当前位置:文档之家› 电容层析成像系统图像重建算法的研究

电容层析成像系统图像重建算法的研究

电容层析成像系统图像重建算法的研究
电容层析成像系统图像重建算法的研究

技术创新

中文核心期刊《微计算机信息》(管控一体化)2007年第23卷第6-3期

360元/年邮局订阅号:82-946

《现场总线技术应用200例》

图像处理

电容层析成像系统图像重建算法的研究

StudyonImageReconstructionAlgorithmforElectricalCapacitanceTomographySystem

(江南大学)曹琳琳

CAOLINLIN

摘要:本文利用Tikhonov正则化和奇异系统理论,分析了引起电容层析成像系统逆问题不适定性的根本原因是由于敏感场

矩阵小奇异值的存在。针对一般Tikhonov正则化方法将所有的奇异值都采取同一正则化参数修正带来的误差,本文将小奇异值对应的项设定正则化参数,而舍去零奇异值对应向量,既减少了误差又加快了速度。例算结果表明,用本文方法重建图像,比其它如线性反投影算法(LBP)、Landweber迭代法及一般Tikhonov正则化算法,都有一定程度的改善。关键词:电容层析成像;图像重建算法;Tikhonov正则化;奇异系统中图分类号:TP212文献标识码:A

Abstract:BasedonTikhonovregularizationandsingularsystemtheory,itisanalyzedthatthecauseoftheill-posedcharacteristicoftheinverseprobleminelectricalcapacitancetomographysystemisduetothesmallsingularvaluesofthesensitivitydistributionma-trix.DifferfromtheconventionaltechniqueinTikhonovregularizationmethodthatallthesingularvaluesaremodifiedwiththesameparameter,whichwillresultinmoresolutionerror,anewtechniqueisproposedinthispaper,inwhichsmallsingularvaluesexceptthezerosaremanipulatedbytheregularization.Lesssolutionerrorandrapidersolvingprocedurecanachievedbyusingthistech-nique.Numericalexperimentsshowthattheproposedmethodcanprovideimagessuperiortothosereconstructedbythelinearbackprojection(LBP),LandweberiterativemethodandthestandardTikhonovregularizationmethod.

Keywords:electricalcapacitancetomography,imagereconstructionalgorithm,Tikhonovregularization,singularsystemtheory

文章编号:1008-0570(2007)06-3-0272-03

引言

电容层析成像(ElectricalCapacitanceTomography,简称

ECT)中图像重建算法的研究是ECT技术和应用的重点环节。

实现图像重建的基本思路是在分析电极激励的静电场问题得到敏感场数据以后,建立被测介电常数与测量电容值之间的关系方程,再运用合适的方法反演截面图像,并要求一定的成像质量和速度。ECT图像重建属于逆问题,通常观测数据值远远少于被测数据,而且由于敏感场矩阵本身存在的大条件数,导致求解问题的不适定性,另由于ECT系统固有的“软场”性质,待解问题的非线性,使这类问题的求解有一定的困难。

当前存在的ECT图像重建算法中,常用的方法有线性反投影算法(LBP)、Landweber迭代法及Tikhonov正则化算法。LBP将问题看成简单线性问题,求解速度快,但是误差较大;而

Landweber迭代法利用LBP得到初始图像,然后计算电容值和

测量电容值之间的误差,反复进行修正,可以得到比较精确的图像,但同时速度慢,不利于实时应用。

Tikhonov正则化方法用于ECT的图像重建,它方法上是引

入一正则化参数试图减小敏感场矩阵的条件数,然后进行求解,但是实质上却对敏感场矩阵所有的奇异值都加上了一个正则化参数,这样对大奇异值项来说,肯定会造成一定的误差,所以本文为了避免这种误差的存在,将解展开为奇异向量的线性组合,通过分析小奇异值对应的项对计算结果产生的影响,给出了选择合适的正则化参数的方法,可使图像重建达到比较理想的结果。1基本理论知识

设存在一病态线性方程组

Ax=y(1)

式中A属于m×n矩阵,x为n维向量,y为m维向量。标准

Tikhonov正则化方法将问题转化为求下列的范函最小值问题:

(2)

式中λ为正则化参数,该范函极值问题的正则化解xα也是

下列方程的唯一解:

(3)

设A的奇异系统为

,即满足

(4)

则可得到

(5)

A的奇异值为μi,则AT

A的特征值为μi2。那么根据特征值

理论满足

(6)

从而使得

(7)

代入(5)式则可得到正则化解为

(8)

可以看出,方程(1)的解可以看作是奇异向量xi和系数

的线性组合。但是如果系数矩阵A的性态不好,存

在相对很小的奇异值,则相对小奇异值的某些组合分量即具有

很大的系数。此时如果已知向量y存在误差或噪声,并且该噪

曹琳琳:硕士研究生

272--

邮局订阅号:82-946360元/年技

术创新

图像处理

《PLC技术应用200例》

您的论文得到两院院士关注

声在小奇异值对应向量上存在投影,即会导致方程解奇异向量线性组合中的对应向量被放大,使结果明显偏离实际应该得到的解。在实际应用中,由于ECT本身必然存在测量误差等因素,所以必须对小奇异值及其对应的奇异向量采取措施,以保证一定的求解精度,其中正则化是通常使用的方法。目前在Tikhonov正则化参数λ的选取方面所具有的方法包含基于Morozov偏差原理的方法、广义交叉校验方法等。本文利用文献中的方法,选择了利用L曲线法来确定正则化参数的取值。

2ECT系统的图像重建

在ECT系统中,图像重建公式为

SG=C

(9)式中S是m×n维的敏感场矩阵,一般通过有限元法得到;G是n维的归一化介电常数分布向量;c是m维的归一化电容测量值向量,在图像重建中代表介电常数灰度值。则解为

(10)

式中各参数代表的含义可以类推。本文以气/油两相流为对象,采用8电极阵列,可以得到28组电容测量值。而在有限元剖分场域时采取三角剖分将管道内部划分为392个单元。相对应的,敏感场矩阵S的维数为28×392,因为STS共具有392个特征值,所以S具有28个非零奇异值以及364个零奇异值。在一般Tikhonov正则化的处理中,是采取了下式

(11)

来进行求解,实质上将S的所有奇异值都加入了正则化参数λ进行修正处理,转化成(10)式中的i的取值为1到392。

这样处理虽然成像速度较快,但是却将所有的奇异值采取同样的处理,造成的结果是一方面以削弱了小奇异值带来的放大作用,另一方面却不可避免带来了大奇异值项的误差。针对这个问题,本文先对敏感场矩阵S进行奇异值分解,可以求得各奇异值的值,如图1所示。从图中可以看出,各奇异值比较分散而且后几个奇异值接近于零,所以必须考虑这些值对结果产生的误差。

图1敏感场矩阵的奇异值分布图

Fig.1Singularvaluesofthesensitivitymatrix

将各非零奇异值对应的奇异向量Gi展开,然后映射到管道区域,而将每个区域单元的具体数值以正数和负数区分,如图2

所示。将这些分布图称作奇异向量模式图,对应向量表示了组成解的基向量,方程的解可以用这些向量的线性组合表示。图中黑色区域代表正值,白色区域代表负值,i的顺序以奇异值从大到小排列。通过考察各种模式的图形表示,可知:

1.大奇异值和小奇异值对应的奇异向量模式分布具有明显

的区别。大奇异值对应模式的分量起伏的次数较少,而小奇异值对应模式的起伏次数较多。模式图以图形方式解释了大奇异值对应解的低频分量和小奇异值对应高频分量的数学、物理意义;

2.解中大奇异值模式部分构成了解的大致轮廓,决定了解

的主要近似部分,所以本文完整保留了该部分。但仅仅以这部分为解仍然与实际分布存在较大的偏差;

3.解中小奇异值模式可用以构成解的细节部分,但如果不

进行任何处理,也会导致在解组合中对应模式幅度被放大,使结果因已知向量的噪声误差而产生偏差。后者即为需要正则化求解的原因。对此一般有两种方法:一是舍去这些小奇异值对应的项。试验证明,对多电极的ECT系统,敏感场矩阵的性态很差,最小奇异值很小,此时适宜采取这种方法;二是加入正则化参数,以削弱小奇异值因噪声而导致解产生偏差。对于8电极组成的ECT系统,数值实验表明采取后者的处理方式更加合适;

4.由于STS存在很多零奇异值,而零奇异值对应奇异向量

对于解的组成而言属于线性相关项,并没有增加附加的信息,所以可以采取舍去处理。

基于以上几点,取值的范围应为1到28,求解过程可以用以下计算公式表示:

(12)

图2奇异向量映射得到的模式图

Fig.2Mappingmodesofsingularvectors

3成像仿真效果分析

在比较不同图像重建算法重建图像时,本文中的测量数据即电容值通过有限元法仿真得到,这是数值实验通常采用的方法,以便构造出各种各样两相介质的分布模型并计算出相应的投影数据,从而在成像质量和速度做出比较全面的评估。

本文采用的ECT系统,激励电位为5V。传感器参数为:内管壁半径R1=25.5mm,外管壁半径R2=32.5mm,屏蔽罩半径R3=

36.5mm,

,管壁介电常数,填充

材料

,管道内、管道壁和屏蔽罩分别剖分为7层、3层和2

层。在和当前常用的图像重建算法比较中,选择了线性反投影算法(LBP)、Landweber迭代法和一般正则化法。在本文方法中,正则化参数λ取值为0.003。分别以核心流、环形流、层流和一

般流型为原型,几种不同的图像重建算法经过滤波处理之后的仿真结果如图3所示(黑色代表油相,白色代表气相)。

(a)

273-

术创新

中文核心期刊《微计算机信息》(管控一体化)2007年第23卷第6-3期

360元/年邮局订阅号:82-946

《现场总线技术应用200例》

图像处理

(b)

(c)

(d)原型

LBP法

迭代法正则化法本文方法图3仿真模型及成像效果比较

Fig.3Simulatedexamplesandthereconstructedimages

图像重建质量的好坏采用占空比(即含油率)作为评价的依据,各算法的占空比数值如表1所示。可以看出,在四种图像重建算法中,LBP算法成像比较模糊,偏差较大。Landweber迭代法效果比较好,但收敛速度较慢,在实时性方面较差。一般正则化法成像速率快,但和原型比较,占空比还是有一定偏差,而本文的方法成像效果最优,从速度和质量两方面的因素综合考虑可以得出这样的结论。

表1不同图像重建算法所重建图像的占空比

Tab.1.Space-occupiedrateofreconstructedimagesusingdifferentimagereconstructionalgorithms

4结语

在研究ECT问题的图像重建算法中,敏感场矩阵的病态性是影响图像重建质量的主要因素之一。本文利用Tikhonov正则化和奇异系统基本理论,将小奇异值部分进行正则化修正,对图像的重建起到了较好的改进作用。而在具备当今计算机硬件和Matlab仿真工具的条件下,仿真实验的结果也验证方法的正确性。

创新点:ECT系统中一般Tikhonov正则化方法实质上将敏感场矩阵所有奇异值都利用正则化参数加以修正,导致结果有所偏差。本文将正则化解用奇异系统理论展开,在确保大奇异值部分的值得到完整保留后,针对小奇异值利用合适正则化参数进行修正,最后舍去零奇异值部分。实验结果证明,本文方法比一般Tikhonov正则化方法效果更佳。

参考文献

[1]曹琳琳。基于Matlab的电容层析成像敏感场的仿真研究[J]微计算机信息,2006,22(4-1):289-291。[2]赵进创,

傅文利,张锦雄,李陶深。正则化优化修正的电容层析成像图像重建算法[J]。仪器仪表学报,2004,25(1):1-38。[3]PerChristianHansen.

Rank-deficientanddiscreteill-posed

problems:Numericalaspectsoflinearinversion[M].Philadelphia:SocietyforIndustrialandAppliedMathematics,1997

[4]刘继军。不适定性问题的正则化方法及应用[M].北京:

科学出版社,2005。[5]黄卡玛,赵翔。电磁场中的逆问题及应用[M].北京:科学出版社,2005。[6]王化祥,

何永勃,朱学明。基于L曲线法的电容层析成像正则化参数优化[J].天津大学学报,2006,39(3):306-309。[7]史志才。电容层析成像图像重建的不适定性及其改进[J],2002,15:25-51。

作者简介:曹琳琳(1981,7-),男,汉,安徽绩溪人,检测技术与自动化装置硕士研究生。

Biography:CaoLinlin(1981,7-),male,han,Jixi,Anhui,de-tectingtechnologyandautomaticdevice,B.E.

(214122江苏无锡江南大学通信与控制工程学院)曹琳琳通讯地址:(214122江苏省无锡市蠡湖大道1800号江南大学桔园公寓32-506#)曹琳琳

(收稿日期:2007.4.03)(修稿日期:2007.5.05)

(上接第283页)

其进一步的研究可从能动态确定聚类数量的PSO算法的发展以及种群大小、迭代次数和其它PSO参数对PSO算法性能的影响等方面来进行。

创新点:将微粒群算法引入图象分类领域,并通过实验仿真,验证了其算法的可行性和适应性。

参考文献

[1]M.Omran,A.EngelbrechtandA.Salman.ParticlesSwarmOptimizationMethodforImageClustering[J].PatternRecognitionandArtificialIntelligence,2005.

[2]KennedyJ,EberhartR.C.ParticleSwarmOptimization.In:Proc.IEEEInt’l.Conf.onNeuralNetworks,IV.Piscataway,NJ:IEEE

ServiceCenter,1995,1942-1948.

[3]曾建潮,

介婧,崔志华.微粒群算法[M]北京:科学出版社,2004,5.[4]施博学,

王志良,刘冀伟.基于RTP实时远程图像传输研究与实现[J]微计算机信息,2005,21(2):178 ̄179.

作者简介:周鲜成(1965-),男,汉,博士研究生,副教授。研究方向为智能控制和信息处理。

Biography:ZhouXiancheng(1965-),male,hanethnic,associateprofessor,doctorcandidate.Researchfield:IntelligenceControl,InformationProcessing.

(410205湖南省湖南商学院计算机与电子工程系)周鲜成通讯地址:(410205湖南省湖南商学院200号信箱)周鲜成

(收稿日期:2007.4.03)(修稿日期:2007.5.05)

书讯

《嵌入式系统应用精选200例》110元/本(免邮资)汇至

《PLC应用200例》

110元/本(免邮资)汇至

地址:北京海淀区皂君庙14号院鑫雅苑6号楼601室

微计算机信息杂志收邮编:100081电话:010-62132436010-62192616(T/F)

274--

网络透视技术

网络透视技术 1.1网络透视技术概念 网络透视技术(Network Tomography)是一门新兴的兼具网络测试与网络预警的技术,旨在通过发送特定的数据包(我们也称其为探测包)并将其发送到某特定网络,利用P2P的方法得到链联级的性能特性,比如:丢包率、平均延迟、吞吐量、背靠背缓冲能力等.将所得的信息进行统计、综合分析。 网络透视在原理上和医学上的CT等原理相象,它是基于一种端对端的技术来获取网络中那些不能直接观察到的信息,它通过发送多种探测包给指定的接收器(服务器),观察并分析接受器所获得的信息,最后通过统计和推断来获得各种网络信息【8】。 网络透视技术也称为网络层析成像技术、推理性的网络监视技术,他们都是基于对大规模网络中有限个节点的传输测量,使用统计学的原理来估算或推断网络的性能参数。 1.2目前相关的研究内容 目前网络透视技术相关的研究内容有很多其重点需解决的问题有,怎样通过了解网络的内部特征以及网络拓扑的结构向特定网络发送探测包,探测包怎样发送、怎样做才比较合适。怎样对探测包反馈的信息进行综合统计和分析。我们可以将目前相关的研究内容分为以下三部分。 第一部分为数据的获取,其中主要研究如何获取网络内部的相关有用信息。一种方法如上所述采用发送各种探测包的技术,称为主动方法。另一种方法不发送专门的探测包,而依赖于观察发生在某一个服务器的各种请求来推断各种网络相关信息。这两种方法各有优缺点,主动方法有着可控制的优点,但是需要发送探测包,因此需要使用一定带宽,被动方法则恰恰相反【8】。 第二部分为网络连接的研究,它是基于当今网络结构的复杂性、地域的分制性、性能的多样性,来研究网络拓扑以及网络的链路特征,是网络透视技术在各种应用中得以实现的主要依据。 第三部分为统计推断,它主要是根据通过第一、二部分获取的数据和网络拓扑结构来发现网络内部的信息和规律。

层析成像

地震层析成像理论及技术-瑞雷面波理论基础与反演成像

瑞雷面波理论基础与反演成像 瑞雷面波是1887年由英国学者瑞雷(Rayleigh )首先在理论上确定的,这种面波分布在自由表面上。当介质为均匀各向同性介质时,瑞雷面波的相速度和群速度将一致,否则瑞雷波的相速度将不一致,出现频散现象,当介质具有水平层状性质时,瑞雷面波的频散规律与介质的分层结构紧密相关。面波研究的目的是要通过面波信号得到地下介质的结构及其物理力学性质,这就需要进一步反演解释研究。 1. 瑞雷波的理论基础 由于均匀弹性半空间介质的边界附近沿x 方向传播的平面瑞利谐波y 方向的质点位移为零。设半空间充满x-y 平面,z 方向向下为正,坐标原点位于介质的自由表面上,如图所示1-1 为推导方便,引入势函数Φ和ψ来分别表示x 和z 方向的位移(u 和w ),则 ,u w x z z x ?Φ?ψ ?Φ?ψ = -= +???? 1.1 平面瑞利波波前 质点位移随深度增加 而衰减 波的传播方向 图1-1 均匀弹性半空间中的平面瑞利波

由位移表示的二维运动方程为 2222 22u u w w ()()ερλμμερλμμ??=++?????=++???t x t z 1.2 由此可见,势函数的引入将胀缩波和剪切波区分开来(Φ与胀缩波对应,ψ与剪切波对应)。将式(1.1)代入(1.2)得 22222222 222222x t z t x z z t x t z x ρρλμμρρλμμ??????Φ??ψ?? -=+?Φ?ψ ? ?????????????????Φ??ψ??+=+?Φ+?ψ ? ???????????()()-()()()() 1.3 又有 22222222p s 22 2v v ,λμμρρ ?Φ+?ψ=?Φ=?Φ=?ψ=?ψ??t t 1.4 由于平面瑞利波的位移发生在x-z 平面内,因此由式(1.1)和式(1.4)可知,瑞利波是P 波和SV 波相互作用的结果。 对于一个角频率为ω,波数为k ,沿x 方向传播的瑞利谐波,其势函数可表示为: ()()F ()G (),ωω--Φ=ψ=i t kx i t kx z e z e 1.5 其中,F()z 和G()z 分别表示瑞利波胀缩分量和旋转分量的振幅随深度变化的函数;波数R 2L k π = ,R L 为瑞利波波长。 将式(1.5)代入式(1.4)并整理得 22222p 2 2 222s F()F()=0v G()G()=0v ωω?? ?-- ? ?????? ?-- ??? ? z k z z z k z z 1.6 上述二阶偏微分方程的通解为 1122F()=A B G()=A B --++qz qz qz qz z e e z e e 1.7

电容层析成像系统图像重建算法的研究

技术创新 中文核心期刊《微计算机信息》(管控一体化)2007年第23卷第6-3期 360元/年邮局订阅号:82-946 《现场总线技术应用200例》 图像处理 电容层析成像系统图像重建算法的研究 StudyonImageReconstructionAlgorithmforElectricalCapacitanceTomographySystem (江南大学)曹琳琳 CAOLINLIN 摘要:本文利用Tikhonov正则化和奇异系统理论,分析了引起电容层析成像系统逆问题不适定性的根本原因是由于敏感场 矩阵小奇异值的存在。针对一般Tikhonov正则化方法将所有的奇异值都采取同一正则化参数修正带来的误差,本文将小奇异值对应的项设定正则化参数,而舍去零奇异值对应向量,既减少了误差又加快了速度。例算结果表明,用本文方法重建图像,比其它如线性反投影算法(LBP)、Landweber迭代法及一般Tikhonov正则化算法,都有一定程度的改善。关键词:电容层析成像;图像重建算法;Tikhonov正则化;奇异系统中图分类号:TP212文献标识码:A Abstract:BasedonTikhonovregularizationandsingularsystemtheory,itisanalyzedthatthecauseoftheill-posedcharacteristicoftheinverseprobleminelectricalcapacitancetomographysystemisduetothesmallsingularvaluesofthesensitivitydistributionma-trix.DifferfromtheconventionaltechniqueinTikhonovregularizationmethodthatallthesingularvaluesaremodifiedwiththesameparameter,whichwillresultinmoresolutionerror,anewtechniqueisproposedinthispaper,inwhichsmallsingularvaluesexceptthezerosaremanipulatedbytheregularization.Lesssolutionerrorandrapidersolvingprocedurecanachievedbyusingthistech-nique.Numericalexperimentsshowthattheproposedmethodcanprovideimagessuperiortothosereconstructedbythelinearbackprojection(LBP),LandweberiterativemethodandthestandardTikhonovregularizationmethod. Keywords:electricalcapacitancetomography,imagereconstructionalgorithm,Tikhonovregularization,singularsystemtheory 文章编号:1008-0570(2007)06-3-0272-03 引言 电容层析成像(ElectricalCapacitanceTomography,简称 ECT)中图像重建算法的研究是ECT技术和应用的重点环节。 实现图像重建的基本思路是在分析电极激励的静电场问题得到敏感场数据以后,建立被测介电常数与测量电容值之间的关系方程,再运用合适的方法反演截面图像,并要求一定的成像质量和速度。ECT图像重建属于逆问题,通常观测数据值远远少于被测数据,而且由于敏感场矩阵本身存在的大条件数,导致求解问题的不适定性,另由于ECT系统固有的“软场”性质,待解问题的非线性,使这类问题的求解有一定的困难。 当前存在的ECT图像重建算法中,常用的方法有线性反投影算法(LBP)、Landweber迭代法及Tikhonov正则化算法。LBP将问题看成简单线性问题,求解速度快,但是误差较大;而 Landweber迭代法利用LBP得到初始图像,然后计算电容值和 测量电容值之间的误差,反复进行修正,可以得到比较精确的图像,但同时速度慢,不利于实时应用。 Tikhonov正则化方法用于ECT的图像重建,它方法上是引 入一正则化参数试图减小敏感场矩阵的条件数,然后进行求解,但是实质上却对敏感场矩阵所有的奇异值都加上了一个正则化参数,这样对大奇异值项来说,肯定会造成一定的误差,所以本文为了避免这种误差的存在,将解展开为奇异向量的线性组合,通过分析小奇异值对应的项对计算结果产生的影响,给出了选择合适的正则化参数的方法,可使图像重建达到比较理想的结果。1基本理论知识 设存在一病态线性方程组 Ax=y(1) 式中A属于m×n矩阵,x为n维向量,y为m维向量。标准 Tikhonov正则化方法将问题转化为求下列的范函最小值问题: (2) 式中λ为正则化参数,该范函极值问题的正则化解xα也是 下列方程的唯一解: (3) 设A的奇异系统为 ,即满足 (4) 则可得到 (5) A的奇异值为μi,则AT A的特征值为μi2。那么根据特征值 理论满足 (6) 从而使得 (7) 代入(5)式则可得到正则化解为 (8) 可以看出,方程(1)的解可以看作是奇异向量xi和系数 的线性组合。但是如果系数矩阵A的性态不好,存 在相对很小的奇异值,则相对小奇异值的某些组合分量即具有 很大的系数。此时如果已知向量y存在误差或噪声,并且该噪 曹琳琳:硕士研究生 272--

井间地震层析成像的现状与进展

2001年9月地球物理学进展第16卷第3期井间地震层析成像的现状与进展 裴正林 (石油大学(北京)物探重点实验室,北京,100083) 摘要:综述了井间地震层析成像研究的现状,给出了小波变换域井间地震层析成像方法的最新 进展,并对井间地震层析成像研究给予展望. 关键词:井间地震层析成像;小波多尺度;研究进展 中图分类号:P315.3+1文献标识码:A文章编号:1004-2903(2001)03-0091-07 1井间地震层析成像的研究现状 井间地震层析成像也称为井间地震CT技术,它能够提供被探测地质体的构造和岩性 分布的高分率图像.井间地震CT技术是从医学CT技术发展起来的,其数学基础是Radon变换.井间地震CT的研究基本始于20世纪70年代初,80年代处于对大量模型数据和少量实 际数据的成像研究阶段,90年代以来,井间地震CT进入实用化阶段,并取得不少可喜成果,同时,也逐渐意识到射线CT所固有的缺点,开始研究波动方程CT. 从地震波的运动学和动力学特征出发,井间地震CT方法可分为两大类:一类是基于几 何光学或射线方程的方法称之为射线CT;另一类是基于波动方程的方法称之为波形CT.当 非均匀体的线性尺度大于地震波长时,射线CT是适用的;而当非均匀体的线性尺度与波长 相近时,衍射和散射就起主导作用了,基于射线理论的成像方法就不再适用,这时候必须用 波动方程CT方法. 井间地震层析成像方法主要包括两部分:正演方法和反演方法.井间地震层析成像的正 演方法可分为两种;一是射线追踪方法;二是波场的数值模拟方法. 射线理论和射线方法是研究地震波传播理论的重要方面之一.用射线理论可以研究地 下复杂构造、横向不均匀介质中的地震波传播问题.经过射线追踪,计算地震波的走时、波前 和射线路径. 70年代以前的各种射线追踪方法一般适合于较为简单模型的射线追踪[1].由于实际 的介质速度变化较大(速度差大于10%),因此,需要研究复杂结构模型的射线追踪方法. 收稿日期:2001-03-15;修订日期:2001-06-15. 基金来源:“九五”国家科技攻关项目资助(959130602). 作者简介:裴正林,1962年生,2000年获中国地质大学(北京)地球探测与信息技术专业博士.高级工程师,现在石油大学(北京)从事博士后研究.主要研究方向:信号处理,小波变换、遗传算法及神经网络应用,层析成像理论方法和地震数据 处理、偏移方法等方面研究.E-mail:zhenglinpei@https://www.doczj.com/doc/1f3976109.html,.

层析成像

层析成像 姓名:李文忠 学号:200805060102 班级:勘查技术与工程(一)班

前言 层析成象是在物体外部发射物理信号,接收穿过物体且携带物体内部信息,利用计算机图象重建方法,重现物体内部一维或三维清晰图象。层析成象技术最大的特点是在不损坏物体的条件下,探知物体内部结构的几何形态与物理参数(如密度等)的分布。层析成象与空间技术、遗传工程、新粒子发现等同列为70年代国际上重大科技进展。层析成像应用非常广泛,如医学层析的核磁共振成像技术、工业方面的无损探伤、在军事工业中,层析成象用于对炮弹、火炮等做质量检查、在石油开发中被用于岩心分析和油管损伤检测等,层析成象是在物体外部发射物理信号,接收穿过物体且携带物体内部信息,利用计算机图象重建方法,重现物体内部一维或三维清晰图象。声波层析成像技术 声波层析成像方法所研究的主要内容,一个是正演问题,即射线的追踪问题,是根据已知速度模型求波的初至时间的问题;另一个问题就是反演问题,即根据波的初至时间反求介质内部速度或者慢度分布的问题。层析成像效果的好坏与解正演问题的正演算法和解反演问题的反演算法都有直接的关系。论文详细研究声波层析成像的射线追踪算法,重点探讨了基于Dijkstra算法的Moser曲射线追踪算法,并用均匀介质模型、空洞模型、低速斜断层等模型使用Moser曲射线追踪时的计算精度与计算效率,发现了内插节点是影响Moser曲射线追踪效果的主要因素,得到了内插节点数为5~7之间,计算速度较快,计算精度较高。模型试算的结果表明,正演采用内插10个节点,

反演过程中采用内插5个节点,效果最佳。在层析成像正演算法的基础上,详细研究了误差反投影算法(BPT)、代数重建法(ART)、联合迭代法(SIRT);研究了非线性问题线性化迭代的最速下降法、共轭梯度法(CG);重点推导和建立了层析成像的高斯—牛顿反演法(GN);详细研究了非线性最优化的蒙特卡洛法(MC)、模拟退火法(SA)、遗传算法(GA);研究了将非线性全局最优化和线性局部最优化方法相结合的混合优化方法,探讨了基于高斯牛顿和模拟退火相结合(GN-SA)混合优化算法。在此基础上,以速度差为10%的低速斜断层模型为例,详细探讨了线性化算法SIRT、GN;非线性最优化算法SA、GA以及混合优化算法GN-SA五种算法对该模型的计算结果,并探讨了直射线和Moser曲射线追踪的反演效果。数值试验表明,基于Moser曲射线追踪的高斯—牛顿反演法的层析成像效果最佳,计算效率最高。采用基于Moser曲射线追踪的高斯—牛顿法,对速度差为25%的等轴状空洞构造、速度差为33%的不连通空洞模型、速度差为33%的高速岩脉进行了反演试算,对于这些理论模型,高斯—牛顿法均取得了较好的成像效果。为进一步验证各种层析成像法,在实验室制作了水泥台和石膏板实物模型,并分别在水泥台中央制作一个方形空洞,在石膏板中央制作一个倒“L”形空洞。对这两个实物模型进行了实测,对测量的数据,用高斯—牛顿法进行层析成像反演,均取得了较好的成像效果。通过本文的研究和数值试验,得到了以下结论:(1)基于直射线追踪方法,适用较为简单的地质体,亦或是测量精度要求不高的问题。由于直射线追踪方法在成像过程中,只需要追踪一次就可以

电容器的工作原理及结构

电容器工作原理这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过场的形式在电容器间通过的。 电容 diànróng 1. [capacitance;electric capacity]:电容是表征电容器容纳电荷的本领的物理量,非导电体的下述性质:当非导电体的两个相对表面保持某一电位差时(如在电容器中),由于电荷移动的结果,能量便贮存在该非导电体之中 2. [capacitor;condenser]:电容器的俗称 [编辑本段]概述 定义: 电容(或称电容量[4])是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质

医学图像分割综述

医学图像分割综述 郭爱心 安徽大学 摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。 关键字:医学图像分割意义方法评估标准发展前景 A Review of Medical Image Segmentation Ai-Xin Guo Anhui University Abstract:Image segmentation is the key of image processing and analysis.With the development of medical image,image segmentation is of great significance in medical applications.From the perspective of medical applications,this paper made a simple review of the medical image segmentation on it’s significance、methods、evaluation standards and development prospects. Key words:medical image,segmentation,significance,methods,evaluation standards,development prospects 1.医学图像分割的意义 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超声)及其它医学影像设备所获得的图像[2]。医学图像分割是将原始的2D或3D图像划分成不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来[1]。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。 医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可避免的具有模糊、不均匀性等特点。另外,由于人与人之间有很大的差别,且人体组织结构形状复杂。这些都给医学图像分割带来了困难。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 2.医学图像分割的方法 2.1.基于区域的分割方法 基于区域的分割方法有阈值法,区域生长和分裂合并,分类器与聚类和基于随机场的方法等。 阈值分割是最常见的并行直接检测区域的图像分割方法。如果只用选取一个阈值称为单阈值分割,它将图像分为目标和背景;如果需用多个阈值则称为多阈值方法,图像将被分割为多个目标区域和背景,为区分目标,还需要对各个区域进行标记。阈值分割方法基于对灰度图像的一种假设:目标或背景内的相邻像素间的灰度值是相似的,但不同目标或背景的像素在灰度上有差异,反映在图像直方图上就是不同目标和背景对应不同的峰。选取的阈值应位于两个峰之间的谷,从而将各个峰分开[2]。阈值分割的优点是实现相对简单,对于不类的物体灰度值或其他特征值相差很大时,能很有效的对图像进行分割。阈值分割通常作为医学图像的预处理,然后应用其他一系列分割方法进行后处理。阈值分割的缺点是不适用于多通道图像和特征值相差不大的图像,对于图像中不存在明显的灰度差异或各物体的灰度值范围

光学相干层析成像技术的发展应用综述.doc

光学相干层析成像技术的发展应用综述 2020年4月

光学相干层析成像技术的发展应用综述本文关键词:层析,成像,相干,光学,综述 光学相干层析成像技术的发展应用综述本文简介:光学相干层析成像技术(OpticalCoherenceTomo-graphy,OCT)是一种非侵入、非接触和无损伤的光学成像技术,它将低相干干涉仪与共焦扫描显微术结合在一起,利用高灵敏度的外差探测技术,能够对生物组织或其他散射介质内部的微观结构进行高分辨率的横断面层析成像[1].OCT技术的研究始于 光学相干层析成像技术的发展应用综述本文内容: 光学相干层析成像技术(Optical Coherence Tomo-graphy,OCT)是一种非侵入、非接触和无损伤的光学成像技术,它将低相干干涉仪与共焦扫描显微术结合在一起,利用高灵敏度的外差探测技术,能够对生物组织或其他散射介质内部的微观结构进行高分辨率的横断面层析成像[1].OCT 技术的研究始于20 世纪90 年代初,作为一种新型的生物医学成像技术,它的出现极大地丰富了光学检测手段在医疗和病理诊断方面的应用,成为医学临床的研究热点。

在此后的二十多年里,OCT 的技术水平迅速提高,并广泛应用于生命科学基础研究、临床医学应用及非均匀散射材料检测等方面[1-4]. 1 OCT 技术概述 OCT 利用低相干干涉(Low Coherence Interferom-etry,LCI)的基本原理和宽带光源的低相干特性产生组织内部微观结构的高分辨率二维层析图像[2],结构如图 1 所示。宽带光源发出的低相干光经过迈克尔逊干涉仪的分束镜分成两部分,一束进入参考臂经参考镜反射,另一束进入样品臂经样品发生后向散射。参考镜反射光和样品后向散射光经分束镜重新回合后发生干涉,由于样品后向散射光中含有样品的微观结构信息,因此可以根据干涉信号重构样品的一维深度图像,并由一系列横向位置临近的一维深度图像合成样品的二维横断面层析图像和三维表面形貌图像。 传统的医学成像技术有计算机断层扫描(CT)、超声波成像(US)、核磁共振成像(NMRI)等,而光学成像技术有光学相干层析成像术(OCT)、共聚焦光学显微术、扩散光层析成像术等;这些成像技术的原理不同,因而分辨率、穿透深度和适应对象也不相同[2].超声技术可

电容工作原理

电容工作原理 电容串联可以隔直通交,并联可以滤波。 电容器就是两片不相连的金属板.电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。滤波电路是把脉冲通到地去了,不是通到输出端。 正因为通交流,才能把交流成分通向地,保留直流成分. 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 其实主要是充放电的工作原理。其实电容就相当于 一个水库,让过来的有波动的水变的很平稳 电解电容的作用有滤波,一般用在整流桥的后面。 你可以看一下电容是并连还是串连在回路里,并联的话是率除高频,串联的话是率除低频。还有降压电容。还有隔直的作用,一般做保护用! 电容串联和并联在电路中各有什么作用? 电容的作用是储存、释放电荷,可起到隔直通交、滤波、振荡作用 电容在电路中:如串联使用一般作为交流信号隔离,如音频功放、视频放大器等 如并联使用一般作为滤波,如电源、信号处理电路中噪声去除等 如与电感或其他芯片并联可组成振荡回路,如无线信号发射、接收、调制、解调等 电容并联可增大电容量,串联减小。比如手头没有大电容,只有小的,就可以并起来用,反之,没有小的就可以用大的串起来用。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。 作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。 电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。

电容层析成像技术测量电路的设计【开题报告】

毕业设计开题报告 电子信息工程 电容层析成像技术测量电路的设计 1、选题的背景、意义 过程成像(PT:PROCESS TOMOGRAPHY)技术是近年来才发展起来的一种两相或多相流测量技术,其优点是利用被测物体外部的检测信息,获得被测物体内部变化∕高速流状态。过程成像经常使用特殊方法设计的探测器,通过非侵入式的方法取得被测两相流或多相流介质的场(如电磁场)信息,可以根据场的信息和被测物体的作用原理,应用数学的方法重建两相流或多相流在管道内或反应装置的内部的横截面上的动态分布的情况。在我们日常生活中,过程成像可用于研究化工、石油等各种固体、气体的物料输送管道中的气或固两相流和气或固或液多相流得流态化、反应、扩散以及混合等动态过程,以监控反应器中气泡的分布和大小以及反应器中气泡的破碎和合并等过程;通过工业过程中的建立的模型,研究反应器中反应速率、质量传递以及热量传递的关系,提高反应器的选择性、转化率以及安全性等[1]。 电容层析成像技术(ECT)是医学CT技术在工业流动过程上的改革与发展,是目前用来解决多相流参数测量难度大的最新手段。ECT(Electrical Capacitance Tomography)是在应用于多相流参数检测的一种新型技术,原理是依靠检测非导电物场内介质分布变化引起的电容值的变化,通过某种图像重建算法来反演物场内的介质分布,从而实现对两相流参数的测量。工业过程成像技术中,电容的成像技术(ELECTRICAL CAPACITANCE TOMOGRAPHY,简称ECT)以它廉价、高速和非辐射等特点,在近十几年来获得很大发展[2]。 其实,早在二十世纪八十年代中期,以英国曼彻斯特理工大学BECK M S教授为首的研究小组就已经提出了“流动成像”(FLOW IMAGING)得概念,并研制成功了8电极的电容成像系统。在国外,美国能源部MORGANTOWN研究中心几乎与BECK的研究小组同时发明出了一种在线监测流化床中空隙率分布的16电极电容的成像系统(CAPACITANCE IMAGING SYSTEM,简称CIT),该系统可用于对流化床内物料密度三维分布地监测。电容成像的技术应用于工业上的多种需要进行多

电容补偿柜的作用与工作原理

电容补尝柜的作用和工作原理 一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二. 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三. 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:

?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容 性负荷却在吸收能量,能量在两种负荷之间互相交换.这样,感性负荷 所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理

改进敏感场的电容层析成像图像重建算法

2011-8-3 基金项目:国家自然科学基金(60762001);广西高等学校优秀人才计划(桂教人才0804)。 作者简介:赵进创(1968-),男,博士,教授,研究方向:电成像技术;嵌入式系统开发等;刘金花(1987-),女,硕士研究生,研究方向:电成像算 法。 收稿日期: 修回日期: 改进敏感场的电容层析成像图像重建算法 赵进创,刘金花,黎志刚,傅文利,李贤宇 ZHAO Jin-chuang,LIU Jin-hua,LI Zhi-gang,FU Wen-li,LI Xian-yu 广西大学计算机与电子信息学院, 广西 南宁530004 College of computer , electronics and information, Guangxi University, Nanning 530004, China E-mail: zhaojch@https://www.doczj.com/doc/1f3976109.html, Image reconstruction algorithm based on updated sensitivity field for ECT Abstract: The Landweber image reconstruction algorithm based on imaging sensitive field mean filtering method is proposed to solve the so-called “soft -field” characteristic problem of sensitive field of Electrical Capacitance Tomography (ECT) system. The algorithm principle is that the neighborhood pixel sensitivity is averaged by template convoluting method, which can reduce the sensitivity of region near electrodes and improve that of central region of pipe. The algorithm can eliminate partly the affect on the quality of image reconstruction due to uneven sensitivity and improve image reconstruction accuracy. Simulation results indicate that the algorithm is superior to conventional Landweber algorithm in image reconstruction accuracy and convergence speed. Key word: ECT; Landweber image reconstruction algorithm; Sensitivity; mean filtering 摘 要: 针对电容层析成像系统中敏感场的“软场”特性,提出了一种基于成像敏感场灵敏度均值滤波的Landweber 图像重建算法。该算法是通过模板卷积的方式对敏感场灵敏度进行邻域平均,降低靠近极板区域的灵敏度,提高管道中心区域的灵敏度,部分消除了因敏感场不均匀对图像重建质量的影响,提高图像重建精度。仿真结果表明,该算法在图像重建精度和收敛速度上均优于传统的Landweber 图像重建算法。 关键词:电容层析成像;Landweber 图像重建算法;灵敏度;均值滤波 DOI: 文章编号: 文献标识码: A 中图分类号:TP212.9 1 引言 电容层析成像 ( Electrical Capacitance Tomography , ECT) 作为一种非侵入式的流动参数前景。其原理是通过计算机采集安装在封闭的工业管道、容器外壁的传感器阵列在不同观测角度下的投影数据即电容测量值,采用相应的图像重建算法 显示被测物场的二维或三维介质分布图像[6][11][12]。 图像重建算法是ECT 系统的关键技术之一,目前国内外研究ECT 图像重建常用的算法主要分为2 类: 一类是非迭代算法,如线性反投影算法(LBP ),另一类是迭代算法,如Landweber 迭代法[1]-[5][9]。LBP 算法简单、成像较快, 但其重建图像精度低。 Landweber 迭代法是利用LBP 法重建的图像作为迭代过程的初值, 由于初值有时偏离实际值较大, 造成迭代误差累积,影响图像重建质量和算法收敛速度。本文针对此问题提出一种基于灵敏度矩阵均值滤波的Landweber 迭代算法,与传统的Landweber 迭代法相比,该算法成像质量高,收敛速度快。 2. ECT 图像重建模型 ECT 系统的正问题就是由已知的介电常数分布,求出传感器各极板对之间形成的电容值,可表达为如下的数学模型[6][10]-[12]: dxdy y x y x S y x C D ij ij )),(),,((),( (1) 网络出版时间:2011-10-24 10:08 网络出版地址:https://www.doczj.com/doc/1f3976109.html,/kcms/detail/11.2127.TP.20111024.1008.007.html

电容式传感器的结构及工作原理

电容式传感器——将被测非电量的变化转换为电容量变化的传感器。把被测的机械量,如位移、压力等转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器。下面就让艾驰商城小编对电容式传感器的结构及工作原理来一一为大家做介绍吧。 若忽略边缘效应,平板电容器的电容为εS/d,式中ε为极间介质的介电常数,S为两极板互相覆盖的有效面积,d为两电极之间的距离。d、s、ε 三个参数中任一个的变化都将引起电容量变化,并可用于测量。 因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类,即变极距型电容传感器、变面积型电容传感器和变介质型电容传感器。极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。面积变化型一般用于测量角位移或较大的线位移。介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 典型的电容式传感器由上下电极、绝缘体和衬底构成。当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/1f3976109.html,/

CT图像重建

昆明理工大学信息工程与自动化学院学生实验报告 ( 2009—2010学年 第 一 学期 ) 课程名称:医学成像系统与放射治疗装置 开课实验室: 3208 2008 年 12 月24 日 一、实验目的与意义 医学成像技术是生物医学工程专业的一门重要的专业课程,课程主要涉及X 光仪器,CT 仪器,MRI 仪器和核医学仪器的工作原理及成像方法。其中CT 算法的出现又为后来数字化医学成像技术的发展提供了基础。该门课程为生物医学工程专业的专业基础课。 CT 技术是医学成像系统中的一种重要手段。它通过特定的算法,利用计算机的高速运算功能,可以在短时间内快速呈现人体断层图像。让学生练习CT 图像的重建有助于学生理解CT 算法的内容,熟悉数字图像重建的过程。同时也能培养学生的团队精神和解决实际问题的能力。 二、实验算法原理 1、MATLAB 处理数字图像的基本函数; 2、X-CT 三维图像重建的基本算法。 CT 图象重建有四种基本的算法:矩阵法,迭代法,傅立叶算法,反投影算法.我们采用的方法为卷积反投影. 卷积反投影有:平行光束投影的卷积反投影算法, 等角扇形光来投影的重建算法. 1).平行光束投影的卷积反投影算法 从投影重建三维物体的图像,就是重建一个个横断面。这样三堆图像的重建就归结为二维图象的重建。二维图像的重建问题可以从数学上描述如下。 假定),(y x g 表示一个二维的未知函数,通过),(y x g 的直线称为光钱(见图2.1)。沿光线),(y x g 的积分称作光线积分。沿相同方向的一组光线积分,就构成一个投影。图2.1中垂直于直线' CC (与X 轴夹角为 )的光线所形成。

光学原理_光学相干层析成像技术

光学相干层析成像技术 摘要: 光学相干层析成像技术(Optical Coherent Tomography, OCT)在生物组织的微观结构成像的研究中起着重要的作用,它是一种非接触的、无损伤的和高性能的成像技术。和传统的时域OCT(Time Domain-OCT)相比,频域OCT(Fourier Domain-OCT)能够提供了更高的分辨率,更高的动态范围,以及更高速的成像速度,被广泛的应用在了生物组织医学成像等方面。但不可否认的是,对于像跟腱,角膜,视网膜,骨头,牙齿,神经,肌肉等具有双折射特性的生物组织,FD-OCT 没有足够的能力来描述这些它们的分层结构和双折射的对比度。偏振OCT (Polarization Sensitive-OCT)的基础正是由于样品组织对于偏振光的敏感性而建立的。因此,PS-OCT是描述具有双折射特性组织的强有力的工具。偏振频域OCT(Polarization-sensitive Fourier-domain optical coherence tomography,PS-FD-OCT)是目前最优的OCT是PS-FD-OCT。它系统同时具备了偏振OCT 和频域OCT两种系统的优点。本文利用琼斯矢量法对其进行了描述。 正文: 1光学相干层析成像技术的发展和现状 1.1光学相干层析成像技术的发展 显微成像技术已经发展了很长时间了。为了观察生物组织、微生物组织和了解材料的结构,人们发展了多种成像技术,如:X光技术及层析技术、核磁共振技术、超声、正电子辐射层析技术及光学层析成像技术OT(Optical tomography)等。在OT技术中的光源主要采取红外或近红外光(700—1300nm),该波段光较容易透过某种生物类混沌介质,对生物活体无辐射伤害,而且通过分析光谱还可以获得组织的新城代谢功能等信息。因此OT技术正在生物医学界得到广泛的研究和应用。根据原理OT技术可以分为两类:散斑光学层析成像技术DOT (diffuseoptical tomography),和光学衍射层析成像技术ODT(optical diffractiontomography)。 OCT(Optical coherence tomography)技术是在ODT技术的技术之上发展起来的。由于OCT系统具有结构简单、设备造价低廉,并可以实现高精度的组织

相关主题
文本预览
相关文档 最新文档