当前位置:文档之家› 种群增长的Gompertz模型

种群增长的Gompertz模型

种群增长的Gompertz模型
种群增长的Gompertz模型

种群增长的Gompertz 模型

摘要 本文根据题目要求,在渔场鱼量的自然生长服从种族增长规律Gompertz 模型的情况下,建立捕捞情况下渔场产量模型。根据模型,对渔场鱼量的平衡点及其稳定性进行讨论,并且在稳定的前提下,使用图解法讨论如何控制捕捞使持续产量达到最大。最后,对模型的优缺点进行了讨论。

关键词:Gompertz 模型 稳定性模型 图解法

正文

1 问题复述

已知某渔场鱼量的自然生长服从种族增长规律Gompertz 模型:().ln N x t rx x

=,其中r 是固有增长率,N 是环境容许的最大鱼量。并且单位时间捕捞量为h Ex =,其中比例常数E 表示单位时间捕捞率,又称捕捞强度。现要求:

(1)建立在捕捞情况下渔场鱼量的数学模型,讨论渔场鱼量的平衡点及其稳定性;

(2)在鱼量稳定的前提下,求最大持续产量m h 及获得最大产量的捕捞强度m E 和

渔场鱼量水平*0x 。

2 模型假设

(1)捕捞过程视为连续性过程;

(2)忽略种群间的相互作用及环境突变对渔场鱼量变造成的影响。

3 符号说明

()x t 表示时刻t 时渔场中的鱼量;

()0,1i x i =表示渔场鱼量平衡点;

*0x 表示获得最大持续产量的渔场鱼量水平;

r 表示种群的固有增长率;

N 表示环境容许的最大鱼量;

()f x 表示单位时间渔场鱼量的增长量;

()h x 表示单位时间的捕捞量;

m h 表示单位时间的最大持续产量;

()F x 表示在捕捞情况下渔场的鱼量;

()'F x 表示()F x 的导数;

E 表示单位时间捕捞率,即捕捞强度;

m E 表示获得最大持续产量时的捕捞强度;

4 模型建立

(1)在无捕捞条件下,()x t 的增长服从Gompertz 规律,即

()().ln N x t f x rx x

== ① (2)单位时间的捕捞量(即产量)()h x 与渔场鱼量()x t 成正比,比例系数为E ,于是单位时间的捕捞量为

()h x Ex = ②

(3)由①式与②式可以得到捕捞情况下渔场鱼量满足的方程

()().ln N x t F x rx Ex x

==- ③

5 模型求解

渔场鱼量平衡点及其稳定性讨论

根据上面得到的在捕捞情况下渔场的鱼量()F x 所满足的方程③式,令

()ln

0N F x rx Ex x =-= 得到两个平衡点

01,0E r N

x x e == ④

由于()'ln N F x r r E x

=--,因此有()'00F x r =-<,故0x 点稳定(与E ,r 的大小无关);同时,可证1x 点不稳定。

渔场鱼量稳定前提下持续产量最大问题的讨论

根据①,②式作曲线()y f x =和直线()y h x Ex ==,如图1所示。由于稳定点0x 与E ,r 的大小无关,因此应用图解法,由图1可知,当y Ex =与()y f x =在顶点*P 相交时可获得最大持续产量,此时的稳定平衡点为

*01N N x e = ⑤

且单位时间的最大持续产量为

1m N r h e = ⑥

由④易算出获得最大产量的捕捞强度为

m r E N

= ⑦

图1 最大持续产量的图解法

根据⑦式可知,将捕捞强度控制在固有增长率r 与环境容许的最大鱼量N 的比值时,能够获得最大持续产量。

6模型优缺点分析及改进方向

根据上述模型所建立的捕捞情况下渔场产量模型,可以很好的解决如何控制捕捞使持续产量达到最大的问题。然而,建模过程中,简化了许多因素,因而与实际情况有偏差。要想建立更好的产量模型,必须综合多方面因素,根据实际情况建立模型。

人口增长模型的确定

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。 关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 1.1 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 1.2 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab 软件绘制出1790到1980年的美国人口数据图,如图1。 17801800182018401860188019001920194019601980 050 100 150 200 250

图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0)起始年人口容纳量 N(t)t年后人口容纳量 t年份 r增长率 五、模型建立 5.1 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。 当考察一个国家或一个很大地区的人口时,N(t)是很大的整数。为了利用微积分这一数学工具,将N(t)视为连续、可微函数。记初始时刻(t=0)的人口为N(0),人口增长率为r,r是单位时间内N(t)的增量与N(t)的比例系数。根据r是常数的基本假设,于是N(t)满足如下的微分方程: dN(t)/dt=r*N(t) (5-1) 由这个线性常系数微分方程容易解出: N(t)=N(0)e rt(5-2) 表明人口将按指数规律无限增长(r>0)。将以t年为单位,上式表明,人口以e r为公

数学建模logistic人口增长模型

数学建模l o g i s t i c人口 增长模型 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测的效果好并结合中国实情分析原因。 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2)

设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再 增长,即增长率0)(=m x r ,代入(2)式得 m x r s = ,于是(2)式为 )1()(m x x r x r -= (3) 将(3)代入方程(1)得: ?? ? ??=-=0 )0()1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较')

数学建模人口模型

摘要 以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。13亿是一个忧虑的数字。13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、 中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。 人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。 我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表: 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。 长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。 我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划

Logistic人口阻滞增长模型

L o g i s t i c人口阻滞增 长模型 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

Logistic 人口阻滞增长模型 一、模型的准备 阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即 增长率0)(=m x r ,代入(2)式得m x r s =,于是(2)式为 )1()(m x x r x r - = (3) 将(3)代入方程(1)得: ??? ??=-=0 )0()1(x x x x rx dt dx m (4) 解方程(4)可得: rt m m e x x x t x --+= )1(1)(0 (5) 二、模型的建立 我国从1954年到2005年全国总人口的数据如表1

1、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab 编程得到相关的参数-0.0336,180.9871 ==r x m ,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标): 由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲线: t e t x 0336.0.0)12 .609871.180(19871 .180)(--+= (6) 根据曲线(6)我们可以对2010年(56=t )、2020年(66=t )、及2033年(79=t ) 进行预测得(单位:千万): 结果分析:从所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说1951-1962年的人口增长的随机误差不是服从正态分布, 程序: 结果: 2、 将1963年看成初始时刻即0=t ,以2005年为32=t 作为终时刻。运用Matlab 编程得到相关的参数0.0484 ,151.4513 ==r x m ,可以算出可决系数9994.02=R 得到中国各年份人口变化趋势的另一拟合曲线: t e t x 0484.0)11 .694513.151(14513 .151)(--+= (7) 根据曲线(7)我们可以对2010年(47=t )、2020年(57=t )、及2033年(70=t ) 进行预测得(单位:千万): 结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;

人口指数模型(完整资料).doc

指数函数的数据拟合 世界人口预测问题 下表给出了本世纪六十年代世界人口的统计数据(单位:亿) 有人根据表中数据,预测公元2000年世界人口会超过60亿。这一结论在六十年代末令人难以置信,但现在已成为事实。试建立数学模型并根据表中数据推算出2000年世界人口的数量。 根据马尔萨斯人口理论,人口数量按指数递增的规律发展 人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据。早在1798年,英国经济学家马尔萨(T.R.Malthus,1766-1834)就提出了自然状态下的人口增长模型: 精品文档,下载后可编辑

精品文档,下载后可编辑 rt e y y 0= 其中t 表示经过的时间, 0y 表示t =0时的人口数,r 表示人口的年平均增长率。 表3是1950~1959年我国的人口数据资料: (1)如果以各年人口增长平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期具体人口增长模型,并检验所得模型与实际人口数据是否相符; 解:设1951~1959年的人口增长率分别为 于是, 1951~1959年期间,我国人口的年均增长率为 129r ,r ,......,r .155196(1)56300,1951, r +=≈≈≈≈≈≈≈≈≈1 2 34 5 678 9 可得年的人口增长率r 0.0200.同理可得r 0.0210,r 0.0229,r 0.0250,r 0.0197,r 0.0223,r 0.0276,r 0.0222,r 0.0184. 55196,1950~1959y =令则我国在年期间的人口增长模型为

马尔萨斯定律与人口增长模型

马尔萨斯生物定律与人口增长模型 马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数)(t N 的变化率与生物总数成正比,其数学模型为 ?????==0 0)()()(N t N t rN dt t dN (1) 其中r 为常数. 方程(1)的解为 )(00)(t t r e N t N -=(2) 因此,遵循马尔萨斯生物总数增长定律得任何生物都是随时间按指数方式增长,在此意义下,马尔萨斯方程(1)又称指数增长模型。人作为特殊的生物总群,人口的增长也应满足马尔萨斯生物总数增长定律,此时的(1)式称为马尔萨斯人口方程。 英国人口学家马尔萨斯根据百余年的人口统计资料,于1798年提出了人口指数增长模型。根据国家统计局1990年10月30日发布的公告,1990年7月1日我国人口总数为11.3368亿,今年的人口平均增长率为14.8‰. 假设人口的增长率保持不变,那么2000年我国的人口数量将达到13.45亿。 事实上,将 0148.0,2000,19900===r t t 代入到(2)式得 45.133368.11)()19902000(0148.0==-e t N (亿) 显然根据马尔萨斯人口方程预测2000年我国人口数量与全国第五次人口普查公报公布的12.9533亿,相差较大。造成误差过大的主要原因是人口的增长率r 不是常数,它是随时间而变化的,很多试验和事实也证明r 是时变的。为此修改马尔萨斯人口方程为 ?????=--=0 00)()())(()(N t N t N t t B A dt t dN (3) 其中)()(0t t B A t r r --==为时变人口增长率,B A ,为定常参数。求解微分方程 (3),得其特解为 2 00)(21)(0)(t t B t t A e N t N ---=(4)

数学建模logistic人口增长模型

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测 表1 各年份全国总人口数(单位:千万) 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: )0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当 m x x =时人口不再增长,即增 长率 )(=m x r ,代入(2)式得 m x r s = ,于是(2)式为

)1()(m x x r x r -= (3) 将(3)代入方程(1)得: ?? ???=-=0 )0() 1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较')

几类不同增长的函数模型

几类不同增长的函数模型 学校:___________姓名:___________班级:___________考号:___________ 1.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( ) A .一次函数 B .二次函数 C .指数型函数 D .对数型函数 2.若()0,1x ∈,则下列结论正确的是( ) A .122lg x x x >> B .122lg x x x >> C .122lg x x x >> D .12lg 2x x x >> 3.四人赛跑,假设他们跑过的路程(){}() 1,2,3,4i f x i ∈和时间()1x x >的函数关系分别是()12f x x =,()22f x x =,()32log f x x =,()42x f x =,如果他们一直跑下去, 最终跑在最前面的人具有的函数关系是( ) A .()12f x x = B .()22f x x = C .()32log f x x = D .()42x f x = 4.西部某地区实施退耕还林,森林面积在20年内增加了5%,若按此规律,设2016 年的森林面积为m ,从2016年起,经过x 年后森林面积y 与x 的函数关系式为( ) A . 1.0520mx y = B .0.05120x y m ??=- ??? C .()2015%x y m =+ D .()15%x y m ??=+?? 5.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过x 年后的剩留量为y ,则x ,y 之间的函数关系为( ) A .1000.9576x y = B.1000.9576 x y = C .0.9576100x y ??= ??? D .10010.042x y =- 6.下列函数中在某个区间()0,x +∞内随x 增大而增大速度最快的是( ) A.100ln y x = B.100y x = C.1e 100 x y = D.1002x y =? 7.以下四种说法中,正确的是( ) A .幂函数增长的速度比一次函数增长的速度快

人口指数增长模型

《数学模型》实验报告 实验名称:如何预报人口的增长成绩:___________ 实验日期: 2009 年 4 月 22 日 实验报告日期: 2009 年 4 月 26 日 一、实验目的 预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。 二、实验内容 根据统计资料得出的人口增长率不变的假设,建立人口指数增长模型。利用微积分数学工具视x(t)为连续可微函数,记t=0时人口为x0,人口增长率为常数r, 变有dx/dt=rx,x(0)=x0,解出x(t)=x0*exp(rt)。 三、实验环境 MATLAB6.5 四、实验步骤 为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt), lnx(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。 根据所提供的数据用MATLAB函数p=polyfit(t,x,1)拟合一次多项式,然后用画图函数plot(t,x,’+’,t,x0*exp(rt),’-’),画出实际数据与计算结果 之间的图形,看结果如何。 利用1790-1900年的数据进行试验,程序如下: t=linspace(0,11,12); x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2))

plot(t,x,'+',t,x0*exp(r*t),'-') 利用1790-2000年的数据进行试验,程序如下: t=linspace(0,21,22); x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106 .5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4]; p=polyfit(t,log(x),1); r=p(1) x0=exp(p(2)) plot(t,x,'+',t,x0*exp(r*t),'-') 五、实验结果 以1790年至1900年的数据拟合y= rt+a,用软件计算可得r=0.2743/10年,x0=4.1884,下图为拟合的图象: 以1790年至2000年的数据拟合y= rt+a,用软件计算可得r=0.2022/10年,x0=6.0450,下图为拟合的图象:

Logistic人口阻滞增长模型

Logistic 人口阻滞增长模型 一、模型的准备 阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: 0)0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当m x x =时人口不再增长,即 增长率0)(=m x r ,代入(2)式得m x r s =,于是(2)式为 )1()(m x x r x r -=???????????? ?(3) 将(3)代入方程(1)得: ?????=-=0 )0() 1(x x x x rx dt dx m ???? ??? ???(4) 解方程(4)可得: rt m m e x x x t x --+= )1(1)(0 (5) 二、模型的建立 我国从1954年到2005年全国总人口的数据如表1

1、将1954年看成初始时刻即0=t ,则1955为1=t ,以次类推,以2005年为51=t 作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab 编程得到相关的参数-0.0336,180.9871 ==r x m ,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标): 由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲线: t e t x 0336.0.0)12 .609871.180(19871 .180)(--+= (6) 根据曲线(6)我们可以对2010年(56=t )、2020年(66=t )、及2033年(79=t ) 进行预测得(单位:千万): 结果分析:从所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说1951-1962年的人口增长的随机误差不是服从正态分布, 程序: 结果: 2、 将1963年看成初始时刻即0=t ,以2005年为32=t 作为终时刻。运用Matlab 编程得到相关的参数0.0484 ,151.4513 ==r x m ,可以算出可决系数9994.02=R 得到中国各年份人口变化趋势的另一拟合曲线: t e t x 0484.0)11 .694513.151(14513 .151)(--+= (7) 根据曲线(7)我们可以对2010年(47=t )、2020年(57=t )、及2033年(70=t ) 进行预测得(单位:千万): 结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率较低,但都有规律可寻。总的来说,人口增长的外界大的干扰因素基本上没有,可以认为这一阶段随机误差服从正态分布;1980-2005年这一时间段,虽然人口的增长受到国家计划生育政策的控制,但计划生育的政策是基本稳定的,这一阶段随机误差也应服从正态分布,因此用最小二乘法拟合所得到的结果应有较大的可信度。 程序: 结果: 3、从1980-2005年,国家计划生育政策逐渐得到完善及贯彻落实,这个时期的人口增长受到国家计划生育政策的控制,人口的增长方式与上述的两个阶段都不同。因此我们进一步选择1980年作为初始年份2005年作为终时刻进行拟合。运用Matlab 编程得到相关的参数0.0477 ,153.5351 ==r x m ,可以算出可决系数9987.02=R 得到中国各年份人 口变化趋势的第三条拟合曲线:

数学建模 之 人口模型

数学建模 ———关于人口增长的模型

摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。首 先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。对两种模型的求解,我们引入了微分方程。其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。 一、 问题的提出: 人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百 模型一(指数增长模型) 1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。 附图A

2、基本假设:人口的增长率是常数 增长率——单位时间内人口增长率与当时人口之比。 故假设等价于:单位时间人口增长量与当时人口成正比。 设人口增长率为常数r 。时刻t 的人口为X(t),并设X(t)可微,X(0)=X O 由假设,对任意△t>0 ,有 )() ()(t rx t t x t t x =?-?+ 即:单位时间人口增长量=r ×当时人口数 当△t 趋向于0时,上式两边取极限,即: o t →?lim )() ()(t rx t t x t t x =?-?+ 引入微分方程: )1( )0()(0 ??? ??==x x t rx dt dx 3、模型求解: 从(1)得 rdt x dx = 两边求不定积分: c rt x +=ln ∵t=0时0x x =,∴C x =0 ln rt e x rt x x 00ln ln ln =+= ∴rt e x t x 0 )(= (2) 当r>0时.表明人口按指数变化规律增长. 备注; r 的确定方法: 要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33 .5==r ,359.1307.0=e ,则(2)式现为: t t x )359.1(9.3)(?= 4、结论:由上函数可预测得:2010的人口为x(22):

人口增长模型综述

人口增长模型综述 一、引言 当前中国的人口正在以一个较快的速度增长,随着人口的增长,环境和社会的压力正在不断的加大,然而,环境的承载能力是有限的,人口不可能无限制的,故人口最后会趋于一个稳定的数字。世界上大多数国家的人口年龄结构,都是随着人口转变以及社会经济发展,逐渐从年轻型、成年型到老年型转变的。西方发达国家的人口转变是伴随着工业化和现代化逐步深化的渐进过程,经历了大约150多年的时间。我国则是在经济不发达的条件下进行的,且明显带有人为的痕迹,经历着更加迅速的人口转变,人口年龄结构也发生了比较快的变化,即从相对年轻型人口结构,直接转变为相对老年化的人口结构。因此,对于人口的未来趋势的预测将变得尤为重要,产业、服务、环境等方面都依赖于人员,只有对未来人口的发展趋势进行准确的把握,才能够及时地对社会各个部门进行调控,以缓解人口对于社会环境的压力!利用数学建模的知识建立人口增长模型,进而才能够得到较为准确的未来的人口数据。 然而,何为人口增长模型?人口增长模型[1]就是通过人口现状及对影响人口发展的各种因素的假设,对未来人口的规模、结构、变动和趋势所做的测算。当前人口老龄化,人口出生率以及人口死亡率等问题已经成为人口问题的焦点问题,同时,对于一个城市或国家的人口预测还必须考虑到移民率等。 二、中国人口增长研究的现状[6] 新中国成立60年来,中国人口发展经历了两个不同的时期:一是实行计划生育政策之前,人口发展处于无计划、自发的高增长时期;二是实行计划生育政策之后,人口发展逐步走向有计划、可控制的平稳增长时期。这两个不同发展时期的区别,不仅表现在出生率、死亡率的变化上,而且还表现在人口发展模式的转变,以及人口年龄结构的变化上。 现如今,中国面临着严峻的人口压力,我们的国家虽然地大物博,然而人均资源占有量确实相当的稀少,因此,解决人口增长问题已经变得迫在眉睫。中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。 当前我国对于人口增长预测的模型主要考虑到了环境所能接受的最大数量,人口出生率,人口死亡率,人口老龄化,以及平均寿命等因素对于未来人口的增长所带来的影响。其中人口老龄化是最近几年中国人口发展出现的新问题。 一般来说,当前普遍是通过莱斯利模型,马尔萨斯模型为基础模型,对其中

指数模型

8指数模型 8.1单指数模型 在均值-方差模型的讨论中,各证券间的协方差我们可以作任何假定,它们可以是由证券间存在的任意数量和种类的关系产生,而且在计算风险时所用的公式VX X r T X =)(2 σ中,我们必须对所选择的证券间的协方差进行估计。如果证券数目太大,我们就必须进行大量的协方差估计,使得在计算任一给定投资组合的方差时,需要花费大量时间。这是使用上节中的马柯维茨模型所存在的问题。 在∑ == n i i i X r E x r E 1 )()(,∑∑ ∑ =≠==+ = n i n i k k k i ik k i n i i i X x x x 1,11 222σ σρσ σ 公式中,这里的数学公 式告诉我们,如果投资者考虑的是由n 个资产构成的组合,那么在求解有效资产组合时,需要掌握三个方面的基本数据: (1)每一资产的平均收益率)(i r E ,共需n 个; (2)每一资产收益方差i σ,共需n 个; (3)每一对资产之间的相关系数ik ρ,共需n*(n-1)/2个。 总计需要2n+ n*(n-1)/2个基础性数据。对于每天追踪30~50种股票的投资机构来说,每天需要处理495~1325个数据;对于每天追踪150-250种股票的投资机构来说,每天需要处理11475~31625个数据;显然,这对各种投资者来说都是一件非常耗时的事情。那么,如何使投资组合理论和方法有效实用,简便易行,真正为金融财务工作者服务,就成了金融财务经济学家极为关心的问题。单指数模型能帮助我们克服这一困难,使得确定投资组合的方差计算过程变得简单。 在股票市场中,我们发现,当市场投资组合(如股票市场指数)的收益率显著上升或下降时,几乎所有股票的收益率都随之上升或下降,虽然可能有一些股票的收益率比另一些股票的收益率上升或下降得要快,但总的来说都是呈相同趋势变化。这意味着,市场投资组合收益率的变化能充分反映各种证券的共同变化趋势。因此对各个证券收益率之间的协方差的计算,可以用每一证券收益率与市场投资组合收益率之间的协方差代替。单指数模型就是在假定证券的收益率只受市场投资组合即单指数收益率的影响下确定投资组合的权重。 设证券的收益率具有简单线性结构,即其收益率r 和市场投资组合收益率r M 具有关系式 e r r M ++=βα 其中α,β为待估参数,e 为残差。 假定市场中有N 个证券,则按上述结构,第i 个证券的收益率满足

几类不同增长的函数模型(1)

几类不同增长的函数模型(1) 一、教学目标 (一)知识目标: 1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异. 2.结合实例体会直线上升、指数爆炸、对数增长等几类不同增长的函数模型的意义. 3.恰当运用函数的三种表示法(解析式、表格、图象)并借助信息技术解决一些实际问题. (二)能力目标:初步培养学生应用数学知识解决实际问题的意识与能力。(三)情感目标:培养学生数学应用意识以及比较分析的数学思想,激发学生的学习热情. 二、教学重难点 (一)重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同类型的函数增长的含义. (二)难点:怎样选择数学模型分析解决实际问题. 三、活动设计 1.自主学习,从实际问题出发能构建出相应的数学模型. 2.探究与活动,在教师的指引下通过列表、描点,画出相应函数模型的图形,并能比较发现它们的增长趋势. 四、教学过程 一、创设情景,引入新课 我们知道,函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述,能否举出一些函数模型的具体例子? 指数函数、对数函数、幂函数等等. 当我们面临一个实际问题时,应如何选择恰当的函数模型来刻画它呢?如果我们能够找出相应的数学模型,又是如何去研究它的性质呢?本节课先通过具体实例来比较几类不同增长的函数模型的增长趋势.(板书几类不同增长的函数模型)二、讲解新课 例题剖析 【例1】假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案?

人口增长模型的确定

人口增长模型的确定 Prepared on 22 November 2020

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab软件绘制出1790到1980年的美国人口数据图,如图1。 图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想

到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0) 起始年人口容纳量 N(t) t年后人口容纳量 t 年份 r 增长率 五、模型建立 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。

人口增长的Logistic模型分析及其应用

人口增长的Logistic模型分析及其应用 本文运用迭代的方法计算出人口极限值xm和人口增长率r,用Logistic模型预测了我国人口未来的发展趋势,并根据预测的结果提出了相应的对策与建议。 关键词:人口Logistic模型迭代 人口增长问题相关研究 最早注意人口问题的是英国经济学家马尔萨斯,他在1798 年提出了人口指数增长模型。这个模型的基本假设是:人口的增长率是一个常数。记t时刻的人口总数为x(t)。初始时刻t=0时的人口为x0。人口增长率为r,r表示单位时间内x(t)的增量与x(t)的比例系数。那么,时刻t到时刻t+Δt内人口的增量为x(t+Δt)-x(t)=rx(t)Δt。于是x(t)满足下列微分方程的初值问题,他的解为x(t)=x0ert。在r>0时,人口将按指数规律增长。 但是不管生物是按算术级数、几何级数还是按指数曲线变化,随着时间增长生物数量将趋于无穷大。然而,实际情况却不然,实验指出在有限的空间内,一开始生物以较快速度增长,到一定时期生物增长量就会减缓,生物数量趋于稳定。 历史上的人口统计数据也表明,当一个国家的社会稳定时,一定时期内马尔萨斯模型是符合实际的,但是如果时间比较长或社会发生动荡时,马尔萨斯模型就不能令人满意了。原因是随着人口的增加,自然资源、环境条件等因素对人口增长开始起阻滞作用,因而人口增长率不断下降。 基于以上考虑荷兰生物学家Verhaust对原人口发展模型进行了改造,于1838 年提出了以昆虫数量为基础的Logistic 人口增长模型。这个模型假设增长率r是人口的函数,它随着x的增加而减少。最简单的假定是r是x的线性函数,其中r称为固有增长率,表示x→0时的增长率。由r(x)的表达式可知,x=xm时r=0。xm表示自然资源条件能容纳的最大人口数。因此就有,这个模型就是Logistic 模型。 为表达方便,Logistic方程常被改写成: 由于Logistic模型综合考虑了环境等因素对人口增长产生的影响,因此是一种被广泛应用的比较好的模型。本文也将采用Logistic模型对我国人口进行分析。

相关主题
文本预览
相关文档 最新文档