当前位置:文档之家› 【地基基础 精品讲义】21第二章-土的有效应力原理

【地基基础 精品讲义】21第二章-土的有效应力原理

地基基础
主讲教师:唐 亮 哈尔滨工业大学土木工程学院

土的压缩性与地基沉降计算
?本章内容
1. 土的压缩性 2. 土的有效应力原理 3. 地基土的应力分布
z 土层自重应力 z 基底压力(接触压力和附加压力) z 地基附加应力
4. 地基最终沉降量计算 5. 地基变形与时间的关系(了解)

1998年 九江大堤决口
“豆腐渣”工程 “王╳ ╳”工程
2000年 30公里 双钟圩堤身滑坡
《九江大堤今年又见“豆腐渣”》
《解放军报》 2000年08月14日
“豆腐脑”
需要的土力学知识: 有效应力原理 渗流固结理论 土的强度理论
《羊城晚报》2000年07月31日

有效应力原理的基本概念
z 土体是由固体颗粒骨架、孔隙流体(水和气)三相构成的碎散材
料,受外力作用后,总应力由土骨架和孔隙流体共同承受
孔隙流体
三相体系
土= 固体颗粒骨架 + 孔隙水 + 孔隙气体
受外荷载作用 总应力由土骨架和孔隙流体共同承受 z 对所受总应力,骨架和孔隙流体如何分担? z 它们如何传递和相互转化? z 它们对土的变形和强度有何影响?
σ 总应力
有效应力原理 K. V.Terzaghi(1923)
土力学从一般固体力学中分离出 来,成为一门独立的分支学科。

有效应力原理的基本概念
? 饱和土是由固体颗粒骨架和充满 其间的水组成的两相体。受外力 后,总应力分为两部分承担:
) 由土骨架承担,并通过颗粒之间
的接触面进行应力的传递,称为 粒间应力。
) 由孔隙水来承担,通过连通的孔
隙水传递,称为孔隙水压力。孔 隙水不能承担剪应力,但能承受 法向应力。
外荷载 → 总应力 σ

有效应力原理的基本概念
饱饱和和土土体中所的承应受力的形总态应力σa为-a有断面效通应过力土σ’与孔隙水σ压A力u之和
颗粒的接触点
A: 土单元的断面积
As: 颗粒接触点的面积 A = AS + Aw
Aw:孔隙水的断面积
u:孔隙 a
a
a-a断面竖向力平衡:
水压力
σ ? A = σ s As + uAw
σ = σ s As + Aw u
AA
PS
PSV
土骨架承担 土骨架传递
有效应力σ’
Aw ≈ 1 A
σ = σ'+u
已知或易知 测定或计算
PS

分析:
z As很小,第2项中As/A可略去不计; z 但第1项不能略去; z 局限性,如煤层。
通常, 总应力已知或易知 σ = σ'+u
孔隙水压测定或算定 (2)土的变形与强度都只取决于有效应力
有效应力
z 非饱和土的有效应力公式还处于探索阶段! z 代表人物有:陈正汉,中国人民解放军后勤工程学院

σ = σ'+u
①变形的原因 z 颗粒间克服摩擦相对滑移、滚动—与
σ’

结论:
关;
z 孔隙水压力在各个方向上
z 接触点处应力过大而破碎—与 σ’ 有关。
的大小相等;
②强度的成因
z 有效应力作用使孔隙体积
凝聚力和摩擦—与σ’ 有关
发生改变,土体发生压缩;
③孔隙水压力的作用
z 有效应力控制了土体的变
z 对土颗粒间摩擦、土粒的破碎没有贡 献,并且水不能承受剪应力,因而孔隙
形及强度。
水压力对土的强度没有直接的影响;
z 它在各个方向相等,只能使土颗粒本身 受到等向压力,由于颗粒本身压缩模量
很大,故土粒本身压缩变形极小。因而
孔隙水压力对变形也没有直接的影响,
土体不会因为受到水压力的作用而变得
密实。

附加应力情况
外荷载
附加应力σz 土骨架+孔隙水
土骨架 有效应力σ′
孔隙水 孔隙压力u
超静孔隙 水压力

一个人必须经过一番刻苦奋斗,才会有所成就。 -安徒生


关于有效应力原理的几个问题

第33卷 第2期 岩 土 工 程 学 报 Vol.33 No.2 2011年2月 Chinese Journal of Geotechnical Engineering Feb. 2011 关于有效应力原理的几个问题 李广信 (清华大学水沙科学与水利水电工程国家重点实验室,北京 100084) 摘要:分析了关于饱和土体有效应力原理的一些错误的概念和理解,针对在饱和土中的孔隙水压力是否需要折减,黏性土的结合水能否传递水压力,试验中和原位孔隙水压力和地下室浮力的量测以及岩石、混凝土和黏土中有效应力原理的实用性等问题进行了讨论。指出长期的工程实践和大量的试验成果表明有效应力原理对于饱和砂土和黏土都是适用的和有效的。 关键词:有效应力原理;孔隙水压力;结合水;孔压的量测 中图分类号:TU43 文献标识码:A 文章编号:1000–4548(2011)02–0315–06 作者介绍:李广信(1941–),男,黑龙江宾县人,博士,教授,从事土的本构关系等方面的研究。E-mail: ligx@https://www.doczj.com/doc/1f13882507.html,。 Some problems about principle of effective stress LI Guang-xin (State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China) Abstract: Some mistakes and wrong concepts about the principle of effective stress in saturated soil are pointed out and analyzed. Some problems in the field are discussed, for example, the reduction of pore water pressure in clay, the diffusion of bound water in clay, the accuracy of the principle of effective stress in rock, concrete and clay, the measurement of pore water pressure in clay and uplift pressure on basement. Through the long processs of practice and experiments, a conclusion is drawn that the principle of effective stress is applicable and effective in both saturated sand and clay. Key words: principle of effective stress; pore water pressure; bound water; measurement of pore water pressure 0 引 言 J.K.Mitchell认为太沙基关于饱和土体的有效应力原理是土力学的“拱心石”[1],亦即是石拱结构中封顶的那一块石头,可见其重要性。经典土力学中的太沙基一维渗流固结理论,比奥固结理论,土的排水与不排水强度及其指标,Skempton的孔隙水压力系数,水下土体的自重应力与附加应力的计算,渗透变形,土中水的压力(扬压力与侧压力),地基的预压渗流固结,有水情况下的极限平衡法边坡的稳定分析等课题,都是建立在有效应力原理基础上的。太沙基的有效应力原理也是土力学能够成为一门独立的力学学科的标志性理论。 可是近年来,笔者所见到很多与有效应力原理相悖的中国文献(发表或未发表),它们都涉及到黏性土中的浮力、自重应力计算和水土合算与分算等问题。其作法或者是将孔压u打折,或者是将压力的计算面积折减,或者不承认某些黏性土内存在孔隙水压力。实际上有意或无意在推翻或者改写有效应力原理。近年来出现的关于基坑支挡结构物上的水土合算[2],地基基础浮力计算的折减[3]与用饱和重度计算有效自重应力[4]等都在工程设计中广泛应用,但其也是有悖于有效应力原理的。 1 关于有效应力原理的推导 一位作者在其文章开头就声称: “土力学中太沙基的有效应力原理几十年来有一个根本错误没有被发现。”他认为应由式(1)改为式(2) u σσ′ =+,(1) (1)n nu σσ′ =?+,(2) 式中,n是土的孔隙率。 还有一位认为孔隙水压力只与土孔隙内的自由水有关,式(1)中的孔压u应表示为 w u h ξγ =,(3) 式中,ξ是饱和土截面上自由水所占的面积与孔隙总面积之比[5],被称为水压率,h为该点的总水头。 ─────── 基金项目:国家973计划项目(2010CB732103) 收稿日期:2010–08–23

管道应力分析基础知识

管道应力分析基础知识 2009-04-09 13:55 1. 进行应力分析的目的是 1) 使管道应力在规范的许用范围内; 2) 使设备管口载荷符合制造商的要求或公认的标准; 3) 计算出作用在管道支吊架上的荷载; 4) 解决管道动力学问题; 5) 帮助配管优化设计。 2. 管道应力分析主要包括哪些内容?各种分析的目的是什么? 答:管道应力分析分为静力分析和动力分析。 1) 静力分析包括: (l)压力荷载和持续荷载作用下的一次应力计算――防止塑性变形破坏; (2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算――防止疲劳破坏; (3)管道对设备作用力的计算――防止作用力太大,保证设备正常运行; (4)管道支吊架的受力计算――为支吊架设计提供依据; (5)管道上法兰的受力计算――防止法兰泄漏; (6)管系位移计算――防止管道碰撞和支吊点位移过大。 2) 动力分析包括: (l)管道自振频率分析――防止管道系统共振; (2)管道强迫振动响应分析――控制管道振动及应力; (3)往复压缩机气柱频率分析――防止气柱共振; (4)往复压缩机压力脉动分析――控制压力脉动值。 3. 管道应力分析的方法 管道应力分析的方法有:目测法、图表法、公式法、和计算机分析方法。选用什

么分析方法,应根据管道输送的介质、管道操作温度、操作压力、公称直径和所连接的设备类型等设计条件确定。 4. 对管系进行分析计算 1) 建立计算模型(编节点号),进行计算机应力分析时,管道轴测图上需要提供给计算机软件数据的部位和需要计算机软件输出数据的部位称作节点: (1)管道端点 (2)管道约束点、支撑点、给定位移点 (3)管道方向改变点、分支点 (4)管径、壁厚改变点 (5)存在条件变化点(温度、压力变化处) (6)定义边界条件(约束和附加位移) (7)管道材料改变处(包括刚度改变处,如刚性元件) (8)定义节点的荷载条件(保温材料重量、附加力、风载、雪载等) (9)需了解分析结果处(如跨距较长的跨中心点) (10) 动力分析需增设点 2) 初步计算(输入数据符合要求即可进行计算) (1) 利用计算机推荐工况(用CASWARII计算,集中荷载、均布荷载特别加入) (2) 弹簧可由程序自动选取 (3) 计算结果分析 (4) 查看一次应力、二次应力的核算结果 (5) 查看冷态、热态位移 (6) 查看机器设备受力 (7) 查看支吊架受力(垂直荷载、水平荷载) (8) 查看弹簧表

【地基基础 精品讲义】21第二章-土的有效应力原理

地基基础
主讲教师:唐 亮 哈尔滨工业大学土木工程学院

土的压缩性与地基沉降计算
?本章内容
1. 土的压缩性 2. 土的有效应力原理 3. 地基土的应力分布
z 土层自重应力 z 基底压力(接触压力和附加压力) z 地基附加应力
4. 地基最终沉降量计算 5. 地基变形与时间的关系(了解)

1998年 九江大堤决口
“豆腐渣”工程 “王╳ ╳”工程
2000年 30公里 双钟圩堤身滑坡
《九江大堤今年又见“豆腐渣”》
《解放军报》 2000年08月14日
“豆腐脑”
需要的土力学知识: 有效应力原理 渗流固结理论 土的强度理论
《羊城晚报》2000年07月31日

有效应力原理的基本概念
z 土体是由固体颗粒骨架、孔隙流体(水和气)三相构成的碎散材
料,受外力作用后,总应力由土骨架和孔隙流体共同承受
孔隙流体
三相体系
土= 固体颗粒骨架 + 孔隙水 + 孔隙气体
受外荷载作用 总应力由土骨架和孔隙流体共同承受 z 对所受总应力,骨架和孔隙流体如何分担? z 它们如何传递和相互转化? z 它们对土的变形和强度有何影响?
σ 总应力
有效应力原理 K. V.Terzaghi(1923)
土力学从一般固体力学中分离出 来,成为一门独立的分支学科。

有效应力原理的基本概念
? 饱和土是由固体颗粒骨架和充满 其间的水组成的两相体。受外力 后,总应力分为两部分承担:
) 由土骨架承担,并通过颗粒之间
的接触面进行应力的传递,称为 粒间应力。
) 由孔隙水来承担,通过连通的孔
隙水传递,称为孔隙水压力。孔 隙水不能承担剪应力,但能承受 法向应力。
外荷载 → 总应力 σ

8章应力分析·强度理论

材 料 力 学 ·170 · 第8章 应力分析·强度理论 8.1 概 述 前面几章中,分别讨论了轴向拉伸与压缩、扭转和弯曲等几种基本变形构件横截面上的应力,并根据相应的实验结果,建立了危险点处只有正应力或只有切应力时的强度条件 []max σσ≤或[]max ττ≤ 式中:max σ或max τ为构件工作时最大的应力,由相关的应力公式计算;[]σ或[]τ为材料的许 用应力,它是通过直接实验(如轴向拉伸或纯扭),测得材料相应的极限应力,再除以安全因数获得的,没有考虑材料失效的原因。这些强度条件的共同特点是:其一,危险截面的危险点只有正应力或只有切应力作用;其二,都是通过实验直接确定失效时的极限应力。 上述强度条件对于分析复杂情形下的强度问题是远远不够的。例如,仅仅根据横截面上的应力,不能分析为什么低碳钢试样拉伸至屈服时,表面会出现与轴线成45°角的滑移线;也不能分析铸铁圆试样扭转时,为什么沿45°螺旋面断开;根据横截面上的应力分析和相应的实验结果,不能直接建立既有正应力又有切应力存在时的强度条件。 实际工程中,构件受力可能非常复杂,从而使得受力构件内截面上一点处往往既有正应力,又有切应力。对于这些复杂的受力情况,一方面要研究通过构件内某点各个不同方位截面上的应力变化规律,从而确定该点处的最大正应力和最大切应力及其所在的截面方位;另一方面需要研究材料破坏的规律,找出材料破坏的共同因素,通过实验确定这一共同因素的极限值,从而建立相应的强度条件。 本章主要研究受力构件内一点的应力状态,应力与应变之间的关系(广义胡克定律)以及关于材料破坏规律的强度理论,从而为在各种应力状态下的强度计算提供必要的理论基础。 8.2 一点的应力状态·应力状态分类 受力构件内一点处不同截面上应力的集合,称为一点的应力状态。为了描述一点的应力状态,在一般情况下,总是围绕这点截取一个3对面互相垂直且边长充分小的正六面体,这一六面体称为单元体。当受力构件处于平衡状态时,从构件内截取的单元体也是平衡的,单元体的任何一个局部也必是平衡的。所以,当单元体3对面上的应力已知,就可以根据截面法求出通过该点的任一斜截面上的应力情况。因此,通过单元体及其3对互相垂直面上的应力,可以描述一点的应力状态。 为了确定一点的应力状态,需要先确定代表这一点的单元体的6个面上的应力。为此,在单元体的截取时,应尽量使其各面上应力容易求得。

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应

力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

ANSYS基础教程——应力分析

ANSYS基础教程——应力分析 关键字:ANSYS 应力分析 ANSYS教程 信息化调查找茬投稿收藏评论好文推荐打印社区分享 应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要内容有:分析步骤、几何建模、网格划分。 应力分析概述 ·应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析。 ANSYS 的应力分析包括如下几个类型: ●静态分析 ●瞬态动力分析 ●模态分析 ●谱分析 ●谐响应分析 ●显示动力学 本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。 A. 分析步骤 每个分析包含三个主要步骤:

·前处理 –创建或输入几何模型 –对几何模型划分网格 ·求解 –施加载荷 –求解 ·后处理 –结果评价 –检查结果的正确性 ·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;

·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入; ·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。 ·通常先定义分析对象的几何模型。 ·典型方法是用实体模型模拟几何模型。 –以CAD-类型的数学描述定义结构的几何模型。 –可能是实体或表面,这取决于分析对象的模型。 B. 几何模型 ·典型的实体模型是由体、面、线和关键点组成的。 –体由面围成,用来描述实体物体。 –面由线围成,用来描述物体的表面或者块、壳等。 –线由关键点组成,用来描述物体的边。 –关键点是三维空间的位置,用来描述物体的顶点。

第三章构造研究中的应力分析基础

第三章 构造研究中的应力分析基础 一、应力 内力与面力、体力、外力、内力等概念不同,在固体力学中应用广泛。物体的变形是由内力直接引起的(外力仅是引起内力改变的原因),因而在固体力学中更关心物体内部各部分之间的内力的变化情况,因而引入“应力”这个概念。 为了研究物体内部某点的内力分布状态,通常设想过该点作一个微小面积的截面。设这一微小截面的面积为ΔF ,作用在该截面上的内力为ΔP ,则将 称为该点处该截面上的应力。由于内力是矢量,应力也是矢量。 由于ΔF 截面上的内力P 可以分解为垂直于截面的内力分量N 和平行于截面的内力分量T ,相应地,应力也可以分解为垂直于截面的应力(σ)和平行于截面的应力(τ) 垂直于截面的应力(σ)称为该截面上的正应力,平行于截面的应力(τ)称为该截面上的剪应力。 二、主应力、主方向和主平面 在物体内部的某点处总是可以找到这样一个包含该点的微小的正六面体(立方体),它的三对正交截面上没有剪应力而只有正应力作用,这种情况下的三对正应力称为该点的主应力,分别用σ1、σ2、σ3表示,并规定压应力为正,拉应力为负,在代数值上保持σ1>σ2>σ3。 主应力的方向称为该点的应力主方向,三对截面则称为该点的三个主平面。 一点的3个主应力决定了该点的应力状态,当3个主应力中有两个为零时称单轴应力状态;有1个为零时称双轴应力状态或平面应力状态;当3个主应力都不为零时称为三轴应力状态。 三、应力莫尔圆 应力莫尔圆是一种重要的图解方法,可以直观地表示一点的应力状态。 以横坐标代表正应力σ,纵坐标代表剪应力τ,根据σ1、σ2和σ3的大小作出的用以反映一点应力状态的一个圆就是应力莫尔圆。 1.单轴应力状态的二维应力莫尔圆 圆上任一点的坐标代表与主应力σ1呈θ夹角的截面上所受到的正应力和剪应力。(其中θ是过该点的半径与横坐标轴所呈夹角的一半)。 2.双轴应力状态的二维应力莫尔圆 与单轴应力状态类似,圆上任一点的坐标代表与主应力σ1呈θ夹角的截面上所受到的正应力和剪应力。(其中θ是过该点的半径与横坐标轴所呈夹角的一半)。 从单轴和双轴应力莫尔圆上可以看出: (1)剪应力互等定律:在两个相互垂直的截面上剪应力大小相等,方向相反; (2)正应力之和守恒:在两个相互垂直的截面上正应力之和不变,等于主应力之和; (3)在与最大主应力σ1呈45?和135?的截面上所受到的剪应力最大。 3.三轴应力状态的三维应力莫尔圆 三个分别包含σ1和σ2轴、σ2和σ3轴、σ1和σ3轴的3个二维应力莫尔圆共同组成的区域内的任一点的横坐标和纵坐标即代表了三维空间中某截面上的正应力和剪应力。 该图上也可以看出最大剪应力位于σ1和σ3构成的应力圆上,位于与σ1呈45?或135?夹角的截面上。 p dF dP F P F ==??→?0lim dF dT dF dN F F 0 0lim lim →?→?==和τσ

有效应力原理

有效应力原理是否存在? 李伟利 广东南海国际建筑设计有限公司,广东佛山528000 摘要:本文通过学习,对有效应力原理提出质疑,并从本构模型、孔隙水压、 渗透固结、进行分析,认为:有效应力原理从理论到实践,都存在着巨大缺陷, 是经不起实践和检验的,有效应力原理是不存在的。 关键词:有效应力原理;本构模型;孔隙水压力;渗透固结 有效应力原理,作为土力学的核心自诞生的那天起,一直被世界各国地质学家们所推宠。仅管其间,也曾有一些学者对有效应力原理怀疑、并提出批评,却丝毫没有影响其原理的应用、推广。如“1935年秋,太沙基回到奥地利,而等待他的,却是对他的土力学基本原理持怀疑态度的同僚们的猛烈批评文章。太沙基与付略里希。联名发表了三十三页的答复文章, 充分地论证了土力学原理是正确无误的”[1-26]。近年来国内的一些学者,对有效应力原理也提出了一些看法,却被认为是“有意或者无意推翻或者改写有效就力原理”[2]。那么;有效应力原理究竟有没有问题?能否作为土力学的基石?能否引导土力学朝着正确的方向发展?是我们岩土人必须面对的问题。确切地说,有效应力原理,作为土力学的基础理论、引导着土力学也快接近百年了。它既不象传统的经典理论,象万有引力那样、有放之四海而皆准,不变永恒的魅力;也不象浮力原理(阿基米德.前287年-212年)那样简单、明了、适用;所更具个性的是“自Roscoe与他的学生(1958~1963)创建剑桥模型至今,各国学者已发展了数百个本构模型,但得到工程界普遍认可的极少,严格地说尚没有”[3]。而今;更有人把有效应力原理应用到混凝土、煤层、沥青路面。继续幻想着它、能够解决更多的问题。难道有效应力原理真的那么有效?以我看、就目前地质界的普遍认可、信赖的基础上,

应力分析基础理论讲义

管道应力分析基础理论 管道应力分析主要包括三方面内容:正确建立模型、真实地描述边界条件、正确地分析计算结果。所谓建立模型就是将所分析管系的力学模型按一定形式离散化,简化为程序所要求的数学模型,模型的真实与否是做好应力分析的前提条件。应力分析的根本问题就是边界条件问题,而体现在工程问题上就是约束(支架)、管口等具体问题的模拟,真实地描述这些边界条件,才能得到正确的计算结果。要想能够熟练而正确地分析结果,首先会正确设计支吊架,有一定的相关理论知识如工程力学,流体力学,化工设备及机械等,另外需在一定时间内不断摸索,总结出规律性的问题。 第一章管道应力分析有关内容 1.1 管道应力分析的目的 进行管道应力分析的问题很多CAESARII解决的问题主要有: 1、使管道各处的应力水平在规范允许的范围内。 2、使与设备相连的管口载荷符合制造商或公认的标准(如 NEMASM23,API610 API617等标准)规定的受力条件。 3、使与管道相连的容器处局部应力保持在ASME第八部分许用应力范围内。 4、计算出各约束处所受的载荷。 5、确定各种工况下管道的位移。 6、解决管道动力学问题,如机械振动、水锤、地震、减压阀泄放等。

7、帮助配管设计人员对管系进行优化设计。 1.2 管道所受应力分类 1.2.1 基本应力定义 轴向应力(Axial stress): 轴向应力是由作用于管道轴向力引起的平行管子轴线的正应力,:S L=F AX/A m 其中 S L=轴向应力MPa F AX=横截面上的内力N A m=管壁横截面积mm2=π(do2-di2)/4 管道设计压力引起的轴向应力为S L=Pdo/4t 轴向力和设计压力在截面引起的应力是均布的,故此应力限制在许用应力[σ]t范围内。 弯曲应力(bending stress): 由法向量垂直于管道轴线的力矩产生的轴向正应力。 S L=M b c/I 其中: M b=作用在管道截面上的弯矩N.m C-从管道截面中性轴到所在点的距离mm I-管道横截面的惯性矩mm4=π(d o4-d l4)/64 当C达到最大值时,弯曲应力最大 S max=M b R0/I= M b/Z

相关主题
文本预览
相关文档 最新文档