ABC 中的常用结论

?ABC 为锐角三角形?02<<

、、A B C π

4.解斜三角形的类型

《名师一号》P63问题探究问题1

利用正、余弦定理可解决哪几类问题

在解三角形时,

正弦定理可解决两类问题:

(1)已知两角及任一边,求其它边或角;

(2)已知两边及一边的对角,求其它边或角.

情况(2)中结果可能有一解、二解、无解,

应注意区分.

余弦定理可解决两类问题:

(1)已知两边及夹角或两边及一边对角的问题;

(2)已知三边问题.

a b A)

(补充)已知两边和其中一边的对角(如,,

用正弦定理或余弦定理均可

《名师一号》P63问题探究问题2

选用正、余弦定理的原则是什么

若式子中含有角的余弦或边的二次式,

要考虑用余弦定理;

若遇到的式子中含有角的正弦或边的一次式时,

则考虑用正弦定理;

以上特征都不明显时,则要考虑两个定理都有可能用到.

补充:

一、正弦定理推导必修5

证明思路:

转化到特殊情形----直角三角形中

二、余弦定理推导必修5

2011年陕西高考考查余弦定理的证明

18.(本小题满分12分)

叙述并证明余弦定理。

2222cos

a b c bc A

=+-,

2222cos

b c a ca B

=+-,

2222cos

c a b ab C

=+-.

证明:(证法一)如图,2c BC

=

()()

AC AB AC AB

=-?-

即2222cos

a b c bc A

=+-

同理可证2222cos

b c a ca B

=+-,

(证法二)已知ABC

?中,,,

A B C所对边分别为

,,,

a b c,以A为原点,AB所在直线为x轴建立直角坐标

系,则(cos,sin),(,0)

C b A b A B c,

222222222 ||(cos)(sin)cos2cos sin

a BC

b A

c b A b A bc A c b A

==-+=-++

222cos

b c bc A

=+-,

即2222cos

a b c bc A

=+-

同理可证 2222cos b c a ca B =+-,

二、例题分析:

(一)利用正、余弦定理解三角形

例1.(1)《名师一号》P62 对点自测1

在△ABC 中,A =60°,B =75°,a =10,则c 等于

( )

A .5 2

B .10 2 D .5 6

解析 由A +B +C =180°,知C =45°,

由正弦定理得:a sin A =c sin C

. 即1032=c 2

2

. ∴c =1063. 注意:

已知两角及任一边,求其它边或角

----正弦定理,解唯一

例1.(2)《名师一号》P62 对点自测2

在△ABC 中,若a =3,b =3,A =π3

, 则C 的大小为________.

解析 由正弦定理可知

sin B =b sin A a =3sin π33=12

, 所以B =π6或5π6

(舍去),

(因为a >b 即A =π3> B 所以B =π6

) 所以C =π-A -B =π-π3-π6=π2

. 一解!

变式1: 在△ABC 中,若b =3,a =3,A =π3

, 则C 的大小为________.

答案: sin B >1

无解!

变式2:

在ABC ?

中,已知45?==

=a b B , 解ABC ?.

答案:60,75,

??+

===A C c 或120,15,2

??-===A C c 两解!

变式3:求边c

注意:

知道两边和其中一边的对角(如,,a b A )解三角形 可用正弦定理先求出角B 也可用余弦定理先求出边c 再求解。两种方法均须注意解的个数!

可能有一解、二解、无解,应注意区分.

练习:(补充)

(2009山东文17)已知函数

x x x x f sin sin cos 2cos sin 2)(2

-+=?? ππ?=<

(I )求?的值; (Ⅱ)在ABC ?中,c b a ,,分别是角A ,B ,C 的对

边,已知,2

3)(,2,1=

==A f b a 求角C 。 【解析】 (Ⅰ)f(x)=2sinx 1cos cos sin sin 2

x x ??++- =sin(x+?).

因为 f(x)在x =π时取最小值,

所以 sin(π+?)=-1,故 sin ?=1.

又 0<?<π,所以?=2

π, (Ⅱ)由(Ⅰ)知f(x)=sin(x+2

π)=cosx. 因为f(A)=cosA=32

,且A 为△ABC 的角, 所以A =6

π.

由正弦定理得 sinB =sin b A a

又b >a , 当4π=B 时,,12

746πππππ=--=--=B A C 当43π=B 时,.12

436πππππ=--=--=B A C 综上所述,12127ππ==C C 或例2. (补充)

若满足条件060=C ,a BC AB ==

,3

的ABC ?有两个,求a 的取值范围.

2<

注意:判断三角形解的个数常用方法:

(1)在ABC ?中,已知,,A a b 。构造直角三角形判断

(2)利用余弦定理判断(一元二次方程正根个数) 勿忘大边对大角判断

已知两边及其中一边对角,

判断三角形解的个数的方法:

①应用三角形中大边对大角的性质

以及正弦函数的值域判断解的个数.

②在△ABC 中,已知a 、b 和A ,

以点C 为圆心,以边长a 为半径画弧,

此弧与除去顶点A 的射线AB 的公共点的个数

即为三角形的个数,解的个数见下表:

图示已知a 、b 、A ,△ABC 解的情况.

(ⅰ)A 为钝角或直角时解的情况如下:

(ⅱ)A 为锐角时,解的情况如下:

③运用余弦定理转化为关于一元二次方程

正根个数问题

练习:

已知ABC ?中,若22,2==b a ,

且三角形有两解,求角A 的取值范围。

答案:由条件知b sin A

∴sin A <2

2,

∵a

∴A 为锐角,∴0

4.

例3.(1)《名师一号》P62 对点自测3

在△ABC 中,a =3,b =1,c =2,则A 等于(

) A .30° B .45° C .60° D .75°

解析 由余弦定理得:

cos A =b 2

+c 2-a 22bc =1+4-

32×1×2=1

2,

∵0<A <π,∴A =60°.

注意:

已知三边,求其它边或角

---余弦定理

例3.(2)《名师一号》P63 高频考点 例1(2)

(2014·新课标全国卷Ⅱ)钝角三角形ABC 的面积是12

,AB =1,BC =2,则AC =( ) A .5 C .2 D .1

解:由题意知S △ABC =12

AB ·BC ·sin B , 即12=12×1×2sin B ,解得sin B =22

, ∴B =45°或B =135°.

当B =45°时,AC 2=AB 2+BC 2-2AB ·BC ·cos B

=12+(2)2-2×1×2×22

=1. 此时AC 2+AB 2=BC 2,△ABC 为直角三角形,

不符合题意;

当B =135°时,AC 2=AB 2+BC 2-2AB ·BC ·cos B

=12+(2)2-2×1×2×? ??

??-22=5,解得AC = 5. 符合题意.故选B.

注意:

已知两边夹角,求其它边或角

---余弦定理

小结:

已知与待求涉及三边和一角的关系

---余弦定理

例4.(1)《名师一号》P63 高频考点 例1(1)

(2014·江西卷)在△ABC中,内角A,B,C所对的边

分别是a,b,c,若3a=2b,则2sin2B-sin2A

sin2A的值为

()

A.-1

9 C.1

解:∵3a=2b,

∴由正弦定理得a

b=

sin A

sin B=

2

3.

∴sin2A

sin2B=4 9,

∴2sin2B-sin2A

sin2A=2×

sin2B

sin2A-1

=2×9

4-1=

9

2-1=

7

2.

例4.(2)《名师一号》P62 对点自测已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为__________.解析∵a2+b2-c2=-3ab,

∴cos C=a2+b2-c2

2ab=-

3

2,

故C=150°为三角形的最大内角.

注意:

(1)关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化。

(2)关于边的二次式或关于角的余弦

均可考虑利用余弦定理进行边角互化.

注意等价转换!!!

练习:

(2010·天津理)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A =()

A.30° B.60° C.120° D.150°

解:由余弦定理得:cos A=b2+c2-a2

2bc,

由题知b2-a2=-3bc,c2=23bc,则cos A=

3 2,

又A∈(0°,180°),∴A=30°,故选A.

注意:

已知三边比例关系

---余弦定理

(二)三角形的面积

例1.(1)《名师一号》P62 对点自测6

(2014·福建卷)在△ABC中,A=60°,AC=4,BC=23,则△ABC的面积等于________.解析由题意及余弦定理得

cos A=b2+c2-a2

2bc=

c2+16-12

2×4×c

1

2,解得c=2.

所以S=1

2bc sin A=

1

2×4×2×sin60°=2 3.

故答案为2 3.

注意:

知道两边和其中一边的对角(如,,a b A )解三角形可用正弦定理先求出角B 也可用余弦定理先求出边c 再求解。两种方法均须注意解的个数!

本例用余弦求边更快捷.

例1.(2)《名师一号》P63 高频考点 例3

(2014·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .

(1)求角C 的大小;

(2)若sin A =45

,求△ABC 的面积. 解:(1)由题意得1+cos2A 2-1+cos2B 2

=32sin2A -32sin2B , 即32sin2A -12cos2A =32sin2B -12

cos2B , sin ? ????2A -π6=sin ? ??

??2B -π6. 由a ≠b ,得A ≠B ,又A +B ∈(0,π).

得2A -π6+2B -π6

=π, 即A +B =2π3,所以C =π3

.

(2)由c=3,sin A=4

5,

a

sin A=

c

sin C,得a=

8

5.

由a

故sin B=sin(A+C)

=sin A cos C+cos A sin C=4+33

10.

所以△ABC的面积为S=1

2ac sin B=

83+18

25.

【规律方法】三角形面积公式的应用原则

(1)对于面积公式S=1

2ab sin C=

1

2ac sin B=

1

2bc sin A,

一般是已知哪一个角就使用哪一个公式.

(2)与面积有关的问题,

一般要用到正弦定理或余弦定理进行边和角的转化.

(三)三角形形状的判定

例1.(1)《名师一号》P63 高频考点例2

在△ABC中a,b,c分别为内角A,B,C的对边,且2a sin A=(2b+c)sin B+(2c+b)sin C.

(1)求A的大小;

(2)若sin B+sin C=1,试判断△ABC的形状.

解:(1)由已知,根据正弦定理得

2a2=(2b+c)·b+(2c+b)c,即a2=b2+c2+bc.

由余弦定理得a2=b2+c2-2bc cos A,

故cos A =-12

,∵0

sin 2A =sin 2B +sin 2C +sin B sin C =34

. 又sin B +sin C =1,解得sin B =sin C =12

. ∵0°

故B =C =30°,A =120°.

∴△ABC 是等腰钝角三角形.

法二:因为A =120°,且A +B +C=180°

所以sin B +sin C =1即sin (60°-C )+sin C =1 可求得C=30°

例1.(2)(补充)

根据所给条件,判断△ABC 的形状.

1)若a cos A =b cos B ,则△ABC 形状为________.

2)若a cos A =b cos B =c cos C

,则△ABC 形状为________. 解析:(1) 解法一: 由正弦定理得

sinA cos A =sinB cos B 即sin2A =sin2B

22A B ∴= 或 22A B π=-

A B ∴= 或 2

A B π+= ∴△ABC 是等腰三角形或直角三角形.

解法二:

由余弦定理得

a cos A =

b cos Ba ·(b 2+

c 2-a 22bc )=b ·(a 2+c 2-b 2

2ac

) a 2c 2-a 4-b 2c 2+b 4=0,

∴(a 2-b 2)(c 2-a 2-b 2)=0

∴a 2-b 2=0或c 2-a 2-b 2=0

∴a =b 或c 2=a 2+b 2

∴△ABC 是等腰三角形或直角三角形.

(2)由正弦定理得sin A cos A =sin B cos B =sin C cos C

即tan A =tan B =tan C ,

∵A 、B 、C ∈(0,π),∴A =B =C ,

∴△ABC 为等边三角形.

注意:利用正、余弦定理进行边角互化

(1)关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化。

(2)关于边的二次式或关于角的余弦

均可考虑利用余弦定理进行边角互化。

【规律方法】

依据已知条件中的边角关系判断三角形的形状时, 主要有如下两种方法:

(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.

(2)利用正、余弦定理把已知条件转化为内角的三角

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

正余弦定理题型总结(全)

平面向量题型归纳(全) 题型一:共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( )A.→ →b a ,方向相 同 B. → →b a ,两向量中至少有一个为零向量 C.存在 ,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→ →b a λλλλ 变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→→→→=+b a b a _则→→⊥b a B. 若→→⊥b a ,则→ →→→=+b a b a _ C. 若→ →→→ =+b a b a _,则存在实数λ,使得 →→ =a b λ D 若存在实数λ,使得→ →=a b λ,则 → →→→ =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。 变式一:设→ → 21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。 变式二:已知向量→ →b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 题型二:线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2+=则( ) A. += B. += C. += D. ++= 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么( )A. A =

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

新课标高考数学题型全归纳正余弦定理常见解题类型典型例题

正余弦定理常见解题类型 1. 解三角形 正弦定理常用于解决以下两类解斜三角形的问题:①已知两角和任一边,求其他两边和一角;②已知两边和其中一边的对角,求另一边的对角及其他的边和角. 余弦定理常用于解决以下两类解斜三角形的问题:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角. 例1 已知在ABC △中,4526A a c ∠===,,,解此三角形. 解:由余弦定理得22(6)26cos 454b b +-=, 从而有31b =±. 又222(6)222cos b b C =+-?, 得1cos 2 C =±,60C ∠=或120C ∠=. 75B ∴∠=或15B ∠=. 因此,31b =+,60C ∠=,75B ∠= 或31b =-,120C ∠=,15B ∠=. 注:此题运用正弦定理来做过程会更简便,同学们不妨试着做一做. 2. 判断三角形的形状 利用正余弦定理判断三角形的形状主要是将已知条件中的边、角关系转化为角的关系或

边的关系,一般的,利用正弦定理的公式2sin 2sin 2sin a R A b R B c R C ===,,,可将边转化为角的三角函数关系,然后利用三角函数恒等式进行化简,其中往往用到三角形内角和定理: A B C ++=π;利用余弦定理公式222222 cos cos 22b c a a c b A B bc ac +-+-==,, 222 cos 2a b c C ab ++=,可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题. 例2 在ABC △中,若2222sin sin 2cos cos b C c B bc B C +=,判定三角形的形状. 解:由正弦定理2sin sin sin a b c R A B C ===,为ABC △外接圆的半径, 可将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =, sin sin 0B C ≠∵, sin sin cos cos B C B C ∴=,即cos()0B C +=. 90B C ∴+=,即90A =,故ABC △为直角三角形. 3. 求三角形中边或角的范围 例3 在ABC △中,若3C B ∠=∠,求c b 的取值范围. 解: A B C ∠+∠+∠=π,4A B ∴∠=π-∠. 04B π∴<∠<.可得210sin 2 B <<. 又2sin sin 334sin sin sin c C B B b B B ===-∵, 2134sin 3B ∴<-<.故13c b <<. 点评:此题的解答容易忽视隐含条件B ∠的范围,从而导致结果错误.因此,解此类问题应注意挖掘一切隐含条件. 4. 三角形中的恒等式证明 根据所证等式的结构,可以利用正、余弦定理化角为边或角的关系证得等式. 例4 在ABC △中,若2()a b b c =+,求证:2A B =. 证明:2222cos 2222a c b bc c b c a B ac ac a b +-++====∵, 222222 22222cos 22cos 1214222a a b b bc b c b B B b b b b -+--∴=-=?-===.

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形 [解题过程] 在△ABC 中,C =180°-(A +B ) =180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24 根据正弦定理: a =c sin A sin C =2sin 60°sin 75°=2×3 2 2(3+1)4=6(3-1)=32- 6, b = c sin B sin C =2sin 45° sin 75°=2× 222(3+1) 4 =2(3-1). [题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是: (1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况, ∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边 c. 1.(1)已知A =45°,B =30°,c =10.求b . (2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64, ∴b =c sin B sin C =10×sin 30° sin 105°=10× 122+64 =5(6-2). (2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c sin C , ∴c =b sin C sin B =22×sin 30°sin 45°= 22×12 2 2 =2. 在△ABC 中,A =60°,a =43,b =42,解三角形.

《正弦定理和余弦定理》典型例题

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A =,30C =,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =, ∴sin 10sin 45102sin sin 30c A a C ?= == ∴ 180()105B A C =-+=, 又sin sin b c B C =, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ?= ===?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60 o o a =,∴56a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ?= ==中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

正余弦定理题型归类

高二数学《正余弦定理》知识与题型总结 1、 正弦定理:_________=_________=_________=2R (R 为____________) 变形:________a =;________b =;________c = sinA :sinB:sinC ______________ = 2、 余弦定理:2 ______________a =;2 ______________b =;2 ______________c = 变形:cos ________________A =;cosB ________________=;cosC ________________= 3、 三角形面积公式: (1)12S a h =g (2)1 sin _________________________2S ab C === (3)1 ()2 S r a b c =++(r 为内切圆半径) 4、常用公式及结论: (1)倍角公式:sin 2__________α=; cos 2_______________________________________α=== tan 2____________α= 降幂公式:2 sin ____________α=;2 cos ____________α= (2)在ABC ?中,sin()sinC A B +=;cos()cosC A B +=-;tan()tanC A B +=-; (3)在ABC ?中,最小角的范围为0, 3π?? ?? ? ;最大角的范围为,3ππ???? ?? ; (4)在ABC ?中,A B C sinA sinB sinC >>?>>; (5)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b c b a c A B C A B C B A C a b c A B C +++===== +++++= ++。 类型一:正余弦定理的综合应用 1.在△ABC 中,4a b =,= 30A ?=,则角B 等于( ). A .30° B .30°或150° C .60° D .60°或120° 2.在△ABC 中,三内角A ,B ,C 成等差数列,b =6,则△ABC 的外接圆半径为( ) 3.在ABC ?中,角,,A B C 的对边分别为,,a b c ,向量,(cos ,sin )n A A =v , 若m n ⊥u v v ,且cos cos sin a B b A c C +=,则角A ,B 的大小为( ). 4.在ABC ?中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+. ) 5.ABC ?各角的对应边分别为c b a ,,,满足 ,则角A 的范围是( ) A 6.在△ABC 中,内角A,B,C ,C B sin 3sin 2=, =( ) A 7.在△ABC 中,内角A , B , C 的对边分别为a ,b ,c.,且b a >,则∠B =( ) A 8.在△ABC 中,根据下列条件解三角形,则其中有两个解的是 A .0 75,45,10===C A b B .0 80,5,7===A b a C .0 60 ,48,60===C b a D . 45,16,14===A b a 9.已知ABC ?中,a b 、分别是角A B 、所对的边,且()0,2,a x x b A =>==60°,若三角形有两解,则 x 的取值范围是( ) A 、02x << C

最全正余弦定理题型归纳.

正弦定理和余弦定理 一、题型归纳 〈一>利用正余弦定理解三角形 【例1】在△ABC中,已知a=3,b=2,B=45°,求A、C和c。【例2】设ABC ?的内角A、B、C的对边长分别为a、b、c,且32b+32c-32a2b c. (Ⅰ)求sinA的值;(Ⅱ)求2sin()sin() 44 1cos2 A B C A ππ +++ - 的值。 【练习1】 (2011·北京)在△ABC中,若b=5,∠B=错误!,tan A=2,则sin A=________;a=________. 【练习2】在△ABC中,a、b、c分别是角A、B、C的对边,且\f(cos B,cosC)=-错误!. (1)求角B的大小;

(2)若b =错误!,a +c =4,求△AB C的面积. 〈二〉利用正余弦定理判断三角形的形状 【例3】1、在△ABC 中,若(a2+b 2)sin (A -B )=(a 2-b2)sin C ,试判断△AB C的形状. 2、在△AB C中,在ABC ?中,a,b,c 分别是角A 、B 、C 所对的边,bcosA=a c os B,则ABC ?三角形的形状为__________________ 3、在△ABC 中,在ABC ?中,a,b,c 分别是角A 、B、C 所对的边,若c os AcosB =\f(b,a ) , 则ABC ?三角形的形状为___________________ 【练习】1、在△ABC 中,2cos 22A b c c +=(,,a b c 分别为角,,A B C 的对边),则△AB C的形状为( ) A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D、等腰直角三角形 2、已知关于x 的方程22cos cos 2sin 02 C x x A B -?+=的两根之和等于两根之积的一半,则ABC ?一定是() A、直角三角形B、钝角三角形C 、等腰三角形D 、等边三角形 3、在△ABC 中,2222()sin()()sin()a b A B a b A B +-=-+,则△ABC 的

正弦定理和余弦定理知识点总结附答案

高频考点一 利用正弦定理、余弦定理解三角形 例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 (2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2 =b 2 +2bc ,则三内角A ,B ,C 的度数依次是________. (3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1 2 , C =π6 ,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6× 2 2 =3,∴b sin A

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2 D .2<x <23 (2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1 解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2 <1, 可得x <22, ∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2 -2x +1=0, ∴x =1,即AB =1. 高频考点二 和三角形面积有关的问题 例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π 4 , b 2-a 2=12 c 2. (1)求tan C 的值; (2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2 =12 c 2及正弦定理得

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

最全正余弦定理题型归纳

正弦定理和余弦定理 、题型归纳 < 一>利用正余弦定理解三角形 【例1】在^ ABC中,已知 a = J3, b=J2,B=45 ° ,求 A C 和c. 【例2】设的内角A B、C的对边长分别为a、b、c,且3+3-3=4b c . (I )求sinA的值; ( n )求的值. n 【练习 1】(2011 ?北京)在^ ABC中,若b= 5,Z B=_4, tan A= 2, 则 sin A= ;a= cos B 【练习2】在厶ABC中, a、b、c分别是角A B、c的对边'且cosE b 2a+ c" (1)求角B的大小; ⑵若b=品,a + c= 4,求^ ABC勺面积.

<二 >利用正余弦定理判断三角形的形状 【例 3】1、在^ABC 中,若(a 2+ b 2)sin( A — B)= (a 2— b 2)sin C,试判断△ ABC 的形状. 2、在^ ABC 中,在 ABC 中,a,b,c 分别是角 A B 、C 所对的边,bcosA =a COSB,则ABC 三角形的形状为 cosA 3、<△ ABC 中,在 ABC 中, a ,b ,c 分别是角 A B C 所对的边,若CosA 则ABC 三角形的形状为 2 A b c 【练习】1、在^ABC 中, cos - £( a,b,c 分别为角A,B,C 的对边), 则^ ABC 的形状为() A 、正三角形 B 、直角三角形 C 、等腰三角形或直角三角形 D 等腰直角三角形 的形状为 2、已知关于x 的方程 于两根之积的一半,则 A 、直角三角形 B 边三角形 3、在^ ABC 中,(a 2 2 . 2 C x xcosA cos B 2sin ~ 0的两根之和等 ) C 、等腰三角形 D 、等 ABC —定是 ( 、钝角三角 b 2)s in (A B) (a 2 b 2)sin( A B),则△ ABC

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

正弦定理余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =

相关主题
文本预览
相关文档 最新文档