当前位置:文档之家› 紫外可见分光光度计热重及同步热分析仪购置技术要求

紫外可见分光光度计热重及同步热分析仪购置技术要求

紫外可见分光光度计热重及同步热分析仪购置技术要求
紫外可见分光光度计热重及同步热分析仪购置技术要求

紫外可见分光光度计热重及同步热分析仪购置技术要求

JJG507-1987精密步进电阻式衰减器检定规程

MV_RR_CNG_0100 精密步进电阻式衰减器检定规程 1. 精密步进电阻式衰减器检定规程说明 编号JJG507-1987 名称(中文)精密步进电阻式衰减器检定规程 (英文)Verification Regulation of Step Attenuators 归口单位中国计量科学研究院 起草单位中国计量科学研究院 上海测试技术研究所 主要起草人吴 瑛 (上海测试技术研究所) 金为轩 (中国计量科学研究院) 批准日期1987午7月6日 实施日期1988年5月6日 替代规程号 适用范围本规程适用于新生产、使用中和修理后的各种精密步进电阻式衰减器的检定。 主要技术要求1 频率范围:DC~3 000 MHz。 2 衰减范围: 0~100 dB。 3 衰减准确度: 0.1 dB步进档:±(0.1~0.2) dB; 1 dB步进档:±(0.06~0.4)dB; 10 dB步进档:±(0.1~1.5) dB。 4 特性阻抗:50 Ω、7 5 Ω同轴插头座为L16(N)、L27等。 5 电压驻波系数:1.10~1.40。 6 起始衰减量:≤1 dB。 是否分级 否 检定周期(年) 1 附录数目 2 出版单位中国计量出版社 检定用标准物质 相关技术文件 备注 2. 精密步进电阻式衰减器检定规程摘要 一概述 精密步进电阻式衰减器可用来检定信号发生器、接收机、频谱分析仪等测量仪器内的衰减器。也可用来测量各种同轴元件的衰减特性和放大器的增益。 精密步进电阻式衰减器,一般由放入屏蔽盒或腔体内的若干节T型或∏型电阻网络按一定要求串接而成,通过开关转换使衰减量步进。如TO32、TS14、TO5、SH-2、DPU、WS3701以及MN570C型等衰减器都属于这类衰减器。

JJG1105-2015《氨气检测仪检定规程》解读

计 一、制定背景 随着社会需求的增加,各种原理的氨气分析仪、检测仪在检测机构和计量领域应用越来越广泛,据不完全统计,目前全国在用的这类仪器至少有几万台。这些仪器的性能和在使用中的量值准确度,对环境保护、生命健康以及安全生产起着至关重要的保障作用。 中国计量科学研究院气体研究室研制了氨气标准物质、动态校准稀释系统等,建立了氨一级气体标准物质量值溯源系统。氨气检测仪规程制定任务下达后,起草小组根据市场需要,在近几年内对近两千台氨气检测仪开展了计量校准和测试研究。通过计量测试和校准,并广泛征集了50多家单位(包括计量、检测 部门、生产厂家等)提出的近百条意见和建议,历时3年时间,终于完成了规程的制定。JJG1105-2015《氨气检测仪检定规程》(以下简称“规程”)于2015年1月30日发布,并自2015年4月30日起实施。 二、规程主要内容解析 1.规程名称和范围 本规程名称:氨气检测仪,测量以空气或氮气为底气中氨气含量的仪器。实际包括两种不同级别的仪器,一种是氨气分析仪,属于准确度较高的精密仪器,该类仪器的测量原理以红外声光、非色散红外、化学发光、紫外、激光、傅立叶红外等为主;另一种是氨气检测报警器,属于常规的检测报警器,该类仪器的测量原理大多以电化学 JJG1105-2015 《氨气检测仪检定规程》解读 □刘沂玲 9.复校时间间隔 由于复校时间间隔的长短是由仪器的使用情况、使用者、仪器本身质量等诸因素所决定的,因此,用户可根据实际使用情况自主决定复校时间,建议不超过1年。 10.附录 本部分主要对标准物质溶液配制方法、傅立叶变换质谱仪校准记录格式、校准证书内页格式及示值误差的不确定度评定示例等进行了具体的描述和规定。 三、规范执行中应注意的问题 1.术语与计量单位的选择 术语和计量单位的选择遵照JJF1001-2011《通用计量术语及定义》选择使用。 2.计量特性确定原则 根据高分辨质谱在实际应用中的主要功能和性能指标,考虑其具体应用的要求,形成JJF1531-2015确定的计量特性。计量特性确定过程中也参照了现行有效的质谱仪校准规范,如JJF1164-2006《台式气相色谱-质谱联用仪校准规范》、JJF1120-2004《热电离同位素质谱计校准规范》等中的计量特性指标。 3.标准物质选择原则 计量特性确定的实验研究过程中使用了利血平、大豆苷元和人参皂苷Rb1三种标准物质,这3种标准物质均为由中国计量科学研究院发布的有证标准物质,易于获得而且可以溯源。 4.示值误差的不确定度评定 以利血平为例,进行示值误差的不确定度评定。采用傅立叶变换质谱仪直接测定国家有证标准物质利血平的质荷比,并与标准物质理论计算结果进行比较。根据IUPAC 公布的单同位素原子量及不确定度计算标准物质的标准不确定度。 注:作者为JJF1531-2015的主要起草人。作者单位【中国医学科学院药物研究所】DOI:10.16569/https://www.doczj.com/doc/1f10385148.html,11-3720/t.2015.12.065 计量:www.cqstyq.com

噪声频谱分析仪操作规程

噪声频谱分析仪操作规程 一、测量前准备 1. 装电池:5节5号干电池,如果连续测定8小时以上,使用高能碱性电池。 如使用外接电源,请注意正负极性。 2. 装传感器:将传感器对准前置级头子螺纹口顺时针旋紧。 3. 通电检查:开启电源开关,显示器应显示A声级,F快特性,显示模拟表针刻度,如果在左上角出现“Batt”,表示电池不足,应及时更换电池,此时显示的数据随声压而变化表示正常。 4. 声校准:将声级校准器(94dB、1kHz)配合在传声器上,开启校准器电源,声级计计权设置A或Lin,声压读数应是93.8dB,否则调节声级计右侧面灵敏度调节电位器,校准完成后取下校准器。 二、瞬时声级测量 1. 打开开关,选择快慢档,所显示的数值即为瞬时声压(A声级) 2. 按保持键则读数为最大声压(A声级) 三、测量时间设置 1. 按[定时]进入设定方式,再按[定时],测量时间依次为10s→1m→5m →10m→15m→20m→1h→8h→24h→Man→10s变化,若设定在1m时停止按键,表示自动测量时间为1分钟,其余类似。 2. 测量运行:设定好测量时间,按[运行]进入自动测量状态。显示“RUN”标记,到预定时间结束,“RUN”标记消失,显示“PAUSE”暂停标记。 3. 读取数据:按[选择],数据依次调出显示Leq→SD→Lmax→L95→L90→L50→L10→L5→Leq 四、频谱测量方法 1. 手动方式 [复位]→[计权]→显示“Lin”→[频率]→显示“.”表示1/1中心频率→[定时]设定测量时间→[运行]→显示“PUASE”读数为声压级 2. 自动测量 [复位]→[计权]→显示“Lin”→[定时]设定测量时间→连续按[频率]→直到1/1中心频率点全部选通,显示“.”→[运行]→自动测量自动记

热重分析仪TGA—DSC

什么是热分析? 热分析是在程序温度(指等速升温、等速降温、恒温或等级升温等)控制下测量物质的物理性质随温度的变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化。由此进一步研究物质的结构和性能。 热重法:在程序温度控制下测量试样的质量随温度变化的一种技术。 用途:用来测量金属络合物的降解、物质的脱水、分解等 垂线:很容易折损,而又价额昂贵。每次做完样后的清洗要小心。 垂线的清洁 如右图所示,用针筒抽取乙醇冲洗。如果乙醇不能清洁,也可选用其他的溶剂清洗。操作时,加热炉要放回机器内,以免溶液滴到加热炉内。 切忌用火烤,会造成不可逆的仪器损坏。 支撑管的清洁 可以用镊子垂直方向小心取出,注意不要碰到加热模块。然后可以用乙醇清洗,如果还是擦不干净,也可以用洗液泡。 然后擦干放加热炉即可 样品托盘及挂钩 清洁时,用黑色小板托住样品托盘后再取下。然后分别用酒精灯灼烧切忌, 不能放在一起烧,因为挂钩很细,加热后变软,如果还加上托盘重量,就很容易变形。

TGA 图怎么看? TGA 举例1: 取点规则,一般在平 台的两边。 失重线,纵坐标为重量剩 余百分比。 微分线,由失重线的失重速度快慢所得到,即△W/△T 如有特殊报告要求,也可以选△Y ,△X ,Onset 等。 横坐标也可以是时间,如果这时作微分线,那微 分线得意思就是△W/△Time 80℃-120℃左右,一般为游离水的失重造成

TGA举例2 TGA举例3 这个失重的开时温度比前一个要早一些。推测它的失重是由水或某种有机溶剂的残留引起的。 30℃-60℃可能是因为有 机溶剂引起的失重,列入 乙醇等。 150℃和300℃是样品的分部分解 引起的

烟气分析仪不确定度分析

烟气分析仪的测量结果 不确定度分析计算报告 Z/BQ-HYH-001-2012 河北省计量监督检测院 环保室 编写:审核:批准: 年月日年月日年月日

烟气分析仪器示值误差测量结果 不确定度分析报告 1 概述 1.1 测量方法:根据 根据JJG968-2002《烟气分析仪计量检定规程》。 1.2 环境条件:(15~35)℃;相对湿度≤85%.。 1.3 测量标准:CO-N 2 、NO-N 2、O 2-N 2、国家一级标准气体,相对标准不确定度为1%, 包含因子为2。 NO 2-N 2、SO 2-N 2、相对标准不确定度为3%,包含因子为2。 1.4 被测对象:测量范围(0~5000)μmol/mol (其中:氧0~25%),示值误差±5% 2 数学模型 通入一定浓度的标准气体,平衡后读取被检仪器的示值,重复测量3次,其读数的算术平均值与标准气体标准值的差,并计算该点的相对误差即为被检仪器的示值误差。 则可认为数学模型是: s s m x x x y 1 )(?-= 式中:y —被检仪器的示值误差; m x —被检仪器的示值; x s —标准气体的浓度。 3 根据数学模型求方差和传播系数 方差关系: )()()()()(22222 s s m m c x u x c x u x c y u += 传播系数:s m m x x y x c 1 )(= =?? 2 )(s m s s x x x y x c -==?? 4 计算分量标准不确定度测量值 烟气分析仪主要应用于测量烟气中二氧化硫、氮氧化物、一氧化碳有害气体及氧气浓度,传感器可选择性配置,测量一种或多种气体,就应用较多的二氧化硫、氮氧化物、一氧化碳及氧气进行分析。 4.1对于被测量为二氧化硫气体的标准不确定度 4.1.1 标准器本身的不确定度分量 标准气体由国家标准物质研究中心提供,用国家一级标准物质相对扩展不确定度为

频谱仪操作规范

频谱分析仪操作规范 一、设置 1 打开ON/OFF开关 2 设置频率范围,即图形界面的横坐标,选择按下正下方一排键中的FREQ/SPAN 键,右上方的CENTER键,此处设置为930MHZ,再选择频谱的宽度,此处可以选择7MHZ(频谱宽度的选择只要是能包含所要测试信号的所有频段,可根据情形而定)。此处也可选择START和STOP键设置你所需要的起始和终止频率。 3 设置信号的振幅,即图形界面的纵坐标,按下最下排功能键AMPLITUDE键,选择右上方REF LEVEL设置参考电平值,此处设置为10dbm,然后按下SCALE键设置电平值的间隔,此处可以取值为10db.然后在设置UNITS键,单位为dbm,最后选中ATTEN键,设置衰减值,此处的值选择手动设置,其值比参考电平的二倍大一些,如可以选择30. 4 设置带宽参数,选中最下方的功能键中的BW/SWEEP键,设置带宽参数值,选择RBW键,设置扫描带宽的宽度,此处的值定要小于信号频点的最小间隔值,建议取值为30khz,如果仅测试一束波形,此处可以忽略设置。 二测试流程 到此基本所需要的参数设置完毕,可以对信源进行测试啦,我们所要测试的数据主要从两点入手, (一) MU侧信号电平值的测试 1)测试HDL输出地电平值,理论值趋近于0dbm,用双工头1/2跳线于频谱仪的RF口对接,打开频谱仪开关,按回车,在屏幕显示出波形图,再按回车,然后按MARKER 键,选中M1(此时M1是出于ON状态,其他的M处于OFF状态),再选择MARKER TO PEAK 键读取此时的峰值,就是你所要测试的信号电平值。然后按下回车键正下方的SINGLE CONT键锁定峰值,如需要可以将其保存下来,按下SAVE DISPLY 键将其保存为容易识别的名字。以此类推,分别测试光模块的主备信号值,和从信号的电平值,测试光模块主备信号值时射频跳线接在IN口对应点,测量从信号时射频线接在从光模块对应的IN(如有衰减器,测量时包含在内)口处,测试结果两者之间的差值在6db左右。

JCY-80E(S)综合烟尘烟气分析仪产品内容简介

JCY-80E(S)型大流量低浓度烟尘烟气测试仪是依据国家检定规程JJG680-2007《烟尘采样器检定规程》JJG968-2002《烟气分析仪检定规程》,吸取国内外同类仪器之优点,由研发人员精心研制的新一代智能型烟尘烟气测试仪,该机技术性能指标符合国家环保局颁布的烟尘烟气采样仪的有关规定,实现烟尘、烟气同机采样及检测,大大缩短现场工作时间。适用于各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定和各种锅炉、工业炉窑的SO2、NO、NO2、CO、CO2、H2S等有害气体的排放浓度、折算浓度和排放总量的测定及各类脱硫设效率的测定。 执行标准: HJ 57-2017《固定污染源废气二氧化硫的测定定电位电解法》 JJG 968-2002《烟气分析仪》 JJG 680-2007《烟尘采样器》 HJ 836-2017《固定污染源废气低浓度颗粒物的测定重量法》 HJ/T 48-1999《烟尘采样器技术条件》 适用范围:

(1)各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量等有关参数的测定。 (2)各类除尘设备、脱硫脱销设备效率的测定与评估。 (3)各种锅炉、工业炉窑中烟尘、流速、动压、静压、烟温的测量;含湿量,O2(空气过剩系数),SO2,NO,NO2,CO排放浓度,折算浓度和排放总量的测定以及各类脱硫设备效率的测定(可选) (4)其他场合的测定 产品特点 1.主机内集成差压、微压传感器、微处理器、直流旋片泵,基于皮托管平行法等速采样原理,自动测量跟踪烟气流速等速采集烟尘。 2.主机内集成温度传感器、压力传感器。能测量计算包括动压、静压、全压、烟气流速、干、湿球温度、含湿量、烟气排放量等在内的所有参数。 3.选用进口贴片器件,可靠性高,故障率极低,仪器体积大大减小,携带方便。 4.电化学传感器随同线路板一起设计,用户升级、更换简捷方便。 5.自动选择存储监测数据,供查询、打印,信息量大。 6.自动记忆上次输入的监测目标工况参数,下次开机自动采用。 7.320×240点阵STN型液晶显示,自动背光照明。中文菜单显示人机对话方式,图文并茂,简单明了。用户可以凭借仪器丰富的在线操作提示,直接操作。液晶屏幕可前后0~180度自由旋转。 8.通过键盘即可对仪器测量的各项参数进行标定。 9.烟尘采样过程中,如果烟道负压较大,或取样孔开孔位置在水平烟道顶部时采样结束后滤筒中采集的烟尘易被倒吸出来,造成数据严重偏差。该仪器有特殊的功能来防止倒吸发生。 10.烟尘烟气监测数据繁多,不同顾客不同测试目的对数据要求各异,该机具备选择打印项功能,顾客可以

热重分析仪方法

热重分析仪方法 当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O 中的5个结晶水是分三步脱去的。通过TGA 实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。热重法试验得到的曲线称为热重曲线(TG曲线),TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。 热重分析仪的工作原理 热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。 最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 影响热重分析的因素 试样量和试样皿 热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。 试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以像碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。 升温速率

HS6288B型噪声频谱分析仪技术说明书

HS6288B型噪声频谱分析仪技术说明书 一、概述 HS6288B型噪声频谱分析仪是一种袖珍式的智能化噪声测量仪器,它集积分、噪声统计、噪声采集等几种功能于一体,主要性能指标符合IEC61672标准和JJG188-2002声级计检定规程对2级声级计的规定要求。 HS6288B具有大屏幕液晶显示、时钟设置、自动测量并存储测量数据等特点,最多可存储500组单组数据、4组整时数据和50组滤波器自动测量数据,并且可以通过RS-232C口把数据传输给HS4784打印或传输给计算机进行处理,在设计上有许多创新,能满足多种测量要求。 本仪器结构紧凑、造型美观、功能多、自动化程度高,可广泛应用于环保、工厂、学校、科研等部门进行噪声测量及分析。 二、主要技术指标 1.传声器:1/2英寸驻极体测试电容传声器(HS14423) 2.测量范围:35dB~130dB(A、C); 40dB~130dB(Lin) 3.频率计权:20Hz~10kHz 4.时间计权:F( 快 )、 S( 慢 ) 5.滤波器:1/1倍频程 6.自动测量功能:Leq、LAE、SD、LN(L95、L90、L50、L10、L5)、Lmax、Lmin、Ldn、Ld、Ln。 7.测量时间设定:Man、10s、1m、5m、10m、15m、20m、1h、8h、24h、24h整时测量。 8.时钟:年、月、日、时、分、秒设置运行。 9.测量数据自动存储:共500组单组数据,4组整时数据和50组滤波器自动测量数据。 10.接口:分析仪通过RS-232C将数据传输给HS4784打印或传输给计算机处理。 11.校准:使用HS6020校准至93.8dB。 12.显示器:使用专门为噪声测量仪器设计的LCD显示器。 13.电源:使用+9V外接电源(外+内-),或者用5节5号高能碱性电池。

JJG 173-2003检定规程宣贯大纲

《JJG 173-2003信号发生器检定规程》 培训大纲(含方法确认内容) 《JJG 173-2003 信号发生器检定规程》于2003年11月24日发布,代替原有的《JJG 173-1986 XFG-6A型标准信号发生器检定规程》、《JJG 174-1985 XFG-7型高频信号发生器检定规程,JJG 324-1983 XG26型超高频功率信号发生器检定规程》、《JJG 325-1983 XFC-1型超高频标准信号发生器检定规程》、《JJG 339-1983 XB33型超微波信号发生器检定规程》和《JJG 438-1986 XG标准信号发生器检定规程》6个检定规程。 原有检定规程的对象是针对具体型号的发生器编制的,因此每个旧规程的频率范围都较窄;被检参数大致可归纳为如下6个:频率、功率、电平(含衰减)、调幅、调频和调相。新规程除了上述参数外,增加了频谱纯度(单边带相位噪声、谐波)参数的检定。《JJG 173-2003 信号发生器检定规程》适用于5kHz~40GHz频率范围(具体实施可根据被检信号发生器的实际性能分频段进行检定)。 环境条件要求 5.1.1 《JJG 173-2003 信号发生器检定规程》规定的环境条件: 1)环境温度:(20±5)?C(与旧规程相同)。 2)相对湿度:≤ 80%(旧规程为45%~75%)。 3)电源电压:220(1±5)V,(50±1)Hz(旧规程为220V±2%,50Hz)。采用交流电子稳压器达到。 4)周围无影响仪器正常工作的电磁干扰和机械振动。 仪器设备配置及被测参数介绍 5.1.2 检定用仪器设备 1) 参考频率 采用本计量中心的《铯原子频率标准装置》((2004)量标省授证字第074号),在1,2,2.5,5和10MHz频率,测量频率准确度和稳定度的扩展不确定度都为4.4×10-12(k=2),可以满足检定规程“5.2.3 内部晶体振荡器的检定”要求。测量不确定度评定参见《频率测量不确定度评定》。 2) 频率计 采用本计量中心的HP53132A型、Agilent 5340A型和53152A型频率计,可以覆盖30mHz~50GHz,测量频率的扩展不确定度为5.8×10-9(k=2);利用HP5071A型铯原子频率标准作为外部频标,测量频率的扩展不确定度为4.4×10-12(k=2)。可以满足检定规程“5.2.4 频率准确度的检定”和“5.2.19内调制发生器频率准确度的检定”要求。测量不确定度评定参见《频率测量不确定度评定》。 3) 测量接收机 采用本测量中心的《信号发生器检定装置》((2002)国防计标证1714号),频率范围覆盖到20GHz,电平测量范围和准确度为:+30dBm~-127 dBm(f ≤ 1.3 GHz),+30dBm~-100 dBm(f > 1.3 GHz)

气体减压器校准规范

气体减压器校准规范 1范围 本规范适用于带压力表的气体减压器的校准。 2 引用文献 GB 7899-1987《焊接、切割及类似工艺用气瓶减压器》 JB/T 9271-1999《焊接、切割及类似工艺用压力表》 JJG 52-1999《弹簧管式一般压力表、压力真空表和真空表》 使用本规范时,应注意使用上述引用文献的现行有效版本。 3 术语 3.1 气体减压器 pressure regulator 在两块仪表监测下,依据差压的流量调节原理,将具有进口压力P1的气体衰减并恒定到所希望出口压力P2的调节装置。 3.2 额定进口压力(P1) rated inlet pressure 最大进口压力。 3.3 额定出口压力(P2) rated outlet pressure 最大出口压力。 3.4 安全排放压力(P RV) safe vent pressure 打开安全排放装置的压力上限,其值为:P RV =2P2。 4 概述 气体减压器的工作原理是由螺杆或旋钮的左右旋拧调节,改变压缩弹簧的弹性力,致使薄膜调节进口压力气体进入薄膜内部的流量,而改变薄膜内部气体压力,使气体在压力仪表的监测下,达到设定出口压力值后,保持恒定出口压力输出。 气体减压器是主要用于氧气、乙炔、氢气等高压气瓶的减压装置,有降压和稳压两种作用。

5 计量特性 5.1 零位误差 压力表处于工作位置,在未加压时和泄压后,其指针应紧靠限止钉,“缩格”应不大于允许基本误差的绝对值。 5.2 基本误差 压力表的基本误差用引用误差表示,其值应不超过表1规定。 表1 压力表基本误差 5.3 回程误差 在测量范围内,回程误差应不大于表1所规定的基本误差的绝对值。 5.4 轻敲位移 轻敲表壳后,指针示值变动量应不大于表1所规定的基本误差绝对值的1/2。 5.5 指针偏转平稳性 在测量范围内,指针偏转应平稳,无跳动和卡滞现象。 5.6 密封性 5.6.1 内部密封性 气体减压器的高压室和低压室之间应能密封。 5.6.2 外部密封性 气体减压器的高、低压室应对大气密封。 5.7 安全排放装置 气体减压器的安全排放装置应满足以下规定: 1)当出口压力小于1.3倍额定出口压力时应能密封; 2)当出口压力大于1.3倍额定出口压力且小于安全排放压力时应能排气。如气体减压器没有安全排放装置可不做此项。 6 校准条件 6.1 环境条件 1)环境温度为(20±5)℃;

热重分析仪实验报告

3.热重分析仪(TG) 一、实验目的及要求 1.了解热重分析法的基本原理和热重分析仪的基本构造; 2.掌握热重分析仪的使用方法 二、实验原理 样品在热环境中发生化学变化、分解、成分改变时可能伴随着质量的变化。热重分析就是在不同的热条件(以恒定速度升温或等温条件下延长时间)下对样品的质量变化加以测量的动态技术。热重法是在程序控温下,测量物质的质量与温度或时间的关系的方法,通常是测量试样的质量变化与温度的关系。热重分析的结果用热重曲线或微分热重曲线表示。TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)为横坐标,自左至右表示温度(或时间)增加。 热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 三、实验仪器 热重分析仪(SDT)Q600 能够同时提供DSC和TGA信号。在加热或冷却的过程中,随着物质的结构、相态和化学性质的变化都会伴有相应的物理性质的变化,SDT是测量物质质量变化的仪器。这些变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。美国TA仪器公司生产。 技术参数: 温度范围:室温~1500℃;温度准确度:±0.1℃;量热精度:±2%;重量灵敏度:0.1μg;重量漂移:<1μg/h;加热速度:0.1~100℃/min 主要附件:Q系列Advantage操作软件及分析软件 功能应用:无机物、有机物和高分子材料的热分解温度、无机物、有机物和高分子材料的热重变化及变化速率。测定热稳定性、抗热氧化性;热分解及失重阶梯失重量;测定化合物的组成;测定吸附水、结晶水、结合水、配位水的含量;吸湿性、脱水速率;干燥工艺条件测定;热分解速率测定;热降解和热氧降解过程测定;热降解及热氧降解动力学参数测定;药物存放期预测等。 四、注意事项 样品要求:固体、液体样品均可做;固体样品要求颗粒均匀,样品粒度尽量磨成小颗粒;样品量:几个毫克到10毫克之间均可。

热重分析仪

热重分析仪 热重分析仪 热重分析仪(Thermo Gravimetric Analyzer)是一种利用热重法检测物质温度-质量变化关系的仪器。热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系。当被测物质在加热过程中有升华、汽化、分解出气体或失去结晶水时,被测的物质质量就会发生变化。这时热重曲线就不是直线而是有所下降。通过分析热重曲线,就可以知道被测物质在多少度时产生变化,并且根据失重量,可以计算失去了多少物质,(如CuSO4·5H2O中的结晶水)。从热重曲线上我们就可以知道CuSO4·5H2O中的5个结晶水是分三步脱去的。通过TGA 实验有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。热重分析通常可分为两类:动态(升温)和静态(恒温)。 热重法试验得到的曲线称为热重曲线(TG曲线),TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。 热重分析仪原理 热重分析仪的工作原理 热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。 最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记

录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 影响热重分析的因素 试样量和试样皿 热重法测定,试样量要少,一般2~5mg。一方面是因为仪器天平灵敏度很高(可达0.1μg),另一方面如果试样量多,传质阻力越大,试样内部温度梯度大,甚至试样产生热效应会使试样温度偏离线性程序升温,使TG曲线发生变化,粒度也是越细越好,尽可能将试样铺平,如粒度大,会使分解反应移向高温。 试样皿的材质,要求耐高温,对试样、中间产物、最终产物和气氛都是惰性的,即不能有反应活性和催化活性。通常用的试样皿有铂金的、陶瓷、石英、玻璃、铝等。特别要注意,不同的样品要采用不同材质的试样皿,否则会损坏试样皿,如:碳酸钠会在高温时与石英、陶瓷中的SiO2反应生成硅酸钠,所以象碳酸钠一类碱性样品,测试时不要用铝、石英、玻璃、陶瓷试样皿。铂金试样皿,对有加氢或脱氢的有机物有活性,也不适合作含磷、硫和卤素的聚合物样品,因此要加以选择。 升温速率 升温速度越快,温度滞后越严重,如聚苯乙烯在N2中分解,当分解程度都取失重10%时,用1℃/min测定为357℃,用5℃/min测定为394℃相差3 7℃。升温速度快,使曲线的分辨力下降,会丢失某些中间产物的信息,如对含水化合物慢升温可以检出分步失水的一些中间物。 气氛的影响 热天平周围气氛的改变对TG曲线影响显著,CaCO3在真空、空气和CO 2三种气氛中的TG曲线,其分解温度相差近600℃,原因在于CO2是CaCO 3分解产物,气氛中存在CO2会抑制CaCO3的分解,使分解温度提高。 聚丙烯在空气中,150~180℃下会有明显增重,这是聚丙烯氧化的结果,在N2中就没有增重。气流速度一般为40ml/min,流速大对传热和溢出气体扩散有利。 挥发物的冷凝 分解产物从样品中挥发出来,往往会在低温处再冷凝,如果冷凝在吊丝式

频谱分析仪检定规程

频谱分析仪检定规程 1 范围 本规程适用于新制造、使用中和修理调整后,频率分析范围在30H z-26.5G Hz的 频谱分析仪的检定。本规程以Angilent ESA系列为例,其它型号的频谱分析仪可参照执行。 2 概述 频谱分析仪是一种带有显示装置的超外差接收设备,由预选器、扫频本振、混频、 中放、滤波、检波、放大、显示等部分组成。主要用于频谱分析,也可用于测量频率、 电平、增益、衰减、调制、失真、抖动等,是通信、广播、电视、雷达、宇航等技术领 域中不可缺少的仪器。 3 计量器具控制 3.1 首次检定、后续检定和使用中检验 首次检定是对用户新购置的、或制造厂新生产的频谱分析仪进行的检定。首次检定 结果应确定各项计量性能是否满足说明书中给定的相应技术指标。 后续检定包括有效期内的检定、周期检定以及修理后的检定。后续检定时,测量仪 上应具有上次的检定标记和检定证书。后续检定后,各项性能指标如变化不大,允许用 户按检定结果使用。 3.2 检定条件 3.2.1 环境条件 3.2.1.1 温度:(10—30)'C,检定期间温度波动小于2℃。 3.2.1.2 相对湿度:(65士15)%。 3.2.1.3 交流供电电源:(220士4) V, (50士5) Hz。 3.2.1.4 周围无影响正常检定工作的电磁干扰和机械振动。 3.3 检定用设备 3.3.1 频率计数器 频率测量范围:10MHz士100Hz 分辨力:0.01Hz 3.3.2 频率标准 频率:10MHz 准确度:< <1 10 -9/天 3.3.3 功率计及功率探头 频率范围:10MHz—26.5GHz 功率测量范围及准确度:(-70—+30)dBm,士1.2% 分辨率:0.01dB 3.3.4 低通滤波器 频率:50MHz,300MHz,1GHz,1.8GHz,4.4GHz 3.3.5 函数发生器 频率范围:0.1Hz—15MHz 频率准确度:士0.02%

同步热分析仪STA介绍和价格

同步热分析仪STA 设备建议书 公司名称:上海和晟仪器科技有限公司 品牌:HESON/和晟 联系人:蒋和義

公司简介 本公司属台资企业在大陆设有工厂总部位于上海,在国内设有6家分公司,服务更便捷。有独立的生产中心,研发中心,质检中心和售后中心全国统筹调度。已成功入选上海造币厂,上汽股份,日本三菱,韩国三星电子,美国颇尔,美国库柏,德国博士工具,富士康等知名企业优质供应商名单,我司产品全面通过CE 认证,满足欧盟客户需求,已销往卢森堡,意大利,西班牙,新加坡,肯尼迪, 日本等国家和地区 产 同步热分析将热重分析TG 与差热分析DTA 或差示扫描量热DSC 结合为一体,在同一次测量中利用同一样品可同步得到TG 与DTA 或DSC 的信息。。 通常用质量对温度或者时间绘制的TGA 曲线表示TGA 测量结果。TGA 信号对温度或时间的一阶微商,称为DTG 曲线,是对TGA 信号重要的补充性表示。 产品简介

一水草酸钙台阶式分解TGA曲线和DTA曲线,试样质量19mg、升温速率30K/min、氮气气氛。TGA曲线已归一化因而开始于100%。三个失重台阶的温度范围在一阶微商即DTA曲线上特别清晰。在120℃,一水草酸钙失去结晶水。继续升温,无水草酸钙分两步进行分解。 当试样以不同方式失去物质或与环境气氛发生反应时,质量出现变化,在TGA曲线上产生台阶,货在DTA曲线上产生峰值有许多不同的效应可引起试样失去或者获得质量,如 挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的解吸附和吸附,结晶水的失去; 在空气或者氧气中金属的氧化; 在空气或者氧气中有机物的氧化分解; 在惰性气氛中的热分解,伴随有气体产生的生成。对有机化合物,该过程称为热解; 试样与气氛的非均相反应,如与含氢吹扫气体进行的还原反应。 有些材料的磁性随着温度而改变,会发生居里转变,如果在非均匀磁场中测试这种材料,则在居里转变处磁引力的改变会产生TGA信号。

热重分析仪TG209F1真空实验操作方法

热重分析仪TG 209 F1真空实验操作方法 耐驰公司应用实验室 前 言 TG 真空试验的作用主要是解决常压下物质分解与成分挥发等失重过程重叠在一起不利于分析图谱这一问题。它是利用真空下物质的沸点会向低温移动这一性质来达到将重叠峰分开这一目的。 实验操作步骤 1.试验前先调整真空设置,测试窗口中“附加功能”——“真空设置 ” 进入真空设置界面,真空设置中可参考下图中的参数进行设置。注意一点的是,测试过程中一般设为“停止泵的运行”较好,否则泵工作会对TG 曲线造成干扰。 初始设置时,将“使用AUTOVAC 控制器”打钩,真空循环三次以保证体系中洁净、没有残留的气氛。并将“测量期间保持真空”打钩。 2.设置实验参数 2.1 按正常的实验程序操作,打开相应的温度校正 文件,进入实验编程界面,编写如下程序:

2.2 设置真空升温程序,此时体系处于真空状态,所有气体选项均不可用。 2.3 真空段结束后设置15分钟恒温段,并将界面左下角的“真空”选项的钩去掉。这样仪器将在该温度段中自动从真空恢复到常压阶段。此处需注意: A. 此温度段时间不能短于“真空设置”中的“真空关闭段最短时间”,一般设为15min,以让系统有充分的时间从真空恢复到常压并趋于稳定。 B. 另外左下角的“真空”选项的钩一定要去掉,否则下一步将无法进行吹扫气和保护气的设置。 2.4 设置实验气氛下的升温程序。将界面右边的气体选项打钩,同常规实验编程一样。 2.5 本文档选用的温度程序还包含一步吹扫气为氧气的程序段。这一设置主要是用于烧除样品分解残留碳,客户可根据实际需要进行取舍。 2.6 设置结束段

常见计量校准标准及计量校准仪器

常见计量校准标准及计量校准仪器 广电计量杜亚俊 综述 (1) 无线电计量 (2) 电磁计量 (4) 时间频率计量 (6) 长度计量 (7) 力学计量 (8) 热学计量 (11) 理化计量 (12) 光学计量 (13) 声学计量 (14)

综述 我们拥有电子、长度、力学、热学、理化五大计量校准实验室,覆盖全国16个检测基地,建立了105项企业最高计量标准及108 项次级标准,拥有国际国内先进的精密标准装置和仪器9000 多台(套)。目前通过中国合格评定国家认可委(CNAS)的计量校准项目546项,涵盖了无线电、时间频率、电磁、长度、力学、热学、物理化学、光学、声学等九大计量领域,能为工业企业和军工企业提供专业的仪器计量校准服务,特别在无线电、时间频率、电磁等领域的计量标准和技术处于国内领先水平。 广电计量所有计量器具均可溯源到中国计量科学研究院(NIM)和国际计量局(BIPM)的计量基准,符合ISO9000 系列标准对检验和测量设备的计量校准要求,并出具符合国家检定规程/校准规范和ISO/IEC17025标准要求的证书/报告。 我们的计量校准服务包括: ●无线电计量 ●电磁计量 ●长度计量 ●力学计量 ●时间频率计量 ●光学计量 ●热学计量 ●理化计量 ●声学计量

无线电计量 我们配备了矢量网络分析仪、频谱分析仪、数字信号发生器、数字调制分析仪、测量接收机、示波器校准仪、通信传输分析仪、失真度测量仪、功率校准因子校准装置等国内领先水平的计量标准,测量范围覆盖了从直流到微波频段、从模拟到数字领域,可开展S参数、频谱、功率、衰减、脉冲参数失真、射频信号、电视信号、数字传输、数字调制等参数的校准。

HS3YQ3000-C型全自动烟尘烟气测试仪依据如下原理研制

HS32-YQ3000-C型全自动烟尘烟气测试仪依据如下原理研制 HS32-YQ3000-C型全自动烟尘烟气测试仪是基于新版《空气与废气监测分析方法》及JJG 680-2007《烟尘采样器检定规程》,JJG 968-2002《烟气分析仪检定规程》,HJ/T 48-1999 《烟尘采样器技术条件国家标准》等相关规定,实现了烟尘、烟气同机检测,大大缩短现场工作时间,极大地降低故障发生率,是锅炉、炉窑监测的更新换代产品。 该设备吸取国内外同类仪器之优点,研制的过程中采用了如下原理: 颗粒物等速采样原理 将烟尘采样管由采样孔放入烟道中,将采样嘴置于测点上,正对气流方向,按等速采样要求抽取一定量的含尘气体,根据滤筒(滤膜)捕集到的烟尘(油烟)重量以及抽取的气体体积,计算颗粒物的排放浓度及排放总量。 HS32-YQ3000型全自动烟尘(气)测试仪的微处理器测控系统根据各种传感器检测到的静压、动压、温度及含湿量等参数,计算出烟气流速、等速跟踪流量,测控系统将该流量与流量传感器检测到的流量相比较,计算出相应的控制信号,控制电路调整抽气泵的抽气能力,保持采样嘴入口的烟气流速与烟道内烟气的流速相等;同时微处理器用检测到的流量计前温度和压力自动将实际采样体积换算为标况体积。 含湿量测量原理 微处理器控制传感器测量、采集干球、湿球表面温度以及通过湿球表面的压力及排气静压,结合输入的大气压和湿球表面温度自动查出该温度下的饱和水蒸气压力(P bv),根据公式计算出烟气含湿量。 含氧量测量原理 将采样管放入烟道中,抽取含有O2的烟气,使之通过O2电化学传感器,检测出O2的瞬时浓度,同时根据检测到的O2浓度,换算出空气过剩系数α。 SO2、NO、NO2、CO、H2S、CO2瞬时浓度及排放量测量原理 将采样管放入烟道中,抽取含有SO2、NO、NO2、CO、H2S、CO2的烟气,进行除尘、脱水处理后再通过SO2、NO、NO2、CO、H2S电化学传感器(CO2为光学传感器),分别发生如下反应:SO2+2H2O —> SO42- + 4H++2e- NO +2H2O —> NO3- + 4H++3e- NO2+ H2O —> NO3- + 2H++e- CO+2H2O —> CO32- + 4H++2e- H2S+4H2O —> SO42- + 10H++8e- 传感器输出电流的大小在一定条件下与SO2、NO、NO2、CO、H2S的浓度成正比,所以测量传感器输出的电流即可计算出SO2、NO、NO2、CO、H2S的瞬时浓度;同时仪器根据检测到的烟气排放量等参数计算出SO2、NO、NO2、CO、H2S的排放量。

3012H烟尘采样器期间核查规程

3012H烟尘采样器期间核查规程 1 目的 为使该设备在两次检定间隔内能保证校准状态的可信度,确保检测结果的准确性,按相关规定在适当时机,应对仪器进行期间核查。 2 核查内容 通用技术要求、流量示值误差、示值误差(烟气部分)。 3 核查依据 3.1 烟尘平行采样仪使用说明书。 3.2 《烟尘采样器检定规程》JJG680-2007。 3.3 《烟气分析仪检定规程》JJG968-2002。 4 核查条件 4.1 环境条件:温度:10~35℃;湿度:≤80%RH。 4.2 流量标准器或装置:准确度级别不低于1.5级。 4.3 标准气体:二氧化硫、一氧化氮、氧气标准物质,其浓度的扩展不确定度应不大于2%(k=3)。 4.4 零点校准气:清洁空气。 5 核查要求 5.1 通用技术要求 5.1.1 外观及通电检查 仪器应结构完整,各部件齐全并能可靠连接,无影响仪器正常工作的缺陷。仪器应该有名称、型号、制造厂名称、制造日期等标识。仪器接通电源后,各按键、开关旋钮应调节灵活、正确,数字显示的仪器应显示清晰,不缺少笔画。 5.1.2 气密性 当系统负压为(4—4.2)KPa时,第1min内压力下降不得大于120Pa。 5.2 计量性能要求 5.2.1 流量示值误差 瞬时流量示值误差:不超过±5%FS。 5.2.2 示值误差(烟气部分)

示值误差不超过±5%。 6 核查方法 6.1 通用技术要求的检查 按5.1的要求,目视、手动检查。 6.2 流量示值误差 瞬时流量示值误差的检定 6.2.1 选定20、40、50L/min三个流量点进行检定。 6.2.2 接通仪器气路系统,将流量标准器或装置与采样进气口相连。 6.2.3 启动仪器,分别调节采样流量器为选定流量,待稳定后,读取标准流量值。 6.2.4 每点重复检定两次,按公式(1)计算瞬时流量示值误差E。 ×100%(1) E = (q v?q vs) q max 式中:q v—仪器瞬时流量示值,L/min; q vs—流量标准器或装置的两次测量结果平均值,L/min; q max—仪器瞬时流量的满量程值,L/min。 6.3 示值误差(烟气部分) 6.3.1 分析仪校准零点后,分别通入每种标准气体的低、中、高三种浓度,每种浓度的气体通入3次,读取各稳定示值ci。按公式(1)分别计算出不同浓度测量值的示值误差△a。 △a =C?Cs ×100% (2) Cs 式中:△a—一种浓度示值误差; C—3次示值的算术平均值; Cs—标准气体的浓度。 取示值误差△a中的最大值为分析仪的示值误差检定结果。 7 期间核查周期 原则上为在该设备两次校准间隔内中期进行。如发生测量仪器设备移位、维修等可能影响该仪器测量精度情况,应适时调整期间核查的时机或增加期间核查的次数。

相关主题
文本预览
相关文档 最新文档