当前位置:文档之家› 北大版高数第十章习题解答

北大版高数第十章习题解答

北大版高数第十章习题解答
北大版高数第十章习题解答

高等代数北大版第章习题参考答案

第七章 线性变换 1.? 判别下面所定义的变换那些是线性的,那些不是: 1)? 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)? 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)? 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)? 在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)? 在P[x ]中,A )1()(+=x f x f ; 6)? 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)? 把复数域上看作复数域上的线性空间, A ξξ=。 8)? 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx = k A )(α, 故A 是P 3 上的线性变换。 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y , A (k X )=k BXC k kX B ==)()(A X ,故A 是n n P ?上的线性变换。

高等代数(北大版)第5章习题参考答案.doc

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1) 4 x 1 x 2 2 x 1 x 3 2x 2 x 3 ; 2) x 12 2 x 1 x 2 2x 22 4x 2 x 3 4x 32 ; 3) x 12 3x 22 2x 1 x 2 2x 1 x 3 6x 2 x 3 ; 4) 8x 1 x 4 2x 3 x 4 2x 2 x 3 8x 2 x 4 ; 5) x 1 x 2 x 1 x 3 x 1 x 4 x 2 x 3 x 2 x 4 x 3 x 4 ; 6) x 12 2 x 22 x 42 4x 1 x 2 4x 1 x 3 2x 1 x 4 2x 2 x 3 2x 2 x 4 2 x 3 x 4 ; 7) x 2 x 2 x 2 x 2 2x 1 x 2 2x 2 x 3 2x x 4 。 1 2 3 4 3 解1)已知 f x 1 , x 2 , x 3 4x 1 x 2 2x 1x 3 2x 2 x 3 , 先作非退化线性替换 x 1 y 1 y 2 x 2 y 1 y 2 ( 1) x 3 y 3 则 f x 1 , x 2 , x 3 4 y 12 4y 22 4 y 1 y 3 4y 2 4y y y 2 y 2 4y 2 1 1 3 3 3 2 2 y 1 3 y 32 4 y 22 , y 3 再作非退化线性替换 y 1 1 z 1 1 z 3 2 2 y 2 z 2 ( 2) y 3 z 3 则原二次型的标准形为

f x 1 , x 2 , x 3 z 12 4z 22 z 32 , 最后将( 2)代入( 1),可得非退化线性替换为 x 1 1 z 1 z 2 1 z 3 2 2 x 2 1 z 2 1 ( 3) z 1 z 3 2 2 x 3 z 3 于是相应的替换矩阵为 1 0 1 1 0 1 1 1 0 2 2 2 2 T 1 1 0 1 1 1 1 0 0 2 , 1 0 0 1 2 1 且有 1 0 0 T AT 0 4 0 。 0 1 2 )已知 f x 1 , x 2 , x 3 x 12 2x 1 x 2 2x 22 4 x 2 x 3 4x 32 , 由配方法可得 f x , x , x x 2 2x x 2 x 2 x 2 4x x 3 4x 2 1 2 3 1 1 2 2 2 3 x 1 x 2 2 x 2 2x 3 2 , 于是可令 y 1 x 1 x 2 y 2 x 2 2x 3 , y 3 x 3 则原二次型的标准形为 f x , x 2 , x 3 y 2 y 2 , 1 1 2 且非退化线性替换为

(完整版)高等代数(北大版)第9章习题参考答案

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

(完整版)高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第二部分,其他请搜索,谢谢!

12.设A 为一个n 级实对称矩阵,且0'A X X , 0>'B X X , 因此 ()0>'+' =+'BX X AX X X B A X , 于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。 14.证明:二次型()n x x x f ,,,21Λ是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数≠p 秩r ,则r p <。即 ()n x x x f ,,,21Λ2 2122221r p p y y y y y ---+++=+ΛΛ, 若令

高数教案第十章重积分

高数教案第十章重积分 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。 当(,)x y D ∈时,(,)f x y 在D 上连续且(,)0f x y ≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V 可以这样来计算: (1) 用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这 些小区域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω。 (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值。)

图10-1-1 从而 1n i i V ==?Ω∑ (将Ω化整为零) (2) 由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω??i i i i i i i f ≈?∈()()( )ξησξησ (以不变之高代替变高, 求i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈=∑()ξησ?1 (4) 为得到V 的精确值,只需让这n 个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n 个小区域直径中的最大者为λ, 则 V f n i i i i =→=∑lim (),λξησ01 ? 2.平面薄片的质量 设有一平面薄片占有xoy 面上的区域D , 它在(),x y 处的面密度为(),x y ρ,这里(),0x y ρ≥,而且(),x y ρ在D 上连续,现计算该平面薄片的质量M 。

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高数教案第十章重积分

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。

当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑(将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。

高等代数(北大版)第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ??? ??=-=+=33 212211y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 2 233 3142y y y y ++--=, 再作非退化线性替换 ??? ? ??? ==+=3 3223112121z y z y z z y (2) 则原二次型的标准形为

()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为 ??? ? ? ? ??? =+-=++=333212321 121212 121z x z z z x z z z x (3) 于是相应的替换矩阵为 ?? ?????? ? ?-=? ?????? ??????? ??-=1002112 1 210 2110001021021100011011T , 且有 ??? ? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 2 3322221214422x x x x x x x ++++, 由配方法可得 ()()() 2 33222222121321442,,x x x x x x x x x x x f +++++= ()()2 322 212x x x x +++=, 于是可令 ??? ??=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2 221321,,y y x x x f +=, 且非退化线性替换为

高数 第十章线面积分习题和答案

第十章曲线积分曲面积分练习题 A 组 一.填空题 1. 设L 是 12 2 =+y x 上从)0,1(A 经)1,0(E 到)0,1(-B 的曲线段,则?L y dy e 2 = 2.设? MN 是从M(1,3) 沿圆 2)2()2(22=-+-y x 至点 )1,3(N 的半圆,则积分 ? ? +MN xdy ydx = 3. L 是从)6,1(A 沿6=xy 至点)2,3(B 的曲线段,则 ? ++L y x xdy ydx e )( = 4. 设L 是从)0,1(A 沿12 2 2 =+y x 至点2,0(B )的曲线段, 则 ? +L y x y x dy ye dx xe 2 22 = 5. 设L 是 2x y = 及 1=y 所围成的区域D 的正向边界,则 ?+L dx y x xy )(3 3 + dy y x x )(242+ = 6. 设L 是任意简单闭曲线,b a ,为常数,则? + +L bdy adx )( = 7. 设L 是xoy 平面上沿逆时针方向绕行的简单闭曲线,且9)34()2(=++-? dy y x dx y x L ,则L 所围成的 平面区域D 的面积等于 8. 常数 k = 时, 曲线积分? +L dy x kxydx 2 与路径无关。 9.设是球面 1222=++z y x ,则对面积的曲面积分 ?? ∑ ++ds z y x 222 = 10.设L 为)0,0(o , )0,1(A 和)1,0(B 为顶点的三角形围成的线, 则对弧长的曲线积分? L ds = 11. 设L 是从点)1,1(到)3,2(的一条线,则 ?-++L dy y x dx y x )()(= 12. 设L 是圆周 t a x cos =, t a y sin = )20(π≤≤t ,则 ? +L dS y x 322)(= 13. 设为曲面2 2 2 2 a z y x =++, 则??∑ dS z y x 2 22= 二、选择题 1.设→ → +=j y x Q i y x P A ),(),(,D y x ∈),(且P ,Q 在域D 内具有一阶连续偏导数,又L :? AB 是D 内任一曲线,则以下四个命题中,错误的是( )

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

高等代数北大版第6章习题参考答案.docx

第六章线性空间 .设 MN ,证明: M I N M , M U N N 。 1 证任取M , 由 M N , 得N , 所以M N , 即证M N I M 。又因M N M , 故M I N M 。再证第二式,任取M 或N , 但 M N ,因此无论哪一种情形,都有N , 此即。但 N M N , 所以M U N N 。 2.证明M ( N L )(M N ) (M L) , M (N L) ( M N ) ( M L) 。 证x M( N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L.所以 x(M N )(M L) ,由此得 M( N L) (M N )(M L) 。反之,若 x(M N )( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得x M ( N L), 在后一情形,因而 x M , x L, x N U L ,得x M ( N L), 故 ( M N ) ( M L) M (N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M U( N I L),则 x M , x N I L 。 在前一情形 X x M U N ,且 X M U L,因而 x ( M U N)。 I(MU L) 在后一情形, x N ,x因而 x M U N, 且,即 X ( M N)(M L)所以L,X M U L U IU (M U N)I(MU L) M U(NU L) 故M U(N I L) =( M U N)I( MU L) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设 A 是一个 n × n 实数矩阵, A 的实系数多项式 f (A)的全体,对于矩阵的加法和数量乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk1)2 k。( a , b1) =( ka1, kb1 +a1 12

(完整版)高等代数(北大版)第10章习题参考答案

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X 2 f (ε2 )+X 3 f (ε 3 ) =-X 1+2 X 2+ X 3 3、 设ε1,ε 2 ,ε 3 是线性空间V 的一组基,f1,f2,f3是它的对偶基,令 α1=ε1-ε 3 ,α2=ε1+ε 2-ε 3,α3=ε 2+ε 3 试证:α1,α2,α3是V 的一组基,并求它的对偶基。 证: 设 (α1,α2,α3)=(ε1,ε2 ,ε 3 )A 由已知,得 A =110011111????????-?? 因为A ≠0,所以α1,α2,α3是V 的一组基。 设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(A ˊ)1- =(f1,f2,f3)011112111-?? ??-????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V 是一个线性空间,f1,f2,…fs 是V * 中非零向量,试证:?α∈V ,使 fi(α)≠0 (i=1,2…,s) 证:对s 采用数学归纳法。 当s =1时,f1≠0,所以?α∈V ,使fi(α)≠0,即当s =1时命题成立。 假设当s=k 时命题成立,即?α∈V ,使fi(α)=αi ≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1k +(α)≠0,则命题成立,若f 1k +(α)=0,则由f 1k +≠0知,一定?β∈V 使f 1k +(β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c ≠0,使 ai+cdi ≠0(i=1,2…,k) 令c γαβ=+,则γ∈V ,且

高等代数北大编第1章习题参考答案

第一章 多项式 一 、习题及参考解答 1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。 解 1)由带余除法,可得9 2926)(,9 73 1)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。 解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p , 所以当???=-=++0 12m q m p 时有q px x mx x ++-+32|1。 2)类似可得???=--+=--0 10 )2(2 2m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。

综上所诉,当?? ?+==10q p m 或???=+=2 12 m p q 时,皆有q px x mx x ++++2 42|1。 3.求()g x 除()f x 的商()q x 与余式: 1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。 解 1)432()261339109()327 q x x x x x r x =-+-+=-; 2) 2()2(52)()98q x x ix i r x i =--+=-+。 4.把()f x 表示成0x x -的方幂和,即表成 2010200()()...()n n c c x x c x x c x x +-+-++-+ 的形式: 1)50(),1f x x x ==; 2)420()23,2f x x x x =-+=-; 3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。 解 1 ) 由 综 合 除 法 , 可 得 2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+-; 2)由综合除法,可得 42234231124(2)22(2)8(2)(2)x x x x x x -+=-+++-+++;

高数 练习与答案 第十章

第十章 曲线积分与曲面积分 例1计算曲线积分 ? AB xydl ,弧AB 为圆周222R y x =+在第二象限的部 分。 解:法1取x 为积分变量,积分路径弧AB 是圆周22x R y -= , )0(≤≤-x R ,于是得 dx x R R dx y dl 2 2 2 1-= '+=,故 23 222 2 R xdx R dx x R R x R x xydl R R AB -==-?-=???--。 法2 取y 为积分变量,积分路径弧AB 是圆周22y R x --=, )0(R y ≤≤,于是dy y R R dy x dl 2 2 21-= '+=,故 2 )(3 2 2 2 2R ydy R dy y R R y R y xydl R R AB -=-=-? --=? ?? 。 法3 将弧AB 化为参数方程 )2 (sin cos πθπ θθ≤≤ ?? ?==R y R x ,θRd dy dx dl =+=22)()(, ? ? ?? -===ππ ππ ππ θ θθθθθθθ2 3 2 3 2 cos cos sin cos sin cos d R d R Rd R R xydl AB 2]2cos [3 2 23 R R - =-=ππθ。 例2计算 ? L dl xy ||,L 是圆周222R y x =+的闭路。 解:由对称性,设1L 是第一象限的部分,则

320 32sin cos 44||1 R tdt t R xydl dl xy L L ===??? π 例3计算 ?++ABCDA y x dy dx ||||,ABCDA 是以A(1,0),B(0,1),C(-1,0),D(0,-1)为顶 点的正方形。(1|||:|=+y x ABCDA ) 解:在弧AB 上,y=1—x,x 从1变到0;在弧BC 上,y=1+x,x 从0变到 —1; 在弧CD 上,y=—1—x,x 从—1变到0;在弧DA 上,y=—1+x,x 从0变到 1; 于是 22)] 1([2)]1([) 1(2)1(1 10 1001100 1=+=+--++---+--+++-+-+-=+++=?????? ????? ---dx dx x x dx x x dx dx x x dx x x dx dx DA CD BC AB ABCDA 例4计算 ?+--+L y x dy y x dx y x 22)()(,其中L 是原点为中心的单位圆,沿逆时针方向。 解:L 的参数方程为 )20(sin cos π≤≤ ? ??==t t y t x ,故 ππ2)1()()(202 2-=-=+--+??dt y x dy y x dx y x L 。 例5计算 ?-++L dy y x dx y x )() (222 ,其中L 是由A (1,1)、B (3,2) C (3,5)三点构成三角形的边界,沿正向。 解:

高等代数(北大版)第7章习题参考答案

第七章线性变换 1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量; 2)在线性空间V中,A其中V是一固定的向量; 3)在P 322 中,A(,,)(,,) x1xxxxxx; 231233 4)在P 3中,A(,,)(2,,) x1xxxxxxx 2312231 ; 5)在P[x]中,A f(x)f(x1); 6)在P[x]中,A()(), fxfx其中 0 x P是一固定的数;0 7)把复数域上看作复数域上的线性空间,A 。 nn 中,A X=BXC其中B,CP 8)在P 解1)当0时,是;当0时,不是。nn 是两个固定的矩阵. 2)当0时,是;当0时,不是。 3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。 4)是.因取(x1,x2,x3),(y1,y2,y3),有 A()=A(x1y1,x2y2,x3y3) =(2x12y1x2y2,x2y2x3y3,x1y1) =(2x1x2,x2x3,x1)(2y1y2,y2y3,y1) =A+A, A(k)A(kx1,kx2,kx3) (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 =k A(), 3 故A是P 上的线性变换。 5)是.因任取f(x)P[x],g(x)P[x],并令 u(x)f(x)g(x)则 A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)), 再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。 6)是.因任取f(x)P[x],g(x)P[x]则. A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)), A(kf(x))kf(x0)k A(f(x))。 7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。 8)是,因任取二矩阵X,Y nn

北大版高等数学第八章总结

第一型曲线积分的概念与性质 意义:在考虑物质曲线的质量、质心、转动惯量等问题的时候,需要用第一型曲线积分的概念。再一次强调,积分是由极限推来的,极限不存在积分就不存在。 第一型曲线积分有下列形式: f(x,y)L ds 存在条件为极限存在 ds 为弧长 其性质有: 此时ds= 1+y ′(x)2dx 若有则有。 其实参数方程的特殊方式是y=y(x),x=x 。 在空间上 考法:计算函数y=f(x)从A 点到B 点的积分。方法,1.我们用x 代y ,然后对x 做积分。反过来对y 做积分也一样。 然后记得乘上一个 1+y ′2! 第二型曲线积分 假如一个物体受力为F(x,y)=F(P(x,y),Q(x,y)).我们计算力对物体做功,有dW=P(x,y)dx+Q(x,y)dy.由此推出第二型曲线积分W= Pdx +Qdy AB 假如x=φ(t),y=Ψ(t),利用微分中值定理可得, P x,y dx +Q x,y dy =AB P(φ(t),Ψ(t))φ′(t)+Q(φ(t),Ψ(t))Ψ′(t) dt AB * 这里利用参数方程的意义就是与定积分建立关系。 如果我们用以直代曲的思想来做积分的话,那么我们可以选定一小段曲线上的任何一点来 做切线,设τi 在t i ?1与t i 之间 P(ξi,ηi )?n i=1x i = P(x i,y i )?n i=1x i 。设ξi,=φ(τi ),ηi =Ψ(τi ) 因此有 P(x i,y i )?n i=1x i = P(ξi,ηi )?n i=1x i = P φ τi ,Ψ τi φ‘ τi ?n i=1t i ,因此可以推出 式子*。推广到空间上是一样的道理。

高等代数北大版第6章习题答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==I U 。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M I ∈α即证M N M ∈I 。又因 ,M N M ?I 故M N M =I 。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N Y ?所以M N N =U 。 2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。 证 ),(L N M x Y I ∈?则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。反之,若 )()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得 ),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ? 于是)()()(L M N M L N M I Y I Y I =。 若x M N L M N L ∈∈∈U I I (),则x ,x 。 在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L ) 。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

相关主题
文本预览
相关文档 最新文档