当前位置:文档之家› 丝杠和惯量计算

丝杠和惯量计算

丝杠和惯量计算
丝杠和惯量计算

桩基承载力计算公式(老规范)

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2 查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取1.2m)计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表 3.1查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表 2.1.4取为0.0; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为 0.80,人工挖孔桩取为1.00。

4.2 轴心受压构件承载力计算

4.2 轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍 筋柱;一种是配置纵向钢筋和螺旋筋(图 4.2.1b)或焊接环筋(图4.2.1c)的柱,称为 螺旋箍筋柱或间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构 件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边 尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=0.002,相应的纵向钢

梯形螺纹详解

梯形螺纹的基础知识 1.梯形螺纹的作用及种类 梯形螺纹是常用的传动螺纹,精度要求比较高。如车床的丝杠和中、小滑板的丝杆等。梯形螺纹有两种,国家标准规定梯形螺纹牙型角为30o。英制梯形螺纹的牙型角为29o,在我国较少采用。2.梯形螺纹的标记 梯形螺纹的标记由螺纹代号、公差带代号及旋合长度代号组成。梯形螺纹代号用字母Tr及公称直径×螺距与旋向表示,左旋螺纹旋向为LH,右旋不标。 梯形螺纹公差带代号仅标注中径公差带,如7H、7e,大写为内螺纹,小写为外螺纹。 梯形螺纹的旋合长度代号分N、L两组,N表示中等旋合长度,L表示长旋合长度。 标记示例: Tr22×5—7H 表示梯形螺纹,公称直径为22mm,螺距为5mm,中径公差带代号为7H。

3.梯形螺纹的牙型

4.梯形螺纹各部分名称、代号、计算公式及基本尺寸确定

5、梯形螺纹的车削方法 a)左右切削法 b)车直槽法 c)车阶梯槽法 1.梯形外螺纹的车削 (1)螺距小于4mm和精度要求不高的工件,可用一把梯形螺纹车刀,并用少量的左右切削法车削。 (2)螺距大于4mm和精度要求高的梯形螺纹,一般采用车直槽法,分刀车削,先用车槽刀车出螺旋槽,再用梯形螺纹车刀进行车削。具体做法如下: a)车梯形螺纹时,螺纹顶径留0.3mm左右余量,且倒角与端面成15°。 b)选用刀头宽度稍小于槽底宽的车槽刀,粗车螺纹(每边留0.25~ 0.35mm左右的余量)。 c)用梯形螺纹车刀采用左右切削法车削梯形螺纹牙型两侧面,每边留01~0.2mm的精车余量,并车准螺纹小径尺寸。

d)精车大径至图样要求。 e)选用梯形螺纹精车刀,采用左右切削法完成螺纹加工。 2.梯形内螺纹的车削 梯形内螺纹的车削与车削三角形内螺纹基本相同。车削梯形内螺纹时,进刀深度不易掌握,可先车准螺纹孔径尺寸,然后粗车。精车时应不进刀车削2~3次,以消除刀杆的弹性变形,保证螺纹的精度要求。

(完整版)支架承载力计算

支架竖向承载力计算: 按每平方米计算承载力, 中板恒载标准值:f=2.5*0.4*1*1*10=10KN ; 活荷载标准值N Q = (2.5+2 )*1*1=4.5KN ; 则:均布荷载标准值为: P1=1.2*10+1.4*4.5=18.3KN ; 根据脚手架设计方案,每平方米由2根立杆支撑,单根承载力标准值为100.3KN ,故:P1=18.3/2=9.15KN<489.3*205=100.3KN 。满足要求。 或根据中板总重量(按长20m 计算)与该节立杆总数做除法, 中板恒载标准值:f=2.5*0.4*10*20*19.6=3920KN ; 活荷载标准值NQ = (2.5+2 )*20*19.6=1764KN ; 则:均布荷载标准值为: P1=1.2*3920+1.4*1764=7173KN ; 得P1=7173KN<100.3*506=50750KN 。 满足要求。 支架整体稳定性计算: 根据公式: [] N f A σ?≤= 式中: N -立杆的轴向力设计值,本工程取15.8kN ; -轴心受压构件的稳定系数,由长细比λ决定,本工程λ=136,故=0.367; λ-长细比,λ=l 0 /i =2.15/1.58*100=136; l 0-计算长度,l 0=kμh =1.155*1.5*1.2=2.15m ;

k-计算长度附加系数,取 1.155;μ-单杆计算长度系数 1.55;h-立杆步距0.75m。 i-截面回转半径,本工程取1.58cm; A-立杆的截面面积,4.89cm2; f-钢材的抗压强度设计值,205N/mm2。 σ=15.8/(0.367*4.89)=88.04N/mm2<[f]=205N/mm。 满足要求. 支架水平力计算 支架即作为竖向承力支架,也作为侧墙内撑支架,因此需计算支架水平支撑力,即侧墙施工时产生的侧压力。 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: F=0.22γc t0β1β2V1/2 F= γc*H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取26 kN/m3 t0------新浇混凝土的初凝时间(h),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;t=200/(25+15)=5 T------混凝土的温度(°)取25° V------混凝土的浇灌速度(m/h);取2m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取5.0m β1------外加剂影响修正系数,不掺外加剂时取1.0; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—

标准滚动轴承承载能力计算

标准滚动轴承承载能力计算 在跟踪架通用轴系中,标准滚动轴承是重要的部件,轴承的承载能力计算是轴系设计中的关键问题。采用通用轴系后,地平式跟踪架水平轴两端的轴承主要承受径向载荷,同时承受一定量的轴向载荷。垂直轴上的轴承要承载垂直轴及上部转体的负荷,载荷较大;另一方面垂直轴为了满足强度和刚度的要求,轴径一般较大,轴承的尺寸与轴要相互配合,因此使用时必须考虑轴承的尺寸和轴向承载能力。同时为了减少跟踪架的成本,尽量采用轴承厂批量生产的轴承。 角接触球轴承按公称接触角分为15°、25°、40°三种类型,公称接触角越大,轴向承载能力越强。 目前批量生产的角接触球轴承,尺寸最大是接触角为25°的7244AC,其外形尺寸为220 ×400×65。 下表中给出了7244AC 轴承的相关参数 轴承额定载荷选取的流程为: (1)计算滚动轴承的当量载荷 在实际应用中,根据跟踪架承载状况先估算出轴承承受的径向载荷和轴向载荷,则可计算出此时轴承的当量动载荷P 为: 式中X ——径向动载荷系数; Y ——轴向动载荷系数; ——载荷系数。 (2)基本额定动载荷 C 选取 计算出轴承实际工作时的当量载荷后,当轴承的预期使用寿命选定,轴 承最大转速n可知时,可计算出轴承应具有的基本额定动载荷C′,在手册中选择轴承时,所选轴承应满足基本额定载荷 C > C′。

式中 ——温度系数,可从机械设计手册中查得; ε——寿命指数,球轴承取3,滚子轴承取10/3。 由于角接触轴承的径向承载能力大于轴向承载能力,而其在垂直轴上的应用主要承受较大轴向载荷,因此必须考虑其轴向承载能力。 (3)轴承受轴向载荷时承载能力分析 在轴承转速不高时,可以忽略钢球离心力和陀螺力矩的影响,钢球与内外套圈的接触角相等。 由赫兹接触理论得到轴承滚动体与内外滚道的接触变形和负荷之间的相互关系,可以表示为 式中 —滚动体与内外滚道接触变形总量; K —系数; Q —滚动体承受载荷; t —指数,线接触时为0.9,点接触时为2/3。

机械设计中丝杠螺母副计算校核

1、螺纹副耐磨性计算 《机械设计(第四版)》公式(6.20),螺纹中径计算公式: ] [2P h Fp d φπ≥ 式中, N F 轴向力,- 2.1=-φφ整体式螺母取 1.3,81][表许用压强MPa P - 6m m 螺距, -p mm p h h 365.05.0=?==-螺纹工作高度, 螺母为整体式并且磨损后间隙不能调整,2.1,5.22.1=-=φφ取;该螺旋机构为人力驱动,因此][P 提高20%,MPa P 6.212.118][=?=。 mm P h FP d 3.296 .212.1314.36 49153][2=????=≥ φπ 表3.1 滑动螺旋副材料的许用压力[ P] 螺杆—螺母的材料 滑动速度 许用压力 钢—青铜 低速 18-25 ≤3.0 11-18 6 12 7-10 >15 1-2 钢—钢 低速 10-13 钢—铸铁 <2.4 13-18 6 12 4-7 注:当ф<2.5或人力驱动时,[p]值可提高20%;若为剖分螺母时则[p]值应降低15~20%。

图3.? 螺旋副受力图 牙型角α=30°,螺距P 由螺纹标准选择P=6mm 牙顶间隙ac ;25.0,55.1=-=ac p ;5.0,126=-=ac p ;1,4414=-=ac p 外螺纹 大径(公称直径),根据各企业自行制定的行业标准(或自行设计加工)取d=44mm 中径mm p d d 415.02=-= 小径mm h d d 37231=-= 牙高mm ac p h 5.35.03=+= 内螺纹 大径mm ac d D 452=+= 中径mm d D 1422== 小径mm p d D 381=-= 牙高mm h H 5.334== 牙顶宽mm p f 196.2366.0==

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

梯形丝杠加工中的螺纹加工方法

梯形丝杠加工中的螺纹加工方法 梯形丝杠 [1] 旋风铣削丝杠加工中螺纹与滚花一次完成工艺效率高,成本低,加工精度要求不太高的产品,其结构设计思路、方案有较好的推广应用价值。 旋风铣削法是一种高效率的螺纹加工方法,适用于批量较大的螺纹粗加工,其工艺是用硬质合金刀对螺纹进行高速铣削,它具有刀具冷却好、生产效率高的优点。精度要求不高的螺纹,可用此法一次完成切削加工。旋风铣削刀的回转轴线与工件轴线为空间位置关系,交叉角度为β角(等于螺旋升角)。其加工过程包括工件的旋转运动,工件的螺旋轴向进给运动(或刀具进给),铣刀盘上刀刃的旋转运动。 1 零件加工要求 零件为活动扳手调节开口宽度的螺轮,材料为20号圆钢,牙侧有一定粗糙度要求,切断处螺牙部需要倒角,中间销孔与外圆柱面必须有较好的同轴度,否则调整时不会灵活自如,甚至卡死,为便于大拇指握持拨动,其表面要有平行于轴心线的直纹滚花。 2 加工工艺的分析与比较 丝杠加工原来采用车削加工,工艺路线为:冷拔→滚花→车螺纹→校正→钻孔→切断→倒角,不仅效率低、成本高,且由于小圆钢刚度低,车削、滚花时易变形,小号螺轮不能生产,为此我们设计了旋风铣削丝杠设备,不仅将转速由经验认定的1000r/min左右提升至2000r/min以上而且将铣丝滚花一次完成。其工艺路线变为:冷拔→滚花、铣丝→校正→钻孔、切断→倒角。虽然旋风铣削使小径工件有较大变形(大径件变形较小),但校正也容易。改进后的工艺具有如下特点: 表面粗糙度值减小:

由切削力引起的振动减少: 小径工件螺距累积误差有一定增加。 3 结构设计 设备由车床改装,工件转动,刀盘及滚花刀架移动。去掉车床刀架部分,在溜板上配装铣削头及自制跟刀架,将滚花刀装于跟刀架上,跟刀架置于铣刀盘前面。工件左端用卡盘夹紧,右端去掉尾座,安装一带较长空心管的支架,这样一次可以装夹较长原料(相当于一次铣削长度的两倍以上),将铣削部分截断后加工,可以减少端料浪费。 专门设计时,由光杆带动丝杠在螺母中转动,丝杆左端装弹簧夹头,工件向左转动进给,光杆、丝杆皆用空心管加工而成(减少端料浪费)。因为中间悬空较长,可以考虑用辅助支架托起。 滚花刀的装夹装置。两种设计的滚花刀装置方式相同,只是支承架与机床的连接部分有所区别。在支承架上加工一孔,在加工部位对面横向过孔中心线铣槽与通孔:槽宽与滚花刀柄等宽,深与刀柄等高,靠近槽接孔处下边齐槽根部垂直铣一窄细槽,便于滚花挤出的细微铁屑流出,防止滚花轮滞塞、卡紧。滚花刀用快换盖板压住,由带梅花手柄的螺杆将滚花刀柄顶紧。圆钢经过导向套后被滚花,紧接着被高速铣削,实现两道工序一次完成。导向套用工具钢调质加工而成,其上铣一开口,长与支架端面平。导向套定位销孔、装配螺钉与支架配作,要确保开口正对槽中心线。 4 注意事项 材料必须是正规牌号的圆钢,否则工件表面易形成鳞刺等,铣刀易破损崩裂,滚花刀耗损迅速: 加工、装配时必须使滚花刀在槽内移动较轻松,又不致间隙太大,如果间隙过大,工作时滚刀轮倾斜,滚出的花纹不匀,本身也易损坏:压板尽量将滚花刀全部封闭,以防切屑、杂物等溅入: 工作时切勿润滑冷却滚花刀,以防与之接近的硬质合金刀片受损: 先开动车床,让工件转动,再拧紧螺杆,防止静摩擦力过大,工件打滑: 选用制造优良的滚花刀减少换刀次数: 定期拆开快换盖板,清理刀槽。

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

丝杠计算

某台加工中心台进给用滚珠丝杠副的设计计算: 已知: 工作台重量 W1=5000N 工作及夹具最大重量W2=3000N 工作台最大行程L K=1000mm 工作台导轨的摩擦系数:动摩擦系数μ=0.1 静摩擦系数μ0=0.2 快速进给速度V max=15m/min 定位精度20 μm/300mm 全行程25μm重复定位精度10μm 要求寿命20000小时(两班制工作十年)。 表1 切削方式纵向切 削力 Pxi(N) 垂向切 削力 Pzi(N) 进给 速度 Vi(m /min) 工作时间 百分比 % 丝杠轴向载荷 (N) 丝杠转速 r/min 强力 切削 2000 1200 0.6 10 2920 60 一般 切削 1000 200 0.8 30 1850 80 精切 削 500 200 1 50 1320 100 快速 进给 0 0 15 10 800 1500 1)确定滚珠丝杠副的导程 因电机与丝杠直联,i=1 由表1查得

代入得, 按第2页表,取 2)确定当量转速与当量载荷 (1)各种切削方式下,丝杠转速 由表1查得 代入得 (1)各种切削方式下,丝杠轴向载荷 由表1查得

代入得 (3)当量转速 由表1查得 代入得 (2)当量载荷 代入得

3)预期额定动载荷 (1)按预期工作时间估算 按表9查得:轻微冲击取f w=1.3 按表7查得:1~3取 按表8查得:可靠性97%取f c=0.44 已知:L h=20000小时 代入得 (2)拟采用预紧滚珠丝杠副,按最大负载F max计算: 按表10查得:中预载取F e=4.5 代入得 取以上两种结果的最大值 4)确定允许的最小螺纹底径 (1)估算丝杠允许的最大轴向变形量

梯形螺纹计算公式

梯形螺纹计算公式 名称代号关系式 --------------------------------------- 内外螺纹大径 d、D (公称直径) --------------------------------------- 螺距 p --------------------------------------- 牙顶间隙 ac --------------------------------------- 基本牙型高度 H1 H1 = 0.5p --------------------------------------- 外螺纹牙高 h3 h3 = H1 + ac = 0.5p + ac --------------------------------------- 内螺纹牙高 H4 H4 = H1 + ac = 0.5p + ac --------------------------------------- 牙顶高 z z = 0.25p = H1 / 2 --------------------------------------- 外螺纹中径 d2 d2 = d - 2z = d - 0.5p --------------------------------------- 内螺纹中径 D2 D2 = d - 2z = d - 0.5p --------------------------------------- 外螺纹小径 d3 d3 = d - 2h3 --------------------------------------- 内螺纹小径 D1 D1 = d - 2H1 = d - p --------------------------------------- 内螺纹大径 D4 D4 = d + 2ac --------------------------------------- 原始三角形高 H H = 1.866p --------------------------------------- 外螺纹牙顶圆角 R1 R1max = 0.5ac --------------------------------------- 牙底圆角 R2 R2max = ac

丝杆计算方法

一、计算折合到电机上的负载转矩的方法如下: 1、水平直线运动轴: 9.8*μ·W·P B T L= 2π·R·η(N·M) 式P B:滚珠丝杆螺距(m) μ:摩擦系数 η:传动系数的效率 1/R:减速比 W:工作台及工件重量(KG) 2、垂直直线运动轴: 9.8*(W-W C)P B T L= 2π·R·η(N·M) 式 W C:配重块重量(KG) 3、旋转轴运动: T1 T L= R·η(N·M) 式 T1:负载转矩(N·M) 二:负载惯量计算 与负载转矩不同的是,只通过计算即可得到负载惯量的准确数值。不管是直线运动还是旋转运动,对所有由电机驱动的运动部件的惯量分别计算,并按照规则相加即可得到负载惯量。由以下基本公式就能得到几乎所有情况下的负载惯量。 1、柱体的惯量 ) 由下式计算有中心轴的援助体的惯量。如滚珠丝杆,齿轮等。 πγD4L (kg·cm·sec2)或πγ·L·D4(KG·M2) J K= 32*980 J K= 32 式γ:密度(KG/CM3)铁:γ〧7.87*10-3KG/CM3=7.87*103KG/M3 铝:γ〧2.70*10-3KG/CM3=2.70*103KG/M3 JK:惯量(KG·CM·SEC2)(KG·M2) D:圆柱体直径(CM)·(M)

L:圆柱体长度(CM )·(M) 2、运动体的惯量 用下式计算诸如工作台、工件等部件的惯量 W P B J L1= 980 2π(KG·CM· SEC2) P B 2 =W2π(KG·M2) 式中:W:直线运动体的重量(KG) PB:以直线方向电机每转移动量(cm)或(m) 3、有变速机构时折算到电机轴上的惯量 1、 KG·CN:齿轮齿数 Z1 2 JL1= Z2 *J0 (KG·CM·SEC2)(KG·M2) 三、运转功率及加速功率计算 在电机选用中,除惯量、转矩之外,另一个注意事项即是电机功率计算。一般可按下式求得。 1、转功率计算 2π·Nm·T L P0= 60 (W) 式中:P0:运转功率(W) Nm:电机运行速度(rpm) T L:负载转矩(N·M) 2、速功率计算 2π·N m 2 J L Pa= 60 Ta 式 Pa :加速功率(W)

偏心受压构件承载力计算

轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为 e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0 较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

梯形中的常见七种计算

梯形中的常见七种计算 梯形的计算,是中考的重要考点之一。现结合09年的考题,把梯形的计算问题归纳如下, 供同学们学习时参考。 1、求梯形角的大小 例1、(2009哈尔滨)如图1所示,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线 BD 折叠,点A 恰好落在DC 边上的点A '处,若20A BC '∠=°,则A B D '∠的度数为( ). A .15° B .20° C . 25° D .30° 解析: 根据折叠的意义,得:△BAD ≌△BA ′D , 因此,∠BAD=∠BA ′D ,∠ABD=∠A ′BD ; 根据三角形外角和定理,得:∠BA ′D=∠A ′BC+∠C, 由∠A ′BC=20°,∠C=90°, 所以,∠BA ′D=∠A ′BC+∠C=20°+90°=110°, 由AD ∥BC ,得:∠BAD+∠ABC=180°, 因此,∠ABC=70°, 由∠ABC=∠ABD+∠A ′BD+∠A ′BC =70°, 所以,2∠A ′BD=50°,即∠A ′BD=25°。 解:选C 。 2、求梯形的腰长 例2、(2009安徽芜湖)如图2所示,在梯形ABCD 中,A D B C ∥, 9038BD CD BDC AD BC =∠===,°,,. 求AB 的长. 分析: 在四边形中,要想求线段的长度,同学们必须利用所学的知识,设法构造出一个直角三角形, 让所求的线段恰好是这个直角三角形的某一边,根据勾股定理就可以把问题解决了。 而在梯形中,构造直角三角形的办法之一,就是作出梯形的高

解: 如图3所示,过点A 作AF ⊥BC ,垂足是F ,过点D 作DE ⊥BC ,垂足是E , 所以,四边形ADEF 是一个矩形, 所以,AD=FE=3, 因为,BD=CD ,∠BDC=90°, 所以,BE=EC=2 1BC=4,∠DBC=∠DCB=45°, 所以,AF=DE=EC=4, 所以,B F=BE-EF=4-3=1, 在直角三角形ABF 中, 根据勾股定理,得: AB==+=+222214BF AF 17, 即AB 的长为17。 3、求梯形的高 例3、(广西崇左)如图4所示,在等腰梯形ABCD 中,已知A D B C ∥, 24AB DC AD BC ===,,,延长BC 到E ,使CE AD =. (1)证明:BAD DCE △≌△; (2)如果AC BD ⊥,求等腰梯形ABCD 的高DF 的值. 分析: 对于等腰梯形而言,自身有自己的特点,这就是,两条腰相等,两条对角线相等,同一底上 的两个底角相等。在解题时,这些都是解题的隐含条件,要特别注意。 证明: (1)因为,AD BC ∥,且AD=CE , 所以,四边形ADEC 是平行四边形, 所以,AC-DE , 因为,四边形ABCD 是等腰梯形, 所以,BD=AC ,所以,BD=DE, 在三角形ABD 和三角形CDE 中, AB=DC ,AD=CE ,BD=ED , 所以,BAD DCE △≌△。(SSS ) (2)因为,AC BD ⊥, 所以,三角形BDE 是等腰直角三角形, 所以,2BD 2=BE 2=(BC+CE)2=(BC+AD)2=62=36,

柱承载力计算

柱的承载力计算 建筑结构 柱截面承载力的计算公式 3%>ρmin > ρ =0.6% 柱的截面复核计算 【解】(1)求稳定系数φ 柱的长度为L 。=1.0H=1.0×6.4m=6.4m L 。/b=6400/400=16 查表φ=0.87 一、公式 N ≤ 0.9φ (f cA + AS’f y ′) N —轴向力设计值 φ —轴心受压构件稳定系数 f c 混凝土轴心抗压强度设计值 A 构件截面面积为矩形时A=b ×h AS’全部纵向钢筋的截面面积 当纵向钢筋配筋率大于3%时,式中A 应改用A- AS’ f y ′纵向钢筋的抗压强度设计值 二、公式的适用条件 【例A 】已知多层现浇钢筋混凝土框架结构,底层中柱按轴心受压构件计算,柱高H=6.4m,柱截面尺寸b ×h=400×400,轴向压力设计N =3000kN ,采用C30级混凝土(f c=14.3N/mm 2),已配箍筋Ф6@300,纵向钢筋8 Ф22( A s ′=3042mm 2,f y ′=300N/mm 2)。计算该柱是否满足承载力要求。 (2)验算配筋率 ρ = A s ′ ×100% b ×h =3041mm 2 ×100% 400mm × 400mm =1.9 % 3% > ρmin > ρ =0.6%

配筋率符合要求 (3)、验算轴向力 Nu Nu=0.9 φ(fcA+AS ’ fy ′) =0.9x0.87(14.3N/mm 2x400mm 2 +3041mm 2x 300N/mm 2) = 2505834.9N=2505.83kN Nu=2505.83kN <N=3000kN 此中柱承载力不满足要求。 【例B 】已知某多层现浇钢筋混凝土框架结构,首层柱轴向力设计N =2030kN ,截面尺寸b ×h=400mm ×400mm,,采用C20级混凝土(f c=9.6N/mm2),已配箍筋Ф6@300,纵向钢筋8 Ф22( A s ′=2513mm 2,f y ′=300N/mm 2)。按轴心受压构件计算,计算此柱是否安全 轴心受压构件的承载力计算 基本公式 N ≤ 0.9φ (f cA + AS’f y ′) 3%>ρmin > ρ =0.6% Nu=0.9 φ(fcA+AS ’ fy ′) 截面复核 一、求稳定系数φ 二. (2)验算配筋率 ρ = A s ′ ×100% b ×h 三、(3)、验算轴向力 Nu

梯形丝杠的计算公式

梯形丝杠的计算公式 标注:Tr-螺距*头数-旋向 牙型角α=30? 螺距P 由螺纹标准确定 牙顶间隙ac P=1.5,5 ac=0.25;P=6,12 ac=0.5;P=14,44 ac=1 外螺纹 大径d 公称直径 中径d2=d-0.5P 小径d1=d-2h3 牙高h3=0.5P+ac 内螺纹 大径D4=d+2ac 中径D2=d2 小径D1=d-P 牙高H4=h3 牙顶宽f=0.366P 牙槽底宽w=0.366P-0.563ac 螺纹升角ψ tgψ=P/πd2 梯形丝杠的计算公式 螺纹的一种,牙型为等腰梯形,牙型角为30。 内外螺纹以锥面贴紧不易松动。 与矩形螺纹相比,传动效率略低,但工艺性好,牙根强度高,对中性好。如用剖分螺母,还可以调整间隙。梯形螺纹是最常用的传动螺纹。

我国标准规定30?梯形螺纹代号用“Tr”及公称直径×螺距表示,左旋螺纹需在尺寸规 格之后加注“LH”,右旋则不注出。例如Tr36×6;Tr44×8LH等。 各基本尺寸名称,代号及计算公式如下: 牙型角α,30? 螺距P 由螺纹标准确定 牙顶间隙ac P=1.5,5 ac=0.25;P=6,12 ac=0.5;P=14,44 ac=1 外螺纹:大径d 公称直径 中径d2=d-0.5P 小径d1=d-2h3 牙高h3=0.5P+ac 内螺纹:大径D4=d+2ac 中径D2=d2 小径D1=d-P 牙高H4=h3 牙顶宽f=0.366P 牙槽底宽w=0.366P-0.563ac 螺纹升角ψ tgψ=P/π 非精确等速传动场合可以套用以下公式计算: T1=(Ta+Tpmax+Tu) 其中 T1:等速时的驱动扭矩; Ta=(Fa*I)/(2*3.14*n1); Fa:轴向负载N; Fa=F+μmg F:丝杠的轴向切削力等N; μ:导向面摩擦系数; m:移动物体重量(工作台+工件)kg; g:9.8 Tpmax:丝杠的动态摩擦扭矩上限N.cm; Tu:支撑轴承等的摩擦扭矩N.cm

钢管轴向承载力自动计算表.doc

钢管轴向承载力自动计算表 截面类别a1 a2 a3 k 稳定系数φ λn ≤0.215 λn >0.215 a 类0.41 0.98 0.152 长细比 34.68706 1.18175491 0.94298098 / 0.953101344 0.953101 0.95310 c b 类0.65 0.96 0.3 屈服强235 1.21594736 0.90960399 / 0.918998053 0.918998 0.91899 λ n ≤0.73 0.90 0.595 弹性模206000 1.26695933 0.89847833 / 0.87293592 0.872935 0.87293 类λ n > 1.21 0.302 中间计算值 1.46769320 0.732131348 0.732131 / d λ n ≤ 1.35 0.86 0.915 λn 0.37292 1.34829435 0.81225445 / 0.80922172 0.809221 0.80922 类λ n > 1.37 0.432 1.67517305 0.629892107 0.629892 / 长度 L 外径壁厚t 小径 d D/4 d/D (d/D)^2 1+(d/D)^2 sqrt[1+(d/ 回转半径i 圆700 60 3 54 15 0.9 0.81 1.81 1.345362 20.18043607 kg n 1 9.8 管 屈服强度大半R平小半径截面面积= 大有侧孔截面面 类r 平方大圆面积小圆面积手动输入截面面积 f 径R 方r 圆 - 小圆积 2827.43 2290.2210 60.1075 235 30 900 27 729 537.21235 536.94 0 343 78 17 4006 承载力(KN) 承载力(kg) 大扇形大扇大三 大弦S 单位 mm 单位: mm 安全系数 = 2 60.13 KN 6133 kg 夹角形S 角S 180 141 0.00 1413 长度 L 700 不规则截面0.00 KN 0 kg 小扇形小扇小三小弦S 外径D 60 60.131593 KN 6133 kg 180.00 114 0.00 1144 壁厚 t 3 安全系数 = 2.5 承载力(KN) 承载力(kg) 侧面孔径d 0 48.11 KN 4907 kg 在黄色方格内填上数据,则屈服强度f 235 不规则截面0.00 KN 0 kg 1 、输入钢管受力两端长度,48.105274 KN 4906.738 kg 若钢管由多段管串联组合, 安全系数 = 3 承载力(KN) 承载力(kg) 则要分段计算,以受力最低段单位: mm 40.09 KN 4089 kg 使 2 、输入钢管外径,销直径0 不规则截面0.00 KN 0 kg 用 3 、输入钢管最小截面壁厚,40.0877285 KN 4089 kg 说

相关主题
文本预览
相关文档 最新文档