当前位置:文档之家› 流式细胞仪基本原理,技术要点及应用

流式细胞仪基本原理,技术要点及应用

流式细胞仪的原理和用途

流式细胞仪(FlowCytometry) 1 流式细胞仪得概念及其发展历史 1。1 流式细胞仪得基本概念流式细胞仪(flow cytonletry,FCM)就是对高速直线流动得细胞或生物微粒进行快速定量测定与分析得仪器,主要包括样品得液流技术、细胞得计数与分选技术,计算机对数据得采集与分析技术等。流式细胞仪以流式细胞术为理论基础,就是流体力学、激光技术、电子工程学、分子免疫学、细胞荧光化学与计算机等学科知识综合运用得结晶。流式细胞术就是一种自动分析与分选细胞或亚细胞得技术。其特点就是:测量速度快、被测群体大、可进行多参数测量,即对同一个细胞做有关物理、生物化学特性得多参数测量,且在统计学上有效。 1。2 流式细胞仪得发展简史最早得流式细胞仪雏形诞生于1934年,Moldavan提出使悬浮得单个血红细胞流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置测量得设想。1953年Crosland-Taylor根据牛顿流体在圆形管中流动规律设计了流动室。其后又经过Coulter、Parker & Horst、Kamentsky、Gohde、Fulwyler、Herzenberg等人得不断改进,设计了光电检测设备与细胞分选装置、完成了计算机与流式细胞仪得物理连接及多参数数据得记录与分析、开创了细胞得免疫荧光染色及检测技术、推广流式细胞仪在临床上得应用。近20年来,随着流式细胞仪及其检测技术得日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面得工作,以扩大FCM得应用领域与使用效果。 宋平根得《流式细胞术得原理与应用》就是迄今为止对流式细胞仪及其技术阐述得最为详尽与透彻得中文著作.这本书非常详细地介绍了流式细胞术得历史、结构、原理、技术指标等,例举了其在医学与生物工程中得应用,非常适合从事此方面专业研究得人。由于这本书就是13年前出版得,所以基本上没有涉及植物流式细胞仪检测技术。此外对于只需要对流式细胞仪有些基本认识得人士来说,这本书太复杂太深奥。谢小梅主要介绍了流式细胞仪在生物工程中得应用。杨蕊概括了流式细胞仪得工作原理,简单提及了流式细胞仪得应用。本文在分析这三篇论著或文章得优缺点后,用比较通俗得语言介绍了掌握流式细胞仪检测技术必须了解得一些原理,并对目前市场上得主流型号进行了客观得性能概括。 2 流式细胞仪得工作原理与技术指标 2。1 流式细胞仪工作原理除电源外,流式细胞仪主要由四部分组成:流动室与液流系统:激光源与光学系统;光电管与检测系统;计算机与分析系统,其中流动室就是仪器得核心部件。这四大部件共同完成了信号得产生、转换与传输得任务. 流动室与液流系统

流式细胞仪的原理及应用

山西大学研究生学位课程论文(2013 ---- 2014 学年第一学期) 学院(中心、所):生物技术研究所 专业名称:微生物学 课程名称: 论文题目:流式细胞仪的原理及其应用 授课教师(职称):崔晓东 研究生姓名:常姣 年级:研一 学号:201323001003 成绩: 评阅日期: 山西大学研究生学院 年月日

流式细胞仪的原理及其应用 姓名常姣专业微生物学 摘要本文简要论述了流式细胞仪( flowcyt ometry, FCM) 的工作原理, 并对其某些科学领域研究中的应用进行阐述, 包括在生物学、免疫学、临床学中的研究应用。 关键词 FMC;生物学;免疫学;临床学 流式细胞仪( fl o w c y to me tr y, F CM) 研制、发展、革新和应用领域的扩展,都是由生物学、生物技术、计算机科学、电子工程学、流体力学、激光技术、分子生物学、有机化学和物理学等多个学科综合发展和应用而实现的。近代流式细胞仪,由于单克隆抗体技术、定量细胞化学和定量荧光细胞化学的应用,使其在生物学、临床医学等众多研究领域的应用愈来愈广泛和重要,尤其在生物学中对细胞周期的动力学分析、细胞因子、细胞凋亡、信号传导、R N A / D N A 的分析、细胞表面受体及特异性抗原的分析等领域发挥着独特作用,具有操作简单、分析精确、重复性好、费用低廉、分析速度快等优点。 1流式细胞仪的构成及工作原理 流式细胞仪主要由液流系统、光学系统、电子系统、分析系统和细胞分选系统五个部分组成。将待测细胞制成单细胞悬液, 经荧光染料染色后加入样品管, 在一定气体压力下待测样品被压入流动室。待测细胞在鞘液的包裹下单行排列, 依次通过检测区, 被荧光染料染色的细胞受到强烈的激光照射后, 产生散射光和荧光信号。这两种信号同时被前向光电二极管和90°方向的光电倍增管(PMT) 接收。散射光分为前向角散射(forwardscatter, FSC) 和侧向角散射(sidescatter, SSC) 。前者主要反映被测细胞的大小, 后者主要反映被测细胞的胞质、胞膜、核膜的折射等, 以及细胞内颗粒的性状。光信号通过波长选择通透性滤片后, 经光电倍增管接收后转为电信号, 再经数/模转换器转换为可被计算机识别的数学信号, 以一维直方图或二维点阵图及数据表或三维图形显示出来[1,2]。 流式细胞仪还可以对分析中的目的细胞进行分选, 它是通过分离含有单细胞的液滴而实现的。流动室的喷嘴上安装有超高频的压电晶体, 可以产生高频振荡, 使液流断裂为均匀的液滴, 待测细胞就包含在液滴之中。将这些液滴充上正或负电荷, 当带电液滴通过电场, 便会在电场的作用下发生偏转, 然后落入相应的收集器中, 从而实现细胞分选[2]。 2流式细胞仪的应用 流式细胞术的应用,简单用一句话概括就是,凡能被荧光分子标记的细胞或微粒均能用流式细胞仪检测。其中细胞生物学领域是流式细胞术在基础研究中应用范围最广泛的领域,因为最初这个技术就是为此目的而设计的。 2.1流式细胞仪在生物学中的应用 流式细胞仪在生物学中的应用越来越广泛,如在细胞生物学、细胞遗传学、分子生物学、神经生物学、微生物学、分子免役学、植物学等等许多生物学基础学科的应用和在细胞凋亡、细胞周期调控、细胞因子及细胞分型等研究中的应用[3]。 2.1.1 对凋亡细胞的分析 细胞凋亡是生物体生长发育过程中出现的正常现象, 在生物体形态构成、正常细胞更替以及维持

自己总结:流式细胞仪的原理和用途

流式细胞仪(Flow Cytometry) 1 流式细胞仪的概念及其发展历史 1.1 流式细胞仪的基本概念流式细胞仪(flow cytonletry,FCM)是对高速直线流动的细胞或生物微粒进行快速定量测定和分析的仪器,主要包括样品的液流技术、细胞的计数和分选技术,计算机对数据的采集和分析技术等。流式细胞仪以流式细胞术为理论基础,是流体力学、激光技术、电子工程学、分子免疫学、细胞荧光化学和计算机等学科知识综合运用的结晶。流式细胞术是一种自动分析和分选细胞或亚细胞的技术。其特点是:测量速度快、被测群体大、可进行多参数测量,即对同一个细胞做有关物理、生物化学特性的多参数测量,且在统计学上有效。 1.2 流式细胞仪的发展简史最早的流式细胞仪雏形诞生于1934年,Moldavan提出使悬浮的单个血红细胞流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置测量的设想。1953年Crosland-Taylor根据牛顿流体在圆形管中流动规律设计了流动室。其后又经过Coulter、Parker & Horst、Kamentsky、Gohde、Fulwyler、Herzenberg等人的不断改进,设计了光电检测设备和细胞分选装置、完成了计算机与流式细胞仪的物理连接及多参数数据的记录和分析、开创了细胞的免疫荧光染色及检测技术、推广流式细胞仪在临床上的应用。近20年来,随着流式细胞仪及其检测技术的日臻完善,人们越来越致力于样品制备、细胞标记、软件开发等方面的工作,以扩大FCM的应用领域和使用效果。 宋平根的《流式细胞术的原理和应用》是迄今为止对流式细胞仪及其技术阐述的最为详尽和透彻的中文著作。这本书非常详细地介绍了流式细胞术的历史、结构、原理、技术指标等,例举了其在医学和生物工程中的应用,非常适合从事此方面专业研究的人。由于这本书是13年前出版的,所以基本上没有涉及植物流式细胞仪检测技术。此外对于只需要对流式细胞仪有些基本认识的人士来说,这本书太复杂太深奥。谢小梅主要介绍了流式细胞仪在生物工程中的应用。杨蕊概括了流式细胞仪的工作原理,简单提及了流式细胞仪的应用。本文在分析这三篇论著或文章的优缺点后,用比较通俗的语言介绍了掌握流式细胞仪检测技术必须了解的一些原理,并对目前市场上的主流型号进行了客观的性能概括。 2 流式细胞仪的工作原理和技术指标 2.1 流式细胞仪工作原理除电源外,流式细胞仪主要由四部分组成:流动室和液流系统:激光源和光学系统;光电管和检测系统;计算机和分析系统,其中流动室是仪器的核心部件。这四大部件共同完成了信号的产生、转换和传输的任务。 流动室和液流系统

流式细胞仪工作原理与应用范围

流式细胞仪工作原理与应用范围 2008-11-01 10:30 流式细胞仪就是进行流式细胞分析的仪器,它集电子技术、计算机技术、激光技术、流体理论于一体,是一种非常先进的检测仪器,被誉为试验室的“CT”。 流式细胞术(Flow CytoMeter,FCM)是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测手段,它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数,与传统的荧光镜检查相比,具有速度快、精度高、准确性好等优点,成为当代最先进的细胞定量分析技术。 工作原理 将待测细胞染色后制成单细胞悬液。用一定压力将待测样品压入流动室,不含细胞的磷酸缓冲液在高压下从鞘液管喷出,鞘液管入口方向与待测样品流成一定角度,这样,鞘液就能够包绕着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列,依次通过检测区域。 流式细胞仪通常以激光作为发光源。经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。 这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过模/数转换器,将连续的电信号转换为可被计算机识别的数字信号。计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,液可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。 检测数据的显示视测量参数的不同由多种形式可供选择。单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。对于双参数或多参数数据,既可以单独显示每个参数的直方图,也可以选择二维的三点图、等高线图、灰度图或三维立体视图。 细胞的分选是通过分离含有单细胞的液滴而实现的。在流动室的喷口上配有一个超高频电晶体,充电后振动,使喷出的液流断裂为均匀的液滴,待测定细胞就分散在这些液滴之中。将这些液滴充以正负不同的电荷,当液滴流经带有几千伏特的偏转板时,在高压电场的作用下偏转,落入各自的收集容器中,不予充电的液滴落入中间的废液容器,从而实现细胞的分离。 应用范围 可用于白血病的分型、肿瘤细胞染色体的异倍性测定,以及免疫学研究,并已开

流式细胞术原理及功能介绍

流式细胞术详解 一. 流式细胞术概述 流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术 ,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体, 同时具有分析和分选细胞功能。它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析, 在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。 国内使用的流式细胞仪主要由美国的两个厂家生产:BECKMAN- COULTER公司和Becton-Dickinson公司(简称B-D公司)。流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL, B- D公司最新产品为FACS Vantage和FACS Calibur。EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能 ,多用于科学研究。 二.流式细胞仪主要技术指标 1.流式细胞仪的分析速度: 一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。 2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。 3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2μm~0.5μm。 4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。 5.流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。 三.流式细胞仪主要构造和工作原理 流动室及液流驱动系统 流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统②激光光源及光束形成系统③光学系统④信 号检测与存储、显示、分析系统⑤细胞分选系统。 流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力, 鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照射区的时间相等,从而使激光激发的荧光信息准确无误。见图12.1流动室示意图。流动室孔径有60μm、100μm、150μm 、250μm等多种,供研究者选择。小型仪器一般固定装置了一定孔径的流动室。 图12.1流动室示意图(采自Coulter Training Guide) 四. 流式细胞仪主要构造和工作原理 激光光源及光束形成系统

成像流式细胞仪原理及应用

二代流式技术产品-成像流式细胞分析 邱又彬 Merck&Millipore旗下品牌Amnis于近期推出了新一代高速细胞成像系统ImageStreamX Mark II。这是第三代ImageStream成像流式细胞仪,具有无与伦比的细胞分析能力。 显微镜可提供详细的细胞图像和形态信息,是研究细胞功能的重要工具。然而,显微图像的解释却是主观、定性且费力的。流式细胞仪擅长定量的表型分析,可产生统计学上可靠的结果,不过,流式细胞仪却缺乏成像能力,因此无法了解亚细胞定位。 ImageStream系列开创性地将流式细胞检测与荧光显微成像结合于一体,既能提供细胞群的统计数据,又可以获得单个细胞的图像,从而提供了细胞形态学、细胞结构和亚细胞信号分布的完整信息。 ImageStreamX Mark II能实时捕获每个流动细胞最多12幅高分辨率图像,检测速率可达5000细胞/秒,并具有更强荧光灵敏度。ImageStreamX Mark II的这些功能可以对细胞形态、荧光探针的强度和定位进行检测,进而为科学家提供广泛的图像分析应用,包括细胞间相互作用、吞噬、凋亡和自噬、核易位、形态变化等。 ImageStreamX Mark II的特征如下: ?速度更快:Mark II对进样速度进行了提升,每秒可以分析多达5000个细胞,简单易用的补偿向导可以指导您轻松完成多色补偿运算。 ?操作更简单:全新而直观的用户界面提供了每一个细胞的图像及实时绘图相关的图形化控件。 ?样品适应性更强:Mark II可选配7个激光;样品容量20-200 μl,增加了实验的灵活性,适用于多用户实验室。 ?样品利用率更高:Mark II将样品利用率提高到了95%,更适用于稀有的细胞样品,而且未使用的样品也可回收用于进一步分析。 从2005年开始,Amnis量化成像流式分析仪被广泛应用于各个研究领域。其中超过300篇的文章发表在高水平的同行评议杂志(peer-reviewed journal)上。这些研究领域包括生物化学、药物研发、血液、免疫、微生物、海洋、肿瘤、寄生虫、干细胞、毒理、病毒等等。并且由于Amnis与众不同的实验理念和卓越性能,使得这个名单不断变长。 1.生物化学: 经典的生物化学技术主要用于分子定位和共定位检测,这非常适合使用Amnis量化成像流式分析系统,比如转录因子从细胞质到细胞核的转位、分子在亚细胞器间的运输、蛋白质在细胞内和细胞间的共定位。它可以获取复杂样品每个细胞中探针定位和共定位的统计学结果,这对于传统生物化学研

BD流式细胞仪工作原理

BD流式细胞仪工作原理 流式细胞仪的工作原理是:将待测细胞经特异性荧光染料染色后放入样品管中,在气体的压力下进入充满鞘液的流动室。在鞘液的约束下细胞排成单列由流动室的喷嘴喷出,形成细胞柱。 流式细胞仪通常以激光作为发光源。经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。 这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。 这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过模/数转换器,将连续的电信号转换为可被计算机识别的数字信号。 计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,也可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。 检测数据的显示视测量参数的不同由多种形式可供选择。单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。 一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。对于双参数或多参数数据,既可以单独显示每个参数的直方图,也可以选择二维的三点图、等高线图、灰度图或三维立体视图。 细胞的分选是通过分离含有单细胞的液滴而实现的。在流动室的喷口上配有一个超高频电晶体,充电后振动,使喷出的液流断裂为均匀的液滴,待测定细胞就分散在这些液滴之中。 将这些液滴充以正负不同的电荷,当液滴流经带有几千伏特的偏转板时,在高压电场的作用下偏转,落入各自的收集容器中,不予充电的液滴落入中间的废液容器,从而实现细胞的分离。对分选出的细胞可以进行培养或其它处理,做更深的研究。 美国BD C6型流式细胞仪 首先C6流式细胞仪能避免操作新手的一个容易犯的错误;--;调整电压,同步化

流式细胞仪检测细胞周期原理和方法

流式细胞仪检测细胞周期原理和方法 流式细胞仪(FCM)检测细胞周期的原理和方法高考和模拟试题中经常会出现流式细胞仪检测细胞周期图像,那么,什么是流式细胞仪?如何检测细胞周期? 流式细胞仪是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测手段,它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数,与传统的荧光镜检查相比,具有速度快、精度高、准确性好等优点,成为当代最先进的细胞定量分析技术。 流式细胞仪,又称荧光激活的细胞分选器,作为进行流式细胞分析的仪器,它集电子技术、计算机技术、激光技术、流体力学、图像技

术、细胞生物学、免疫学理论于一体,是一种非常先进的检测仪器,被誉为生物医学实验室的“CT”。 流式细胞术已经成为一种用途最广泛和最先进的细胞分析技术,在细胞生物学、血液学、肿瘤学、免疫学等基础和临床医学领域发挥着重要作用。 流式细胞计的基本结构流式细胞计主要由流动室与液流系统、激光源与光学系统、光电管与检测系统、计算机与分析系统四部分组成(如图)。 典例分析

(2015年北京高考试题)流式细胞仪可根据细胞中DNA含量的不同对细胞分别计数。研究者用某抗癌药物处理体外培养的癌细胞,24小时后用流式细胞仪检测,结果如图。对检测结果的分析错误的是 A.b峰中细胞的DNA含量是a峰中的2倍 B.a峰和b峰之间的细胞正进行DNA复制 C.处于分裂期的细胞均被计数在a峰中 D.此抗癌药物抑制了癌细胞DNA的复制 【答案】C 【解析】从题目图中我们不难看出有两个峰值细胞的数目最多,分别对应的DNA含量为40和80。可知40的应该是处于分裂间期的G1期细胞,G1期时间比较长。而80的细胞应该是属于G2期和分裂期的细胞,DNA含量已经加倍。因此A选项中b峰中细胞的DNA含量是a峰中的2倍是正确的。B选项中a峰和b峰之间应该是细胞周期中的S期,正在进行DNA分子复制。C选项中,处于分裂期的细胞DNA含量处于加倍状态,应该计数在b峰中。D选项通过看右侧图可知b峰明显下降,可知应该是抑制了DNA分子的复制,DNA 加倍的细胞明显减少,所以D选项正确。

流式细胞仪原理及操作步骤

流式细胞仪原理及操作步骤 流式细胞仪(FCM)是八十年代集单克隆抗体、荧光化学、激光、计算机等高技术发展起来的一种先进仪器,已广泛应用于免疫学、生物化学、生物学、肿瘤学以及血液学等方面的研究和临床常规工作。其中检测人白细胞表面标志可对白血病、淋巴瘤作用迅速正确的诊断,对淋巴细胞群和亚群进行精确分类,还能分离纯化某一群或亚群细胞。活细胞免疫荧光技术是用于FCM检测的标本准备,染色后也能在荧光显微镜下进行观察,在某些实验条件下,活细胞免疫荧光染色后的特异性和敏感性要优于滴片固定的常规间接免疫荧光的 结果。 (一)原理 活细胞表面保留有较完整的抗原或受体,先用特异性鼠源性单克隆抗体与细胞表面相应抗原结合,再用荧光标记的第二抗体结合,根据所测定的荧光强度和阳性百分率即可知相应抗原的密度和分布。 (二)操作步骤 制备活性高的细胞悬液(培养细胞系、外周血单个核细胞、 胸腺细胞、脾细胞等均可用于本法) ↓ 用10%FCS RPMI1640调整细胞浓度为 5×106~1×107/ml ↓ 取40μl细胞悬液加入预先有特异性McAb(5~50μl) 的小玻璃管或塑料离心管,再加50μl 1∶20(用DPBS 稀释)灭活正常兔血清 ↓4℃30min 用洗涤液洗涤2次,每次加洗涤液2ml左右 1000rpm×5min ↓ 弃上清,加入50μl工作浓度的羊抗鼠 (或兔抗鼠)荧光标记物,充分振摇 ↓4℃30min 用洗涤液洗涤2次,每次加液2ml左右 1000rpm×5min ↓ 加适量固定液(如为FCM制备标本,一般加入 1ml固定液,如制片后在荧光显微镜下观察, 视细胞浓度加入100~500μl固定液) ↓ FCM检测或制片后荧光显微镜下观察 (标本在试管中可保存5~7天) (三)试剂和器材 1.各种特异性单克隆抗体。 2.荧光标记的羊抗鼠或兔抗鼠第二抗体,灭活正常兔血清。 3.10%FCS RPMI1640, DPBS、洗涤液、固定液(见附录)。 4.玻璃管、塑料管、离心机、荧光显微镜等。

流式细胞技术原理

流式细胞术简介 一、流式细胞术发展简史 流式细胞术(Flow Cytometry, FCM)是一种可以对细胞或亚细胞结构进行快速测量的新型分析技术和分选技术。其特点是:①测量速度快,最快可在1秒种内计测数万个细胞;②可进行多参数测量,可以对同一个细胞做有关物理、化学特性的多参数测量,并具有明显的统计学意义;③是一门综合性的高科技方法,它综合了激光技术、计算机技术、流体力学、细胞化学、图像技术等从多领域的知识和成果;④既是细胞分析技术,又是精确的分选技术。 概要说来,流式细胞术主要包括了样品的液流技术、细胞的分选和计数技术,以及数据的采集和分析技术等。FCM目前发展的水平凝聚了半个世纪以来人们在这方面的心血和成果。 1934年,Moldavan1首次提出了使悬浮的单个血红细胞等流过玻璃毛细管,在亮视野下用显微镜进行计数,并用光电记录装置计测的设想,在此之前,人们还习惯于测量静止的细胞,因为要使单个细胞顺次流过狭窄管道容易造成较大的细胞和细胞团块的淤阻。1953年Crosland –Taylor根据雷诺对牛顿流体在圆形管中流动规律的研究认识到:管中轴线流过的鞘液流速越快,载物通过的能力越强,并具有较强的流体动力聚集作用。于是设计了一个流动室,使待分析的细胞悬浮液都集聚在圆管轴线附近流过,外层包围着鞘液;细胞悬浮液和鞘液都在作层液。这就奠定了现代流式细胞术中的液流技术基础。 1956年,Coulter在多年研究的基础上利用Coulter效应生产了Coulter 计数器。其基本原理是:使细胞通过一个小孔,只在细胞与悬浮的介质之间存在着导电性上的差异,便会影响小孔道的电阻特性,从而形成电脉冲信号,测量电脉冲的强度和个数则可获得有关细胞大小和数目方面的信息。1967年Holm等设计了通过汞弧光灯激发荧光染色的细胞,再由光电检测设备计数的装置。1973年Steinkamp设计了一种利用激光激发双色荧光色素标记的细胞,既能分析计数,又能进行细胞分选的装置。这样就基本完成了现代FCM计数技术的主要历程。 现代的FCM数据采集和分析技术是从组织化学发源的,其开拓者是Kamentsky。1965年,Kamentsky在组织化学的基础上提出了两个新设想:(1)细胞的组分是可以用光光度学来定量测定的,即分光光度术可以定量地获得有关细胞组织化学的重要信息。(2)细胞的不同组

相关主题
文本预览
相关文档 最新文档