当前位置:文档之家› 给水温度对锅炉的影响

给水温度对锅炉的影响

给水温度对锅炉的影响
给水温度对锅炉的影响

给水温度对锅炉的影响

高加于3月10日中班大修后投用,给水温度150℃比以前提高50℃左右,高加投用后可较大程度改善设备低温腐蚀的问题,提高除尘灰的流动性,有助于改善除尘器中箱体漏风回潮飞灰板结的实际状况,更有助于节约煤耗和提高锅炉蒸发量的较强效果。在给水温度上升后,煤耗的降幅在0.3—0.4t/h,锅炉蒸发量的增幅在3t/h左右,更重要的是锅炉负荷的稳定性和迅速提升(加负荷)能力得到加强。

一、整体经济性影响

由于垃圾锅炉自身积灰特性,主汽温度偏低在一定程度遏制了机组整体效益的提升,第一方面是排烟温度上升的炉效损失,第二是蒸汽焓值下降带来的做功能力损失。从报表反映数据来看,单纯的锅炉蒸发量、煤量不但得到改善,而且汽煤比数据得到提升,锅炉实际效率得到增长。但发电量增长不明显, 2#机汽耗上升约1个点,由于主汽温度低增加了汽机疏水频率,管道蒸汽损失率由1.3%上升到1.6左右。见下表:

上表中日期数据依据高加投用前1周内运行正常时期统计,煤量依据15米数据采集与3#皮带具有一致性且更精确。

汽机总汽耗-----按汽机总进汽量/总发电量计算

成本产出------电量*0.65-煤量*784计算

管损率--------(1-汽机进汽量/锅炉蒸发量)*100%

表中1#炉蒸发量突破1200吨,2#炉蒸发量达到1162吨;煤量下降、汽煤比上升但成本产出上升不明显,在考虑垃圾库存见底和12、13日中雨影响,后期需要观察垃圾质量转变对数据的影响。

二、对锅炉的影响

上表是锅炉因给水温度变化后各受热面烟温和风温(汽温),数据采集在3月6日---13日之间,选取锅炉蒸发量45t/h工况下,利用趋势线精确到秒统计的5个时间段均值。(以1#炉分析)

1#炉高加投退前后顺烟气流向各级烟温差基本相当,省煤器因介质温度提高后烟温差收小20℃。蒸汽介质在高低加投用前后下降约17.6℃(低过)和16.8℃(汇汽),这种下降状况由吸热介质增量和放热介质减量引起,同时纵向比较主汽温度与低过处蒸汽温差在42.6℃和43.4℃前后相差0.8度,说明数据统计期间积灰对换热的影响较小,数据可信。

在省煤器后顺烟气流向层级温差减小幅度70—30℃之间单边下降(给水温度100℃),当给水温度150℃时烟温差46.4—39.7℃之间降幅收窄且有上升,个人认为换热已趋饱和若进一步提高烟温在不增加受热面的情况下会带来经济上的损失(排烟)和设备上的风险(布袋高温老化风险)。

给水温度低的原因

给水温度低的原因 1 概述 现代大容量火力发电厂都采用具有蒸汽中间再热的给水回热加热循环,用以提高经济性。因为采用汽轮机的抽汽来加热凝结水和给水,这部分抽汽不再排入凝汽器中,因而可减少在凝汽器中的冷源损失。同时给水回热加热提高了热力循环吸热过程的平均温度,使换热温差减少,单位蒸汽在锅炉中的吸热量降低了。所以可有效提高机组的经济性。给水温度,给水最终加热温度的高低对机组的经济性有直接的影响。 造成给水温度低的原因分为急剧和缓慢下降两种情况,引起急剧下降的原因较单一且现象直观明显,并不难查寻原因。再者,发生高加给水温度急剧下降的情况概率极少。而影响给水温度缓慢下降才是带有普遍性的问题且原因较复杂。因此以国产200MW机组为例,阐述如何查找影响高加给水温度低的方法。为便于查找方法的系统性和全在性,将查找影响高加给水温度低的方法分成①高加本体的剖析,②高加系统的剖析,③运行维护的剖析。三个方面进行查找原因。 2高加本体的剖析 200MW机组回热加热器系统中的高压加热器均为立式表面式的加热器,加热蒸汽和被加热的给水是通过加热器内的金属表面来实现热量传递的。针对高加本体影响给水温度的因素加以剖析并提出解决办法。 2.1高加水室隔板密封性 高压加热器的水室靠焊接的水室隔板将水室分成进水室和出水室。如果水室隔板焊接质量不过关,势必导致部份高压给水“短走旁路”,而不流经加热钢管。这样这部份给水未与蒸汽进行热交换,造成给水温度编低。解决办法是厂家提高制造质量,焊接工艺采用亚焊。加热器出厂必须做水压试验,合格方能出厂。 2.2高加箱体密封性 为了有效利用抽汽的高过热度和疏水的过冷却。高压加热器的受热面分为过热蒸汽冷却段、凝结段和疏水冷却段三部份。如果高加受热面的箱体密封性不好,导致部份蒸汽短路现象,致使给水与蒸汽的热交换效率下降,影响给水温度。解决办法是厂家提高制造质量。 2.3高加芯子的安装质量 高压加热器的受热面是由多根钢管组成的U形管束,整个管束安置在加热器的圆筒形外壳内,整个管束是制成的一个整体。通常称为高加芯子。这样便于安装或检修时吊装和析出。如果高加芯子安装质量差,导致扇形板与高加外壳内壁设计间隙发生变化,出现一侧大而另侧小,降低高加受热面的热交换效果。解决办法是厂家和检修单位严格高加芯子的吊装程序,提高安装水平。 3 高加系统的剖析 200MW机组的回热加热系统中的高加系统采用三台高压加热器加一台外置式蒸汽冷却器和一台疏水冷却器的连接方式。高压加热器的水侧有进、出水阀和旁路阀,并且高加组水侧设有一套由自动进水阀和联成阀、逆止阀组成的水侧自动保护装置。针对高加系统影响给水温度的因素加以剖析并提出解决办法。 3.1抽汽阀门的开度 高压加热器的加热蒸汽取自汽轮机的抽汽,为保护汽轮机避免高加汽侧满水倒灌汽缸引发水冲击,高压加热器汽侧设有一套由抽汽电动门和水控逆止门组成的汽侧自动保护装置。高加组投运时要求抽汽电动门和水控逆止门应全开。如果因阀门机构卡涩或电动门行程调整不当等诸多原因导致阀门未全开,这样蒸汽节流会使蒸汽作功能力损失,影响给水温度。解决办法是定期分析监视段压力值和对应高压加热器蒸汽压 力值的数据,从而判断抽汽管道上阀门是否全开。水控逆止门尚可通过其开度标尺进行检查。确证后视具体原因加以处理。 3.2汽侧安全门可靠性 高压加热器汽侧设置有汽侧安全门,保护高压加热器内的蒸汽压力不超压,避免缩短加热器寿命和应力破坏。汽侧安全门一般为弹簧式安全门。如果汽侧安全门的弹簧失效或阀门严密性差,导致部份蒸汽泄

锅炉运行-过程注意事项

锅炉设备运行:(启炉期间) ?1、检修后的锅炉应进行哪些试验? 答:检修后的锅炉一般进行一下试验: (1)风压试验:检查锅炉炉膛风道的严密性,清除漏点。 (2)水压试验:检查锅炉承压部件的严密性。 (3)连锁试验:对所有连锁装置进行试验,保证动作的正常。 (4)电动挡板、阀门的试验:对所有电动挡板、阀门进行全开、全关位置试验,检查是否与表盘指示一致、全关后是否有泄漏等。 (5)冷炉空气动力场试验。(注:在冷态模拟热态的空气动力场工况下所进行的冷态试验,暂不考虑) ?锅炉水压试验有哪几种? 答:水压试验分为工作压力试验和超压试验两种: (1)水压试验的目的是检验承压部件的强度及严密性。 (2)在一般的承压部件检修及中、小修后,要进行工作压力试验。对大修后的锅炉及大面积更换受热面的锅炉需要进行1.25倍工作压力的超压试验。 ?锅炉启动前,对锅炉内部进行哪些具体检查? 答(1)炉膛及风烟道每部应无明显焦渣、积灰和其他杂物,内部无人工作,所有脚手架应全部拆除,炉膛及风烟道完整无裂缝,受热面、管道应无明显,磨损和腐蚀现象。 (2)全部的煤、气、油燃烧器位置正确,设备完好,喷口无焦渣,火焰监视器探头应无积灰及焦渣现象。 (3)各受热面管壁无裂纹及明显变形现象,各紧固件、管夹及挂钩完整,无积灰现象。 (4)输灰系统正常。 (5)检查电除尘器处于良好的备用状态。 ?锅炉启动前,对锅炉外部进行哪些具体检查? 答(1)现场整齐、清洁、无杂物,楼道平台完好畅通,照明良好。 (2)检查看火孔、检查门、人孔门应完整,管壁严密,各处保温完整,燃油管道保温层上无油迹。 (3)对锅炉所有辅机进行全面检查,所有的膨胀指示完好。 (4)主控室及锅炉辅机控制操作盘上的仪表、键盘、按钮、及操作把手等完整,有可靠的事故照明和声光报警信号。 ?锅炉启动方式可分为哪几种? 答(1)按启动前的设备状态分为冷态启动和热态启动。热态启动是指锅炉尚有一定压力温度,汽轮机高压内下缸温度在150℃以上时启动;冷态启动是指锅炉汽包压力为零,汽轮机高压下缸温度在150℃以下时的启动。 按汽轮机冲转参数可分为额定参数和中参数和滑参数启动。滑参数启动又分为真空法和压力法;我们厂所采用的是压力法启动锅炉。 (2)何谓压力法滑说启动? 答:压力法滑参数启动是在启动前将汽轮机电动主蒸汽门关闭,当锅炉点火后产生一定压力和温度的蒸汽参数时,再对汽轮机进行冲转。目前这种方法广泛采用。

水循环知识点

自然界的水循环 1、水圈的概念:指地球上各种水体共同构成的一个连续但不规则的圈层。 2、水的三种存在形式:液态水、气态水、固态水 3.水体分类(课本P54) 地球上的水体海洋水、陆地水、大气水,其中海洋水是最主要的 陆地水分类河流水、湖泊水、沼泽水、土壤水、地下水、生物水、冰川水(地球上淡水主体是冰川) 4.河流主要补给类型及特点 ★补给类型★补给 季节 补给 特点 ★我国分 布地区 ★径流量的季节变化(以我国为例) 雨水补给我国以 夏秋两 季为主 ①水量变化 大②时间集 中③不连续 普遍,尤 以东部季 风区最典 型 径流变化与降水量变化一致,具有明显的季节 变化和年际变化。 季节性 积雪融 水补给春季①季节性 ②水量稳定 ③连续性 东北地区 东北地区河流有季节性积雪融水补给形成的 春汛和降水补给形成的夏汛。冬季气温低河流 封冻 冰川融 水补给夏季①有明显的 季节、日变 化②水量较 稳定 西北地区、 青藏高原 径流变化与气温变化密切相关。1、2月份径流 出现断流的原因:气温低于0℃,冰川无融水。 湖泊水补给全年①较稳定 ②对径流有 调节作用 普遍①河流水与湖泊水的相互补给关系:枯水期湖 泊水补给河流水,丰水期河流水补给湖泊水 ②河流水、湖泊水与地下水间的相互补给关 系:当河流、湖泊水位高于地下水位时,河流 水、湖泊水补给地下水。反之,地下水补给河 流水、湖泊水。 地下水补给全年①稳定 ②一般与河 流有互补作 普遍

用★特例:黄河下游为“地上悬河”,河水补给 地下水。 5、陆地水体间的相互补关系 ①陆地的各种水体最主要的补给来源是大气降水 ②河流水、湖泊水、地下水之间,存在着相互补给关系。相互补给关系主 要看各种水位的高低,水位较高的水体可以补给给水位较低的水体。 ③三种水体的变化速度:河流水>湖泊水>地下水 ④洪水期水位:河流水>湖泊水>地下水 洪水期的补给关系:河流水补给湖泊水和地下水;湖泊水补给地下水 ⑤枯水期水位:地下水>湖泊水>河流水 枯水期的补给关系:地下水补给湖泊水和河流水;湖泊水补给河流水 6.河流的特征 项目描述方法影响因素对航运的影响 水 文 特 征 流量流量的大小河流流量大小的变化 主要取决于河流补给 量与流域面积的大 小。一般来讲,补给 量与流域面积越大, 河流流量越大;河流 流量的时间变化主要 取决于河流的补给方 式。 水量大,流量平稳, 丰水期长,无结冰期, 含沙量少,对航运有 利 水位汛期水位高低和季节变 化,汛期的时间及长 短 包括丰水期、枯水期 时间,汛期长短等, 主要与补给方式和河 道特征有关。河流主 要的补给季节处于汛 期,水位高。河流流 量相同的情况下,河

给水温度降低的因素浅析

给水温度降低的因素浅析 摘要:给水温度是火力发电厂的一个重要经济指标,本文主要从高压加热器本体,高压加热器系统,高压加热器运行维护三个方面分析影响给水温度降低的因素,提高高压加热器运行管理水平。 1.概述 现代大容量火力发电厂都采用具有蒸汽中间再热的给水回热加热循环,用以提高热经济性。因为采用汽轮机的抽汽来加热凝结水和给水,这部分抽汽不再排入凝汽器中,因而可减少在凝汽器中的冷源损失。同时给水回热加热提高了热力循环吸热过程的平均温度,使换热温差减少,单位蒸汽在锅炉中的吸热量降低了。所以可有效提高机组的经济性。给水最终加热温度的高低对机组的经济性有直接的影响。造成给水温度低的原因分为急剧和缓慢下降两种情况,引起急剧下降的原因较单一且现象直观明显,并不难查寻原因。再者,发生高加给水温度急剧下降的情况概率极少。而影响给水温度缓慢下降才是带有普遍性的问题且原因较复杂。因此以国产300MW机组为例,阐述如何查找影响高加给水温度降低的方法。为便于查找方法的系统性和全在性,将查找影响高加给水温度降低的方法分成为:①高加本体的分析,②高加系统的分析,③高加运行维护的分析。三个方面进行原因查找。 2.高加本体的分析 300MW机组回热加热器系统中的高压加热器一般均采用福斯特.惠勒高压给水加热器。这种加热器是卧式的表面式的加热器,与传统的立式布置的高压加热器相比,它具有很多特点只有掌握它的结构特点与运行特性,才能保证福斯特.惠勒高压给水加热器安全经济地运行。在高压加热器筒体内部加热蒸汽和被加热的给水是通过加热器内的金属表面来实现热量传递的。针对高加本体影响给水温度的因素加以分析并提出解决办法。 2.1.高加水室隔板密封性 高压加热器的水室靠焊接的水室隔板将水室分成进水室和出水室。如果水室隔板焊接质量不过关,势必导致部份高压给水“短走旁路”,而不流经加热钢管。这样这部份给水未与蒸汽进行热交换,造成给水温度编低。解决办法是厂家提高制造质量,焊接工艺采用亚焊。加热器出厂必须做水压试验,合格方能出厂。

350MW机组给水温度降低的原因分析及治理

350MW机组给水温度降低的原因分析及治理 某发电集团电厂两台机组投运后,一直存在给水温度偏低情况,给水温度达不到设计值,机组运行经济性能就会降低,不仅影响机组煤耗,同时对机组安全运行也存在隐患。文章通过对给水温度低进行全面分析、排查,最终确定影响给水温度低的原因并进行处理,使给水温度达到设计值。 标签:350MW;高加;给水温度低 1 概述 某自备电厂350MW机组两台,机组于2009年9月投运,随着机组运行时间的增加,出现给水温度不断下降问题,给水温度设计值为275℃,而机组带额定工况运行时给水温度仅为268℃。该厂高加一共有三台,给水温度的降低,严重影响机组运行经济性,影响汽轮机的效率,增加了发电煤耗,同时给水温度的降低也会使锅炉受热面长时间处于超温运行状态,影响锅炉受热面的寿命,增加了爆管的机率。 2 给水温度低的原因分析及处理 为提高给水温度,对机组现状进行综合分析,影响给水温度的原因分为运行操作与设备本体及系统影响两种。 2.1 运行操作 2.1.1 连续排空气门开度 高加抽空气门的作用是将高加汽侧积聚的不凝结汽体排到除氧器进行除氧,因空气的传热系统远小于钢材,空气在钢管周围开成的空气膜会严重阻碍传热。在机组正常运行工况下,通过对各台高加连续排空气门分别进行调整,并测温管道温度随之上升或下降,由此确认管道未堵塞,经试验,连续排空气门开度对给水温度没有影响。 2.1.2 高加水位影响 在机组带额定负荷情况下,解除高加水位保护,将#1高加水位进行调整,调整采取先调整到高位再调整至低位,通过调整高加水位,给水温度最高仅有0.5℃的变化,可见高加水位并不是影响给水温度的要因。 2.1.3 高加投停 在高加投入及退出时,基本均为随机启动。每次高加投入汽侧时,均能按要求控制给水温升、温降率,水侧投入时,能够先用静压注水,然后再用注水门注

发电厂锅炉连排定排相关知识

连排定排: 一、排污的形式和作用 锅炉排污可分为:定期排污和连续排污。 1、定期排污 定期排污: 定期排污又叫间断排污或底部排污,其作用是排除积聚在锅炉下部的水渣和磷酸盐处理后所形成的软质沉淀物。定期徘污持续时间很短,但排出锅内沉淀物的能力很强。 2、连续排污 连续排污: 连续也叫表面排污,这种排污方式是连续不断地从汽包锅水表面层将浓度最大的锅水排出。它的作用是降低锅水中的含盐量和碱度,防止锅水浓度过高而影响蒸汽品质。

二、排污的位置 连续排污管口一般装在汽包正常水位(即“0”位)下200一300mm处。锅水由于连续不断地蒸发而逐渐浓缩,使水表面附近含盐浓度最高。所以,连续排污管口应安装在锅水浓度最大的区域,以连续排出高浓度锅水,补充以清洁的给水,从而改善锅水品质。排污率一般为蒸发量的1%左右。 连续排污的位置 定期排污位置 定期排污口一般设在汽包的底部、蒸发器的下联箱或集中下降管的下部。

定期排污的位置 三、排污的方法 操作人员应正确穿戴好劳保用品,携带并正确使用工具,操作前加强安全操作意识,做好安全防范措施,确保人身安全。 操作准备: (1)联系中控,准备定期排污; (2)中控确认锅炉负荷为较低负荷方可通知现场排污,防止高负荷下过高热应力对受热面产生损伤; (3)中控调整汽包水位至较高液位。 操作要领: (1)遵循勤排、少排、均衡排的原则;

(2)操作顺序:先打开高温闸阀,再缓慢打开闸阀,关闭则先关闭闸阀,再关闭高温闸阀; (3)排污时间:一般规定为5分钟左右,也可根据炉水电导率的高低来决定阀门的开度与排污的次数与时间。 四、注意事项 操作过程中发现排污管道法兰、阀门本体出现蒸汽泄漏等异常状况,应立即停止排污并及时通知中控、工段,严禁带压紧固和擅自处理; 禁止在锅炉高负荷下进行排污操作; 禁止在汽包低液位状况下进行排污操作。 锅炉启动时也要定期排污,这时排出的是循环回路底部的部分水,不仅使杂质得以排出,保证锅水品质,而且使受热较弱部分的循环回路换热加强,防止了局部水循环停滞,使水循环系统各部件金属受热面膨胀均匀,减小了汽包上下壁的温差。 五、炉水品质 由于炉水含有铁锈和加药处理形成的沉淀水渣等杂质,沉积在水循环回路的底部,久而久之,会导致炉水品质下降,这些都是由装在排污箱处的电导率和PH值的测试仪器反应出来。 向汽包内加入Na3PO4处理炉水,使进入炉水中的Ca2+、Mg2+等形成不粘附的水渣,通过排污排掉。 六、排污的目的 排污的目的 是将炉水含有的铁锈和加药处理形成的沉淀水渣等杂质,沉积在水循环回路的底部,定期或连续的将这些水渣等沉淀杂质排出,提高炉水的品质。使得炉水PH值在9.4---10.5,电导率在200us/cm以下! 连续排污:连续也叫表面排污,这种排污方式是连续不断地从汽包锅水表面层将浓度最大的锅水排出。它的作用是降低锅水中的含盐量和碱度,防止锅水浓度过高而影响蒸汽品质。 连续排污管口一般装在汽包正常水位(即“0”位)下200一300mm处。锅水由于连续不断地蒸发而逐渐浓缩,使水表面附近含盐浓度最高。所以,连续排污管口应安装在锅水浓度最大的区域,以连续排出高浓度锅水,补充以清洁的给水,从而改善锅水品质。排污率一般为蒸

锅炉水质标准

工业锅炉水质标准 一、范围 本标准规定了工业锅炉运行时的水质要求。 本标准适用于额定出口蒸汽压力小于等于2.5MPa,以水为介质的固定式蒸汽锅炉和汽水两用锅炉也适用于以水为介质的固定式承压热水锅炉和常压热水锅炉。 二、水质标准 1、蒸汽锅炉和汽水两用锅炉的给水一般应采用锅外化学水处理,水质应符合下表规定: 项目给水锅水 额定蒸汽压力, MPa≤1.0>1.0>1.6 ≤1.0 >1.0>1.6≤1.6≤2.5≤1.6≤2.5 悬浮物,mg/L≤5≤5≤5总硬度,mmol/L1)≤0.03≤0.03≤0.03 总碱度,mmol/L 无过热器6-266-246-16有过热器≤14≤12 pH(25℃)≥7≥7≥710-1210-1210-12溶解氧,mg/L3)≤0.1≤0.1≤0.05 溶解固形物,mg/L 无过热器 < 4000 <3500<3000有过热器<3000<2500 SO2-3,mg/L10-3010-30 PO3-4,mg/L10-3010-30 相对碱度游离NaOH/溶解固形物<0.2<0.2 含油量,mg/L≤2≤2≤2 含铁量,mg/L6)≤0.3≤0.3≤0.3 1) 硬度mmol/L的基本单元为c(1/2Ca2+、1/2Mg2+),下同。 2) 碱度mmo1/L的基本单元为c(OH-、1/2CO2-3、HC03-),下同。 对蒸汽品质要求不高,且不带过热器的锅炉,使用单位在报当地锅炉压力容器安全监察机构同意后,碱度指标上限值可适当放宽。 3) 当锅炉额定蒸发量大于等于6t/h时应除氧,额定蒸发量小于6t/h的锅炉如发现局部腐蚀时,给水应采取除氧措施,对于供汽轮机用汽的锅炉给水含氧量应小于等于0.05mg/L。 4) 如测定溶解固形物有困难时,可采用测定电导率或氯离子(C1-)的方法来间接控制,但溶解固形物与电导率或与氯离子(Cl-)的比值关系应根据试验确定。并应定期复试和修正比值关系。 5) 全焊接结构锅炉相对碱度可不控制。 6) 仅限燃油、燃气锅炉 2、额定蒸发量小于等于2t/h,且额定蒸汽压力小于等于1.0MPa的蒸汽锅炉和汽水两用锅炉(如对汽、水品质无特殊要求)也可采用锅内加药处理。但必须对锅炉的结垢、腐蚀和水质加强监督,认真做好加药、排污和清洗工作,其水质应符合下表规定。 项目给水锅炉水 悬浮物,mg/L≤20

给水温度对锅炉的影响

给水温度对锅炉的影响 高加于3月10日中班大修后投用,给水温度150℃比以前提高50℃左右,高加投用后可较大程度改善设备低温腐蚀的问题,提高除尘灰的流动性,有助于改善除尘器中箱体漏风回潮飞灰板结的实际状况,更有助于节约煤耗和提高锅炉蒸发量的较强效果。在给水温度上升后,煤耗的降幅在0.3—0.4t/h,锅炉蒸发量的增幅在3t/h左右,更重要的是锅炉负荷的稳定性和迅速提升(加负荷)能力得到加强。 一、整体经济性影响 由于垃圾锅炉自身积灰特性,主汽温度偏低在一定程度遏制了机组整体效益的提升,第一方面是排烟温度上升的炉效损失,第二是蒸汽焓值下降带来的做功能力损失。从报表反映数据来看,单纯的锅炉蒸发量、煤量不但得到改善,而且汽煤比数据得到提升,锅炉实际效率得到增长。但发电量增长不明显, 2#机汽耗上升约1个点,由于主汽温度低增加了汽机疏水频率,管道蒸汽损失率由1.3%上升到1.6左右。见下表:

上表中日期数据依据高加投用前1周内运行正常时期统计,煤量依据15米数据采集与3#皮带具有一致性且更精确。 汽机总汽耗-----按汽机总进汽量/总发电量计算 成本产出------电量*0.65-煤量*784计算 管损率--------(1-汽机进汽量/锅炉蒸发量)*100% 表中1#炉蒸发量突破1200吨,2#炉蒸发量达到1162吨;煤量下降、汽煤比上升但成本产出上升不明显,在考虑垃圾库存见底和12、13日中雨影响,后期需要观察垃圾质量转变对数据的影响。 二、对锅炉的影响

上表是锅炉因给水温度变化后各受热面烟温和风温(汽温),数据采集在3月6日---13日之间,选取锅炉蒸发量45t/h工况下,利用趋势线精确到秒统计的5个时间段均值。(以1#炉分析) 1#炉高加投退前后顺烟气流向各级烟温差基本相当,省煤器因介质温度提高后烟温差收小20℃。蒸汽介质在高低加投用前后下降约17.6℃(低过)和16.8℃(汇汽),这种下降状况由吸热介质增量和放热介质减量引起,同时纵向比较主汽温度与低过处蒸汽温差在42.6℃和43.4℃前后相差0.8度,说明数据统计期间积灰对换热的影响较小,数据可信。 在省煤器后顺烟气流向层级温差减小幅度70—30℃之间单边下降(给水温度100℃),当给水温度150℃时烟温差46.4—39.7℃之间降幅收窄且有上升,个人认为换热已趋饱和若进一步提高烟温在不增加受热面的情况下会带来经济上的损失(排烟)和设备上的风险(布袋高温老化风险)。

锅炉各种指标解释

锅炉指标解释

第一节锅炉技术经济指标 1.1 锅炉运行技术经济指标 1.1.1 锅炉实际蒸发量 锅炉实际蒸发量是指锅炉的主蒸汽流量(kg/h)。应取锅炉末级过热器出口的蒸汽流量值,或者根据进入锅炉省煤器的给水流量来进行计算确定,具体计算可根据汽轮机运行技术经济指标中主蒸汽流量的计算方法确定。 1045吨/小时 1.1.2 锅炉主蒸汽压力 锅炉主蒸汽压力是指锅炉出口的蒸汽压力值(Mpa)。应取锅炉末级过热器出口的蒸汽压力值。如果锅炉末级过热器出口有多路主蒸汽管,应取算术平均值。 17.5MPa 1.1.3 锅炉主蒸汽温度 锅炉主蒸汽温度是指锅炉过热器出口的蒸汽温度值(℃)。应取锅炉末级过热器出口的蒸汽温度值。如果锅炉末级过热器出口有多路主蒸汽管,应取算术平均值。 540度 1.1.4 再热蒸汽压力 锅炉再热蒸汽压力是指锅炉再热器出口的再热蒸汽压力值(Mpa)。应取锅炉末级再热器出口的蒸汽压力值。如果锅炉末级再热器出口有多路再热蒸汽管,应取算术平均值。 3.2MPa 1.1.5 再热蒸汽温度 锅炉再热蒸汽温度是指锅炉再热器出口的再热蒸汽温度值(℃)。应取锅炉末级再热器出口的蒸汽温度值。如果锅炉末级再热器出口有多路主蒸汽管,应取算术平均值。 540度 1.1.6 锅炉给水温度

锅炉给水温度是锅炉省煤器入口的给水温度值(℃)。应取锅炉省煤器前的给水温度值。 272.2度 1.1.7 过热器减温水流量 过热器减温水流量是指进入主蒸汽系统的减温水流量(t/h)。对于主蒸汽系统有多级减温器设置的锅炉,过热器减温水流量为各级主蒸汽减温水流量之和。 一级14.5、二级7.35 1.1.8 再热器减温水流量 再热器减温水流量是指进入再热汽系统的减温水流量(t/h)。对于再热汽系统有多级减温器设置的锅炉,再热器减温水流量为各级再热汽减温水流量之和。 0 t/h 1.1.9 排烟温度 排烟温度指锅炉末级受热面后的烟气温度(℃)。对于锅炉末级受热面出口有两个或两个以上烟道,排烟温度应取各烟道排烟温度的算术平均值。 149度 1.1.10 锅炉氧量 锅炉氧量是指锅炉省煤器后的烟气中氧的容积含量百分率(%)。对于锅炉省煤器出口有两个或两个以上烟道,锅炉氧量应取各烟道烟气氧量的算术平均值。 3-5% 1.1.11 送风温度 送风温度指锅炉空气系统风机入口处的空气温度(℃)。对于有两台送风机,送风温度为两台送风机入口温度的算术平均值;对于采用热风再循环的系统,送风温度应为冷风与热风再循环混合之前的冷风温度。 26度 1.1.12 飞灰含碳量

影响锅炉炉水pH值的因素及对锅炉的危害热

影响锅炉炉水pH值的因素及对锅炉的危害热 锅炉是生产蒸汽和热水的设备,锅炉用水的水质对锅炉的安全运行和效率有很大的影响,因此,对锅炉用水的水质及水质管理提出一定的要求,把处理后合格的水用作锅炉给水,使锅炉得以安全经济运行。而pH值就是一个重要的指标,它的变化直接影响到锅炉设备的安全经济运行。 我国现行的《低压锅炉水质标准(GB1576—2001)》中规定:蒸汽锅炉或热水锅炉采用锅内加药水处理或锅外化学水处理时的水质标准pH(25℃)均为给水大于7,锅水10~12。在锅炉正常运行条件下,由于锅水不断蒸发浓缩和某些盐类的分解,锅水的pH值比给水高,这时在金属表面就能形成一层致密的Fe3O4保护膜,这对锅炉表面的防腐十分有利,因此规定锅水pH值在10~12之间,保证锅炉安全运行。但由于各种因素的影响造成锅炉炉水的pH值偏高或偏低,这给锅炉设备的安全运行造成危害,必须加以防范,避免发生事故。 1 锅炉炉水pH值偏低的原因及危害 1.1 原因及危害 一般锅炉用水使用的是城市管网的供水系统,我国《城市供水水质标准》(CJ/T206—2005)规定pH值为6.5~8.5。城市供水水质在处理和传送过程受pH值的影响较大,同时,地表水的pH值随着季节的变化和外界污染的影响,也在变化。二氧化碳是一种易溶于水的气体,天然水特别是地下水中,通常含有一定量的二氧化碳。在水的软化及降碱过程中,常常会产生游离的二氧化碳,含量一般大于20mg/L。对于中高压以上的锅炉,为防止给水系统腐蚀,应维持给水的pH值在8.0以上,最好在9.0~9.2。由于净水工艺的连续性和相关性,以及考虑投资成本,不可能满足各种用水设备的要求。在进行锅炉补给水的离子交换处理时,水的pH值不会有变化,进入锅炉内的补给水偏酸性。另外,离子交换树脂的碎片等有机物,进入锅炉后,在炉内高温高压下分解形成无机强酸和低分子有机酸;某些物质随给水带入锅内,它们在锅内分解、降解或水解也会产生酸性物质,使炉水的pH值下降。 当锅水pH值小于7,水中有游离二氧化碳存在时,就会同相接触的金属发生以二氧化碳为去极剂的电化学腐蚀。给水不除氧除气,给水回水管路系统就会产生这种酸腐蚀。其反应如下: 总的反应为: Fe+2H2O+2CO2═Fe(HCO3)2+H2↑ 反应生成物重碳酸亚铁[Fe(HCO3)2],系氢氧化亚铁与二氧化碳化合而成,易溶于水,不易在金属表面形成保护膜,所以二氧化碳引起的酸腐蚀是均匀腐蚀,使金属表面形成结构壁面均匀减薄。锅炉给水中含有各种碳酸化合物,其阴离子形成为CO32- 和HCO3-,在锅炉内这些碳酸化合物会受热分解,生成大量的二氧化碳气体,

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

锅炉期末考试习题

一、填空题 1.从能量转换的角度来看,火力发电厂中锅炉设备的作用是将燃料化学能转换为蒸汽热能。 2.当给水温度降低时(其它条件不变),对汽包锅炉而言,过热器出口汽温将升高;对直流锅炉而言,过热器出口汽温将降低 3.在煤粉炉的各项热损失中,以排烟热损失为最大,影响该项热损失的主要因素为排烟温度和排烟容积。 4.现代电厂锅炉采用的空气预热器有管式和回转式_两大类。 5.根据燃烧器的出口气流特征,煤粉燃烧器可分为直流燃烧器和旋流燃器_。 6.过热器产生热偏差的主要原因是并列管吸热不均和工质流量不均。 7.随着锅炉容量的增大,锅炉的散热损失q5(%)将减小。8.电厂锅炉用煤分类的主要依据是_煤的干燥基挥发分Vdaf_。 9.汽包锅炉运行中需要监视和调节的参数主要有蒸汽压力, 蒸汽温度, 汽包水位 10.按元素分析方法,煤的组成成分为_C,H,O,N,S,M,A_,其中可燃成分为_C,H,S。 11.蒸汽污染的主要原因是饱和蒸汽的机械携带和蒸汽的溶解性携带。 12.直流锅炉是通过控制给水和燃烧来调节过热蒸汽温度的。 13.表示灰的熔融特性的三个温度是变形温度PT、软化温度ST 液化温度FT。 14.中间储仓式制粉系统中,大多采用低速筒式铜球磨煤机。 15.型号为SG-1025/16.8-540/540型锅炉的含义是:由上海锅炉厂制造、锅炉容量_、过热蒸汽压力_、过热汽温/再热汽温的锅炉。按压力等级分类,属于亚临界压力的锅炉。 16.煤的工业分析成分有:水份、灰份_,挥发份__、固定碳_、。 17.若某锅炉空气预热器出口处烟气中的含氧量为O2=6%,则该处的过量空气系数 =_1.4。 18.再热蒸汽多采用烟气侧调温方式,具体的调温方法有摆动式燃烧器、_烟气再循环、_烟气挡板调节等。19.煤粉迅速而完全燃烧的四个条件为供给适当空气量_、维护相当高的炉温_、燃料与空气的良好混合,_足够的燃烧时间_。 20.按传热方式的不同,过热器可以分为对流式、辐射式_、半辐射式三种基本型式。 21.SG-1025/16.7-540/540型锅炉的容量是1025t/h_,再热蒸汽温度是540_,属于_亚临界压力级别的锅炉。22.标准煤的收到基低位发热量为29310kJ/kg。23.磨煤出力是指单位时间内,在保证一定煤粉细度的条件下,磨煤机所能磨制的原煤量。 24.煤粉炉的燃烧设备包括_煤粉燃烧器、点火装置___、炉膛 25.高压以上自然循环锅炉过热汽温的调节方法是采用喷水减温器____。 26.排污量Dpw占锅炉蒸发量D的百分数称为排污率_。27.煤粉由燃烧器喷入炉膛后,其燃烧过程大致可分为三个阶段,即着火前的准备阶段_、_燃烧阶段、燃尽阶段。28.发电用煤分类依据的主要指标是煤的干燥基无灰基挥发分Vdav_。 29.理论空气量是指1kg收到基燃料完全燃烧又没有剩余氧存在时所需要的空气量。30.锅炉尾部受热面运行中存在的主要问题是积灰、飞灰磨损_和_低温腐蚀。 31.锅炉烟气侧调节汽温的方法主要有烟气旁路挡板调节, 烟气再循环调节, 改变火焰的摆动式燃烧器调节 32.电厂锅炉采用的通风方式是机械通风平衡通风_。33.水冷壁对吸热工质的放热系数急剧下降、管壁温度随之迅速升高的传热现象,称为沸腾传热恶化 34.与自然循环锅炉不同,控制循环锅炉在下降管中串联了一个控制循环泵。 35.影响过热器热偏差的主要原因是并列管吸热不均和工质流量不均 36.直吹式制粉系统中,大多采用中速磨煤机。 37.直流煤粉燃烧器的两种配风方式为均等配风和分级配风。 38.再热器产生热偏差的主要原因是并列管吸热不均__和_工质流量不均。 39.影响锅炉整体布置的主要因素是燃料的性质_、锅炉容量和蒸汽参数_、等。 40.按工业分析方法,煤的组成成分为 ,A, V FC,其中可燃成分为V FC 41.按燃料在锅炉中的燃烧方式不同,锅炉可分为层燃炉、室燃炉, 旋风炉和流化床炉 42.汽包的主要作用有1锅炉内工质加热,蒸发,过热三过程的连接和分界点,2增加锅炉的蓄能量,有利于运行调节;3进行蒸汽的净化处理,改善蒸汽品质;4汽包上安装的表计等安全附件保证锅炉安全工作 二、选择题 1.最佳过量空气系数是指B_____为最小时的。(a)q2+q4+q5 (b)q2+q3+q4 (c)q2+q4+q6 2.判断煤在炉膛内燃烧时的结渣性能,一般用其灰的___C__(a)变形温度DT (b)液化温度FT (c)软化温度ST 3.实际运行中测得某截面处O2=5.0%,则该截面处的过量空气系数为_A。(a)1.312 (b)1.002 (c)1.50 (d)1.235 4._B____的方法,主要用于调节再热蒸汽的温度。(a)热风再循环(b)烟气再循环(c)乏气再循环 5.烟气分析是测出烟气中各气体成分的分容积占_B____的百分数。(a)V (b)V (c)V (d)V 6.自然循环在安全工作区内,即具有自补偿作用的区域内,_A___。(a)K>Kjx (b)K=Kjx (c)K<Kjx 7.某电厂锅炉用煤的Vdaf =27%,该煤属于__C______。(a)褐煤(b)贫煤(c)烟煤8.当给水温度降低时(其它条件不变),对自然循环锅炉而言,过热器出口汽温将_A_ 。(a)升高(b)降低(c)不变 9.锅炉的输入热量主要是_A低位发热量。(a)收到基(b)空气干燥基(c)干燥基(d)干燥无灰基 10.锅炉某受进出口截面处O = 5.3%,O = 6.0%,则该截面处的为C_。(a)0.04 (b)0.05 (c)0.06 (d)0.03 11.汽包锅炉蒸汽压力变化时,采用调节B_的办法进行压力调节。(a)燃料量和给水量 b)燃烧(c)给水(d)负荷 12.现有A、B两堆煤粉,其R 相同,R >R ,则煤粉均匀性指数n B_ n 。(a)> (b)< (c)= 13.实际运行中测得烟道某截面处O2=4.0%,该截面处的过量空气系数为C(a)1.002 b)1.305(c)1.235 (c)1.40

给水温度对机组效率的影响

浅析给水温度对机组效率的影响 在环保和节能已经成为社会发展主题的今天,火电厂如何提高效率、注重节能不仅是顺应主流,也是在竞价上网后获得最大利润的手段之一。标准煤耗率、汽耗率、汽轮机效率、锅炉燃烧效率等参数,是衡量机组经济性能的重要参数。 标准煤耗率简单来说,就是将不同发热量的各种煤统一折算成发热量为29308千焦/千克的“标准煤”后算得的煤耗率,也就是机组输出1KW.h功率所需要消耗的标准煤煤量,主要用于在燃用不同煤种的各个发电厂之间进行热经济性比较。 bs=q0/(29.31ηb*ηp) bsn=bs/(1-ξ) 式中q0——机组发电热耗率,kJ/(kW.h); ηb——锅炉效率,%; ηp——管道效率,%; ξ——厂用电率,%; bs——全厂发电标准煤耗率,g/(kW.h); bsn——全厂供电标准煤耗率,g/(kW.h)。 对于我厂330MW机组,q0可简略用下式来表示: 式中,D0——主蒸汽流量 h0——主蒸汽初焓 hfw——给水初焓 Drh——再热蒸汽流量 hrh——再热器出口蒸汽焓值 he——再热器入口蒸汽焓值 W——机组输出功率 当其他参数不变时,标准煤耗与给水焓值成反比。要降低标准煤耗,就要提高给水焓值。由焓熵表可知,当给水压力一定时,给水温度越高,给水焓值越高。(如下表,假定给水压力P为15MPa) 现代大容量火力发电厂都采用具有蒸汽中间再热的给水回热加热循环,用以提高经济性。因为采用汽轮机的抽汽来加热凝结水和给水,这部分抽汽不再排入凝汽器中,因而可减少在凝汽器中的冷源损失。同时给水回热加热提高了热力循环吸热过程的平均温度,使换热温差减少,单位蒸汽在锅炉中的吸热量降低了。所以可有效提高机组的经济性。给水温度,给水最终加热温度的高低对机组的经济性有直接的影响。 影响给水温度的因素很多,包括:

我厂4台机组给水温度低的原因和解决办法

我厂4台机组给水温度低的原因和解决办法 贵州黔西中水发电有限公司:万强 现代大容量火力发电厂都采用具有蒸汽中间再热的给水回热加热循环,用以提高经济性。因为采用汽轮机的抽汽来加热凝结水和给水,这部分抽汽不再排入凝汽器中,因而可减少在凝汽器中的冷源损失。同时给水回热加热提高了热力循环吸热过程的平均温度,使换热温差减少,单位蒸汽在锅炉中的吸热量降低了。所以可有效提高机组的经济性。给水温度,给水最终加热温度的高低对机组的经济性有直接的影响。针对给水温度低的查找方法如下①高加本体的分析,②高加系统的分析 一、给水温度低的原因查找: 我厂加热器是卧式的表面式的加热器。在高压加热器筒体内部加热蒸汽和被加热的给水是通过加热器内的金属表面来实现热量传递 1.1.高加水室隔板密封性,高压加热器的水室靠焊接的水室隔板将水室分成进水室和出水室。如果水室隔板焊接质量不过关,势必导致部份高压给水“短走旁路”,而不流经加热钢管。这样这部份给水未与蒸汽进行热交换,造成给水温度编低。 1. 2. 过热度和疏水的过冷却。高压加热器的受热面分为过热蒸汽冷却段、凝结段和疏水冷却段三部份。如果高加受热面的箱体密封性不好,导致部份蒸汽短路现象,致使给水与蒸汽的热交换效率下降,影响给水 1.3.高压加热器的受热面是由多根钢管组成的U形管束,整个管束安臵在加热器的圆筒形外壳内,整个管束是制成的一个整体。通常称为高加芯子。这样便于安装或检修时吊装和拆出。如果高加芯子安装质量差,导致扇形板与高加外壳内壁设计间隙发生变化,出现一侧大而另侧小,降低高加受热面的热交换效果。1.4 2.高加系300MW机组的回热加热系统中的高加系统采用三台高压加热器疏水逐级自流至除氧器方式。高压加热器的水侧有进口三通阀和出水阀,并且高加组水侧设有一套进口三通阀和出水阀组成的水侧 2.1 高压加热器的加热蒸汽取自汽轮机的抽汽,为保

提高给水温度要点

利用精益的生产方式来提高 热电联产的经济效益 —浅谈我电厂应如何提高给水温度来降低发电煤耗 姓名:王哲辉 专业工种:汽轮机运行 申报级别:技师 单位:一汽集团动能分公司汽机车间 2009年度技师考评答辩论文

前言 火力发电厂中电能的生产,实质上是将燃料中储存的化学能,经过一系列中间环节的能量释放、传递、转换最终变为电能。为了使能量转换不间断的进行,就需要工质不停地进行朗肯循环。但由于朗肯循环中有巨大的冷源损失存在,热经济性较低,为了提高循环的热效率,在朗肯循环的基础上,发展了回热循环。现代火力发电厂都无例外地采用了回热循环,如给水回热循环,目前现代凝汽式或供热式汽轮机,容量在6000kw以上的都高有回热加热器进行给水的回热循环。 我动能公司电厂在热电联产的整个过程中给水回热循环是个非常重要的环节,其结果在于充分利用给水回热循环来提高锅炉给水温度,减少了锅炉的发电煤耗,增加了电厂的热经济性。但是由于设备陈旧、老化、缺陷较多,加之运行人员操控不当等诸多原因,使我电厂的给水回热循环效率较低,总体热经济性差。如何提高热效率是现代电厂的首要任务,也是我电厂一直以来追求的目标。

摘要 回热循环是热力循环系统中热效率比较高的一种循环方式,热电联合生产系统中给水回热循环是最经济的典型的回热循环方式。 我电厂中的给水回热循环正是利用这种高效的回热循环方式来加热给水,使之利用机组抽汽加热给水来提高给水温度,提高了热效率和热经济性,降低了煤耗。但是由于设备老化、系统中存在着不完善等诸多因素,使我电厂中的给水回热循环未达到理想的效果。 通过2007-2008年度冬季高峰负荷期的试验性调整后,发现给水温度比历年来的平均给水温度提高了近10℃左右,降低了煤耗,节约了资金,并且针对于我电厂给水系统中的缺陷提出几项切实可行的改进方案,以改善给水系统的完整性,灵活性,从而能够更好、更高效、更快捷的满足锅炉对用水的需求。 关键词:

循环水冷却知识汇总

循环水冷却知识汇总 问:给排水循环水冷却塔是什么? 答:干式冷却塔干式冷却难的热水在散热翅管内流动,靠与管外空气的温差,形成接触传热而冷却。所以干式冷却塔的特点是:①没有水的蒸发损失,也无风吹和排污损失,所以干式冷却塔适合于缺水地区,如我国的北方地区。因为没有蒸发,所以也没有但空气从冷却塔出口排出所造成的污染。②水的冷却靠接触传热,冷却极限为空气的干球温度效率低,冷却水温高。③需要大量的金属管(铝管或钢管),因此造价为同容量湿式塔的4~6倍。因干式冷却塔有后两点不利因素,所以在有条件的地区,应尽量采用湿塔。干塔可以用自然通风,也可以用机械通风。以火电厂常用的干式冷却塔为例,分为间接冷却和直接冷却两类。间接冷却是指用冷却塔中冷却后的水,送往凝汽器中冷却由汽轮机井出的乏汽。直接冷却是指不用凝汽器,将汽轮机排出的乏汽,用管道引人冷却塔直接冷却,变为凝结水,用水泵送回锅炉重复使用。海勒(Heller)系统间接空冷干式自然通风冷却塔。它的特点是使用喷射式凝汽器,汽轮机排出的乏汽与从冷却塔来的冷水,在凝汽器内直接混合,因此端差很小。混合后的水,约2%送回锅炉,其余的水送到冷却塔冷却。因冷却水和锅炉水为同一种水,所以对水质要求高。另外一个特点是,经冷却塔冷却后的水仍有较大的余压,在送人凝汽器以前,先用小型水轮发电机口收能量。它的散热器放在塔简的外边,类似湿式横流塔。散热器也可以像湿式逆流塔一样放在塔筒里面,但为了排走散热器中的水,散热器不是完全水平布置,而有一定的坡度。另外一种间接空冷塔,使用表面式凝汽器,乏汽和冷却水互不相混。散热器用翅片管或螺纹管,材质为钢或铝。管断面为椭圆形或圆形。直接空冷塔从汽轮机排出的乏汽,通过管道直接送入冷却塔内的散热管,用风机通风冷却成凝结水,不要凝汽器,所以称直接空冷。因为是将蒸汽直接送人散热管,而不像间接空冷送人冷却塔的是热水、因蒸汽体积比水大得多,所以送汽管特别粗,直径约为间接空冷的三倍多。另外,输汽管道不能漏汽,不然就会直接影响汽轮机真空,降低出力。干湿式冷却塔这种塔为湿式塔和干式塔的结合,干部在上、湿部在下。也有的塔四面进风,相对两边为湿部;另外两边为干部。采用这种塔的目的,部分是为了省水,但大多数是为了消除从塔出口排出的饱和空气的凝结,因而造成塔周围的污染。从塔下部湿段排出的湿空气,在同塔周围的冷空气接触后,即变成过饱和的空气而凝结,形成雾,造成污染。塔上部用干段,则由塔下部湿段排出的饱和湿空气,流经干段时,会被加热而变成不饱和的空气,因而出塔后不会凝结。喷流式冷却塔。为美国

相关主题
文本预览
相关文档 最新文档