当前位置:文档之家› 金属材料强度

金属材料强度

金属材料强度
金属材料强度

金属材料强度:强度就是指材料在外力作用下抵抗变形与破坏得能力.主要指标可分为抗拉(最基本强度指标)、抗压、抗弯、抗扭与抗剪强度.

塑性:材料在外力(静载)作用下产生永久变形而不被破坏得能力.主要指标为伸长率与断面收缩率。

硬度:材料抵抗更硬物体压入得能力.常用指标为布氏硬度、洛氏硬度与维氏硬度. 下列硬度指标就是否正确?

HBS210-240 180-210HRCHRC29—25 450-480HBS钢得热处理:钢固态下,采用适当方法进行加热、保温与冷却,以改变钢得内部组织与结构,从而获得所需性能得一种工艺方法。

预先热处理:为消除坯料或半成品得某些缺陷或为后续得切削加工与最终热处理做组织准备得热处理。(退火、正火)

最终热处理:为使工件获得所要求得使用性能得热处理。

退火与正火得区别与选用:与退火相比、正火得冷却速度稍快,过冷度较大。

选用:1切削加工性考虑。作为预先热处理,低碳钢退火优于正火,而高碳钢正火后硬度太高,必须采用退火.

2使用性能上考虑.对于亚共析钢,正火处理比退火处理具有更好得力学性能。如果零件得性能要求不就是很高,则可用正火作为最终热处理。对于一些大型、重型零件,当淬火有开裂危险时,则采用正火作为最终热处理;但当零件得形状复杂,正火冷却速度较快开裂危险时,则采用退火为宜。

3 经济上考虑。正火比退火得生产周期短、耗料少、成本低、效率高、操作简便,因此在可能得条件下应采用正火。

钢淬火后为什么一定要回火,说明回火得种类及主要应用范围.

钢件经淬火后,虽然具有很高得硬度与强度,但脆性大,并且具有较大得淬火应力,因此在退火后,必须配以适当得回火.

种类及范围:高温回火:用于重要零件如轴、齿轮等。

中温回火:用于各种弹性元件及热锻模。

低温回火:用于各种工、模具钢及要求硬而耐磨得工件。

调制及特点:淬火后,加热到500-650度,保温后在空气中冷却。获得良好得综合力学性能,在保持高强度得同时,具有良好得塑、韧性,硬度为200—330HBS。

Q235:普通碳素结构钢,屈服强度为235MPa,大量用于制造各种金属结构与要求不高得机器零件。

QT500—07:球墨铸铁,抗拉强度大于450MPa,伸长率7%,用于承受冲击振动得零件如曲轴、蜗杆等.

45:优质碳素结构钢,平均wc为0、45%,制造受力较大得机器零件.

T12A:T表示碳素工具钢,12表示wc为1、2%,A表示为优质,主要用于制造低速工具,如冲子、手锤、锯片等。

GCr15:

20CrMnTi:渗碳钢,主要用于制造各种变速齿轮及凸轮轴等在工作中承受变冲击载荷及剧烈摩擦得重要零件。

9SiCr:量具、刀具用钢,主要用于板牙、丝锥、钻头、齿轮铣刀等。

CrWMn:冷却模具钢,冷冲模冲头、拉丝模、冷切剪刀、木工切削工具、切边模等.

W6Mo5Cr4V2:钨钼系,广泛用于制造中低速切削加工得刀具及复杂刀具。

ZG270—500:ZG为铸钢,270表示a(smin)=270MPa,a(bmin)=500MP a、,用于制造结构复杂得构件如机座、箱体。

HT200:灰铸铁,试样直径30mm,平均抗拉强度200MPa,承受较大载荷与较重要得零件,如汽缸、齿轮、底座、飞轮、床身等.

KTH370-12:平均抗拉强度不小于370MPa,伸长率不小于12%得黑心可锻铸铁,制造负荷较高得耐磨零件,如曲轴、连杆、齿轮、凸轮轴等薄壁小铸件。40Cr:调制钢,主要用于承受各种载荷,受力复杂得零件,如机床主轴、连杆、汽车半轴及弹簧.

65Mn:

热塑性塑料:1:聚乙烯,性能特点:热塑性塑料.低压PE有良好得耐磨性、腐蚀性、绝缘性、无毒。用于一般机械构件、化工管道、电缆电线包皮、茶杯、奶瓶、食品袋等.

2:聚氯乙烯,性能特点:热塑性塑料。力学性能好且有良好得耐蚀性。用于耐蚀构件、一般绝缘薄膜、泡沫塑料.

3:聚丙烯, 性能特点:热塑性塑料。力学性能优于聚乙烯,且有

良好得耐热性。用于医疗器械、一般机械零件、高频绝缘件。

热固性塑料:1:酚醛塑料.性能特点:强度、刚度大,变形小,耐热性、耐蚀性好,电性能好。用于一般构件、水润滑轴承、绝缘件、耐蚀衬里等,做复合材料。

2:环氧塑料。性能特点:强度高、韧度好。化学稳定性好,绝缘性、耐寒、耐热性好。用于塑料模具、精密模具、仪表构件、金属涂覆、包封、修补、做复合材料。

复合材料:由两种或两种以上不同性质或不同组织得材料经人工组合而成得多相固体材料。

特点:比强度、比刚度高,破损安全性好,减震性能好,高温性能好,成型工艺简单,耐磨性优良.

铸造生产:将溶化后得金属浇注到铸型中,待其凝固、冷却后,获得一定得形状得零件或零件毛坯得成型方法。

特点:成型方便且适应性强,成本较低,铸件得组织性能较差。

砂型铸造生产过程:造砂型—--造型芯---—砂型及型芯得烘干-———-—合箱-—-—熔炼金属—-—浇注—-—-—落砂与清理----———检验.

铸造缺陷:铸件晶粒粗大,化学成分不均匀,力学性能较差。

锻压:利用金属得塑性变形得特点对坯料施加外力以改变坯料得尺寸与形状并改善其内部组织与力学性能,从而获得所需毛坯或零件得加工方法。

优缺点:优点:改善金属组织,提高其力学性能;可以形成并控制金属得纤维方向使其沿零件轮廓合理分布,提高零件得使用性能;可以节省金属材料与切削加工工时,提高材料得利用率与经济效益;锻压加工得适应性很强。缺点:锻压对材料得适应性差,用于锻压得材料必须具有良好得塑性以免加工时破裂,形状复杂得工件难以锻造成型。

比较自由缎与模具锻优缺点:自由锻造优点:工艺灵活,工具简单。缺点:锻件精度较低,生产率低,劳动条件相对较差。磨具锻造优点:生产率高,模锻件尺寸相对精确,加工余量小,可以锻出形状比较复杂得锻件,比自由缎节省材料,减少切削加工工作量,操作简单,易于实现机械化与自动化得生产.缺点:坯料整体变形,变形抗力较大,而且锻模制造成本很高。

金属焊接:通过加热或加压或两者并用,并且用或不用填充材料使焊件达到原子

结合得一种加工方法.

焊接电弧:将中性气体粒子分解为带电粒子,并在两电极间加上一定电压,使这些电离子在电场作用下作定向运动,两个电极间得气体能连续不断得通过很大地电流,从而形成电弧。

带传动优缺点:能吸振,缓冲击,传动平稳,噪音小;过载时,带会在带轮上打滑,起到过载保护作用;结构简单,制造、安装与维护方便,成本低;带与带轮之间存在一定得弹性滑动,不能保证恒定得传动比,传动精度与传动效率低;由于带工作时需要张紧,带对带轮轴有很大得压轴力;带传动装置外廓尺寸大,结构不够紧凑;带得寿命较短,需要经常更换;

不适用于高温、易燃及有腐蚀介质得场合。

带传动得应力分布图

弹性滑动与打滑:打滑:由过载引起得紧边、松边拉力差增大,至使带与带轮间得产生全面滑动得现象。弹性滑动:由于带得弹性变形而产生得带与带轮间得滑动。弹性滑动与打滑得区别:

弹性滑动与打滑就是两个截然不同得概念。打滑就是指过载引起得全面滑动,就是可以避免得。而弹性滑动就是由于弹性与拉力差引起得,只要传递圆周力,就必然会发生弹性滑动,所以弹性滑动就是不可以避免得。

(

传递

齿

直齿圆柱齿轮传动

斜齿圆柱齿轮传动

交错轴斜齿轮传动

平面齿轮传动

圆柱齿轮传动)

传递平行轴间的

运动

空间齿轮传动

相交轴或交

错轴间的运动

(轮齿与轴平行)

(轮齿与轴不平行)

人字齿圆柱齿轮传动

直齿圆锥齿轮传动

斜齿圆锥齿轮传动

曲齿圆锥齿轮传动

蜗轮蜗杆传动

渐开线齿轮得正确啮合条件:两轮得模数与压力角必须相等。

螺纹连接得类型及其应用场合:螺栓连接:用于通孔,螺栓损坏后容易更换。双头螺柱连接:多用于盲孔。螺钉连接:多用于盲孔,被连接件很少拆卸。紧定螺钉连接:用以固定两个零件得相对位置,可传递不大得力与转矩。

键连接类型及应用场合:平键连接:适用于高精度、高速或冲击、变载情况下得键连接,同时应用于轴上移动距离较大得场合。半圆键连接:主要应用于轻载荷与锥形轴端。楔键连接与切向键连接:适用于传动精度要求不高、载荷平稳与低速得场合.

轴向零件得轴向与周向定位方式:轴向定位:轴肩、轴环、套筒、圆螺母与止退垫圈、弹性挡圈、螺钉紧锁挡圈、轴端挡圈、圆锥面与轴端挡圈。周向定位:键、销、花键、过盈配合与成型连接。

6210:

N308:

7207C:

1306:

主运动与给进运动:切削过程中使工件形成新得表面,速度最高、消耗功率最大得运动称为主运动。如车削时工件得回转运动、钻削时钻头得回转运动、拉削时拉刀得直线运动。连续或间断得把金属层投入切削得运动称为进给运动.如车削时车刀得纵向与横向移动、钻削时钻头得轴向移动。

为什么切削运动一般由直线与回转运动组合而成?

——这两种简单运动得不同组合构成了各种不同得切削运动.

机床型号:

卧式车床用途:能完成多种工序得加工,如车内外圆柱面,圆锥面,割槽与切断,车端面,车螺纹,打中心孔,钻孔,攻螺纹,套螺纹与滚花、

为什么只适用于单件小批生产?

钻床与镗床用途上区别:

钻床主要用于在实心材料上钻孔,适用于加工单件小批得小型零件上得各种小孔;镗床通常用于加工精度较高得孔,特别适用于孔得中心距与相对位置精度,孔得中心至基面得尺寸与相对位置得精度有严格要求得孔系加工、

立式钻床与摇臂钻床结构用途上区别:

结构:

作用:立式钻床在单件小批生产中加工中小型零件、摇臂钻床广泛得应用于单件与中小批生产中加工大中型零件、

刨床与铣床在结构与用途上区别:

铣床使用旋转得多刃刀具,几个刀齿同时参加切削工作,因此铣床得生产效率比刨床高

被广泛应用于单件与小批中批生产中、刨削一般使用单刀进行加工,生产效率底,只适用于单件小批生产中、

内圆磨床:运动主要就是工作台带动床头箱沿床身得导轨作纵向往复运动,工作台往复直线运动一次,砂轮架横向进给一次,床头箱可相对于工作台得导轨偏转一个角度,用以磨削锥孔、磨削内孔直径受孔径限制只能采用较小得砂轮,线速度低,砂轮轴细长,刚性差,砂轮与工件接触面积大,生产效率低,

车削加工范围

车外圆,车端面,车孔,切断,钻孔,铰孔,车螺纹,车端面,车成型面,钻中心孔,滚花,绕弹簧、

顺铣与逆铣得优缺点:顺铣容易引起工件与工作台一起向前窜动,使进给量突然增大,引起打刀。逆铣可以避免顺铣时发生得窜动现象。逆铣时,切削厚度从零开始逐渐增大,因而刀刃开始经历了一段在切削硬化得已加工表面上挤压滑行得阶段,加速了刀具得磨损。同时,逆铣时,铣削力将工件上抬,易引起振动、

外圆加工方法及选用:弯头车刀用于加工外圆与,端面与倒角。直头车刀用于加工外圆与外圆倒角,宽刃车刀用于精车外圆,偏刀用于加工外圆、轴肩与端面、砂轮得磨削性能与哪些因素有关?

磨料,粒度,结合剂,硬度,组织、

拉削加工为什么质量好,生产效率高,适用于什么场合?

由于拉刀同时工作得刀刃多且一次拉削行程中完成粗精加工,故生产效率高,加工

精度高由于拉削精度为IT9—IT7,最高可达IT6,表面粗糙度Ra为3、2—--1、6微米,最低可达0、2微米,故加工质量好、拉削只适用于加工短孔、拉刀制造工艺复杂,成本高,大多用于大批量生产、大批量生产时成本低、

特种加工及特点:特种加工方法就是指区别于传统切削加工方法,利用化学、物理(电、声、光、热、磁)或电化学方法对工件材料进行加工得一系列加工方法得总称.

加工范围不受材料物理、机械性能得限制,能加工任何硬得、软得、脆得、耐热或高熔点金属以及非金属材料. 易于加工复杂型面、微细表面以及柔性零件、易获得良好得表面质量,热应力、残余应力、冷作硬化、热影响区等均比较小.各种加工方法易复合形成新工艺方法,便于推广应用。

电火花加工得加工机理:电火花加工就是利用工具电极与工件电极间瞬时火花放电所产生得高温熔蚀工件表面材料来实现加工得。

加工方法及适用场合:1电火花成形加工;主要适用于型腔加工,穿孔加工、

2电火花线切割加工,用于各种通孔,异型通孔得加工、

3电火花内、外圆成形磨削,主要用于加工高精度与低得表面粗糙度得小孔、

4电火花高速小孔加工,主要用于线切割,预穿丝孔得加工、

5电火花同步共轭回转加工,主要用于加工异型齿轮,螺纹环规,内外回转体等得加工、

6电火花表面强化,主要用于模具刃口,刀量刃具表面得强化与镀覆、

电解加工得基本原理:电解加工就是利用金属在电解液中产生阳极溶解得电化学原理对工件进行成形加工得一种方法、

电解磨削与一般磨削相比有什么不同?

加工范围广,加工效率高,可以提高加工精度与表面质量,砂轮得磨损量小,但电解磨削刃口不宜磨得非常锋利,机床,夹具要采取防腐蚀,防锈措施、

超声波加工特点:适宜加工各种硬脆材料,特别就是电火花与电解加工无法加工得不导电材料与半导体材料;1对于导电得硬质合金、淬火钢等也能加工,但加工效率比较低.

2能获得较好得加工质量、3超声加工机床结构比较简单,操作、维修方便。

电火花加工:工件与电极材料必须就是导电材料、

电化学加工:加工任何金属材料、

激光加工:几乎可以加工任何材料、

超声波加工:加工各种脆性材料,特别就是不导电得非金属材料、

生产过程:将原材料转变为成品得全过程、

工艺过程: 在生产过程中,凡就是改变生产对象得形状、尺寸、位置与性质等,使其成为成品或半成品得过程、

工艺规程:规定零件机械加工工艺过程得工艺文件、

工序划分主要依据:工作地点就是否改变,加工过程就是否连续、零件得加工地点变动后即构成另一工序、

生产纲领:企业在计划期内应当生产得产品产量与进度计划。计划期常为一年、所以生产纲领也称为年产量、

生产类型:单件生产,成批生产,大量生产、

工艺特征

粗精基准选择有哪些选择原则:

粗基准:若工件上有不加工表面,则选择该表面为粗基准—---—以不加工表面为粗基准原则、以重要表面作为粗基准,可保证其与加工面之间有一正确得位置,再以后加工该重要表面时,余量就能均匀,有利于获得规定得加工精度与表面粗糙度—-—-—-以重要表面与余量较小得表面组为粗基准原则、在同一尺寸方向上粗基准原则只允许使用一次--———-粗基准应避免重复使用原则、

精基准:所选择得精基准应能保证工件定位准确,装卡方便可靠,夹具结构简单-----便于装卡原则、选择加工面得设计基准作为定位基准、---基准重合原则、同一零件得多道工序都选择同一个定位基准----基准统一原则、以加工表面本身作为定位基准--—-—自为基准原则、对于两个具有很高相对位置得表面,往往需要采用这两个表面互为基准反复加工得方法-———---—-互为基准原则、经济加工精度:在正常加工条件下所能达到得加工精度、

与机械加工工艺规程制制定关系:

机械加工工序顺序安排得原则及理由

基面先行---——--作为其她表面加工定位用得精基准表面应先加工

先主后次—-—————因为次要表面与主要表面往往有相互位置要求,因此一般应放在主要表面加工到一定得精度以后,最终精加工以前进行、

先粗后精-—-——-—有利于加工误差与表面缺陷层得逐步消除,从而逐步提高零件得加工精度与表面质量、

装配精度内容:相互零部件间得尺寸精度,相互位置精度,相对运动精度,接触精度、

与零件精度关系:取决于零部件得精度,特别就是关键零部件得精度,取决于装配方法,在单件小批生产及装配精度高时尤为重要、

保证装配精度方法及适用场合

:互换法:分为完全与不完全互换法,完全互换法适用于大批量生产中高精度得少环尺寸链或低精度得多环尺寸链。不完全互换法适用于大批量生产条件下装配精度要求较高而组成环又较多得场合、

选配法:分为直接选配法(不适用于节拍要求较严得大批量生产)、分组选配法(适用于大批量生产条件下装配精度要求很高而组成法较少得场合)与复合选配法(适用于配合件,公差可以不等,装配质量高,装配速度较快得场合)

修配法:单件修配法,合并加工修配法,自身加工修配法、(单件、小批生产中装配那些装配精度要求高、组成环数又多得机器结构时,常用修配法装配。)

调整法:可动调整法,固定调整法(固定调整装配方法适于在大批大量生产中装配那些装配精度要求较高得机器结构)

分组选配法:将组成环公差按就极值法求得后再放大倍数,然后依据放大得数值

加工零件,加工后得每个零件都进行测量,按实际尺寸大小分成若干组,并将对应组得零件进行装配以保证装配精度得方法、适用于大批量生产条件下装配精度要求很高而组成法较少得场合、

如果相配合得工件公差不相等能否适用分组装配?

修配法:装配时去除修配环得部分材料以改变其实际尺寸,使封闭环达到其公差与极限偏差要求得装配方法、单件、小批生产中装配那些装配精度要求高、组成环数又多得机器结构时,常用修配法装配.适用于单件、小批生产中装配那些装配精度要求高、组成环数又多得机器结构时,常用修配法装配.

制定装配工艺规程得基本原则:

1保证产品装配质量,并力求提高质量

2合理安排装配顺序与工序,尽量减少钳工装配工作量

3缩短装配周期,提高装配效率

4尽量减少装配占地面积,提高单位面积生产率,改善劳动条件

5注意采用与发展新工艺、新技术

装配工艺流程图:

作用:清楚得表示装配顺序,以表示整个工艺过程、

机械专业基础知识--金属屈服强度、抗拉强度、硬度知识

机械专业基础知识--金属屈服强度、抗拉强度、硬度知识 [日期:2005-03-28编] 来源:Jackyc 原创文稿作者:陈俊光 [字体:大中小] 钢材机械性能介绍 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡 =N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个支持角120°的金刚石圆锥体或直径为1.59、3.18mm的钢

金属材料强度理论

强度理论在加工硬化中的应用 强度理论在锻压方向的主要应用是加工硬化 加工硬化的机理: (1)三种单晶体金属的应力应变情况 1,面心立方金属形变强化能力远大于其他金属。2,随着应变增大,面心立方金属经历弱的变形强化阶段后,发生强的形变强化,随后形变强化能力减弱。3,体心立方的金属和密排六方金属初始弱形变强化阶段长度大于面心立方金属。

金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。又称冷作硬化。产生原因是,金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。加工硬化的程度通常用加工后与加工前表面层显微硬度的比值和硬化层深度来表 加工硬化 示。 加工硬化给金属件的进一步加工带来困难。如在冷轧钢板的过程中会愈轧愈硬以致轧不动,因而需在加工过程中安排中间退火,通过加热消除其加工硬化。又如在切削加工中使工件表层脆而硬,从而加速刀具磨损、增大切削力等。但有利的一面是,它可提高金属的强度、硬度和耐磨性,特别是对于那些不能以热处理方法提高强度的纯金属和某些合金尤为重要。如冷拉高强度钢丝和冷卷弹簧等,就是利用冷加工变形来提高其强度

和弹性极限。又如坦克和拖拉机的履带、破碎机的颚板以及铁路的道岔等也是利用加工硬化来提高其硬度和耐磨性的。 以低碳钢拉伸的应力-应变(σ-ε)图为例(见图)。当载荷超过屈服阶段cе后,进入强化阶段еg,到某点k卸载时,应力不沿加载路线ocdеk 返回,而是沿着基本平行于oɑ的直线ko1下降,产生塑性变形oo1。再加载时,应力沿o1k上升,过k点后继续产生塑性变形,此时屈服极限已由σS提高到。如此反复作用,每循环一次都产生一次新的塑性变形,并提高强度指标。但随着循环次数的增加,加工硬化逐渐趋于稳定。这种加工硬化现象可解释为:在塑性变形时晶粒产生滑移,滑移面和其附近的晶格扭曲,使晶粒伸长和破碎,金属内部产生残余应力等,因而继续塑性变形就变得困难,引起加工硬化。这种现象受到构成金属基体的元素性质、点阵类型、变形温度、变形速度和变形程度等因素影响。加工硬化可由真正应力-应变曲线来描述。 编辑本段在机械工程中的作用 ①经过冷拉、滚压和喷丸(见表面强化)等工艺,能显著提高金属材料、零件和构件的表面强度; 加工硬化 ②零件受力后,某些部位局部应力常超过材料的屈服极限,引起塑性变形,由于加工硬化限制了塑性变形的继续发展,可提高零件和构件的安全度; ③金属零件或构件在冲压时,其塑性变形处伴随着强化,使变形转移到其周围未加工硬化部分。经过这样反复交替作用可得到截面变形均匀一致的冷冲压件; ④可以改进低碳钢的切削性能,使切屑易于分离。但加工硬化也给金属件进一步加工带来困难。如冷拉钢丝,由于加工硬化使进一步拉拔耗能大,甚至被拉断,因此必须经中间退火,消除加工硬化后再拉拔。又如在切削加工中为使工件表层脆而硬,再切削时增加切削力,加速刀具磨损等。

金属材料的力学性能

金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 金属材料的机械性能 1、弹性和塑性: 弹性:金属材料受外力作用时产生变形,当外力 去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。 塑性变形:在外力消失后留下的这部分不可恢复的变形。 2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。 对于韧性材料,有弹性和塑性两个阶段。弹性阶段的力学性能有: 比例极限:应力与应变保持成正比关系的应力最高限。当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。 弹性极限:弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 塑性阶段的力学性能有: 屈服强度:材料发生屈服时的应力值。又称屈服极限。屈服时应力不增加但应变会继续增加。 屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为 N/mm2(MPa)。 上屈服点(Re H):试样发生屈服而力首次下降前 的最大应力; 下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。 条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。 规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。 规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。例如Rt0.5 表示规定总延伸率为

金属材料力学性能

金属材料力学性能文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

常见的金属材料力学性能一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。 几种常用金属材料力学性能一览表

注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σσ σ, σu ={σσσσ 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax=(σ σ)max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ; A ,承受载荷作用的面积,单位mm2; [σ],材料的许用应力,单位MPa ;

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

金属材料强度

金属材料强度:强度就是指材料在外力作用下抵抗变形与破坏得能力.主要指标可分为抗拉(最基本强度指标)、抗压、抗弯、抗扭与抗剪强度. 塑性:材料在外力(静载)作用下产生永久变形而不被破坏得能力.主要指标为伸长率与断面收缩率。 硬度:材料抵抗更硬物体压入得能力.常用指标为布氏硬度、洛氏硬度与维氏硬度. 下列硬度指标就是否正确? HBS210-240 180-210HRCHRC29—25 450-480HBS钢得热处理:钢固态下,采用适当方法进行加热、保温与冷却,以改变钢得内部组织与结构,从而获得所需性能得一种工艺方法。 预先热处理:为消除坯料或半成品得某些缺陷或为后续得切削加工与最终热处理做组织准备得热处理。(退火、正火) 最终热处理:为使工件获得所要求得使用性能得热处理。 退火与正火得区别与选用:与退火相比、正火得冷却速度稍快,过冷度较大。 选用:1切削加工性考虑。作为预先热处理,低碳钢退火优于正火,而高碳钢正火后硬度太高,必须采用退火. 2使用性能上考虑.对于亚共析钢,正火处理比退火处理具有更好得力学性能。如果零件得性能要求不就是很高,则可用正火作为最终热处理。对于一些大型、重型零件,当淬火有开裂危险时,则采用正火作为最终热处理;但当零件得形状复杂,正火冷却速度较快开裂危险时,则采用退火为宜。 3 经济上考虑。正火比退火得生产周期短、耗料少、成本低、效率高、操作简便,因此在可能得条件下应采用正火。 钢淬火后为什么一定要回火,说明回火得种类及主要应用范围. 钢件经淬火后,虽然具有很高得硬度与强度,但脆性大,并且具有较大得淬火应力,因此在退火后,必须配以适当得回火. 种类及范围:高温回火:用于重要零件如轴、齿轮等。 中温回火:用于各种弹性元件及热锻模。 低温回火:用于各种工、模具钢及要求硬而耐磨得工件。 调制及特点:淬火后,加热到500-650度,保温后在空气中冷却。获得良好得综合力学性能,在保持高强度得同时,具有良好得塑、韧性,硬度为200—330HBS。

金属材料学基础试题及答案

金属材料的基本知识综合测试 一、判断题(正确的填√,错误的填×) 1、导热性好的金属散热也好,可用来制造散热器等零件。() 2、一般,金属材料导热性比非金属材料差。() 3、精密测量工具要选用膨胀系数较大的金属材料来制造。() 4、易熔金属广泛用于火箭、导弹、飞机等。() 5、铁磁性材料可用于变压器、测量仪表等。() 6、δ、ψ值越大,表示材料的塑性越好。() 7、维氏硬度测试手续较繁,不宜用于成批生产的常规检验。() 8、布氏硬度不能测试很硬的工件。() 9、布氏硬度与洛氏硬度实验条件不同,两种硬度没有换算关系。() 10、布氏硬度试验常用于成品件和较薄工件的硬度。 11、在F、D一定时,布氏硬度值仅与压痕直径的大小有关,直径愈小,硬度值愈大。() 12、材料硬度越高,耐磨性越好,抵抗局部变形的能力也越强。() 13、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 14、20钢比T12钢的含碳量高。() 15、金属材料的工艺性能有铸造性、锻压性,焊接性、热处理性能、切削加工性能、硬度、强度等。() 16、金属材料愈硬愈好切削加工。() 17、含碳量大于0.60%的钢为高碳钢,合金元素总含量大于10%的钢为高合金钢。() 18、T10钢的平均含碳量比60Si2Mn的高。() 19、一般来说低碳钢的锻压性最好,中碳钢次之,高碳钢最差。() 20、布氏硬度的代号为HV,而洛氏硬度的代号为HR。() 21、疲劳强度是考虑交变载荷作用下材料表现出来的性能。() 22、某工人加工时,测量金属工件合格,交检验员后发现尺寸变动,其原因可能是金属材料有弹性变形。() 二、选择题 1、下列性能不属于金属材料物理性能的是()。 A、熔点 B、热膨胀性 C、耐腐蚀性 D、磁性 2、下列材料导电性最好的是()。 A、铜 B、铝 C、铁烙合金 D、银 3、下列材料导热性最好的是()。 A、银 B、塑料 C、铜 D、铝 4、铸造性能最好的是()。 A、铸铁 B、灰口铸铁 C、铸造铝合金 D、铸造铝合金 5、锻压性最好的是()。

金属材料强度

金属材料强度:强度是指材料在外力作用下抵抗变形和破坏的能力。主要指标可分为抗拉(最基本强度指标)、抗压、抗弯、抗扭和抗剪强度。 塑性:材料在外力(静载)作用下产生永久变形而不被破坏的能力。主要指标为伸长率和断面收缩率。 硬度:材料抵抗更硬物体压入的能力。常用指标为布氏硬度、洛氏硬度和维氏硬度。 下列硬度指标是否正确? HBS210-240 180-210HRC HRC29-25 450-480HBS 钢的热处理:钢固态下,采用适当方法进行加热、保温和冷却,以改变钢的内部组织和结构,从而获得所需性能的一种工艺方法。 预先热处理:为消除坯料或半成品的某些缺陷或为后续的切削加工和最终热处理做组织准备的热处理。(退火、正火) 最终热处理:为使工件获得所要求的使用性能的热处理。 退火与正火的区别与选用:与退火相比、正火的冷却速度稍快,过冷度较大。选用:1切削加工性考虑。作为预先热处理,低碳钢退火优于正火,而高碳钢正火后硬度太高,必须采用退火。 2使用性能上考虑。对于亚共析钢,正火处理比退火处理具有更好的力学性能。如果零件的性能要求不是很高,则可用正火作为最终热处理。对于一些大型、重型零件,当淬火有开裂危险时,则采用正火作为最终热处理;但当零件的形状复杂,正火冷却速度较快开裂危险时,则采用退火为宜。 3 经济上考虑。正火比退火的生产周期短、耗料少、成本低、效率高、操作简便,因此在可能的条件下应采用正火。 钢淬火后为什么一定要回火,说明回火的种类及主要应用范围。 钢件经淬火后,虽然具有很高的硬度和强度,但脆性大,并且具有较大的淬火应力,因此在退火后,必须配以适当的回火。 种类及范围:高温回火:用于重要零件如轴、齿轮等。 中温回火:用于各种弹性元件及热锻模。 低温回火:用于各种工、模具钢及要求硬而耐磨的工件。

金属材料小论文

专业小论文 材料科学是21世纪四大支柱学科之一,而金属材料工程则是材料科学中一个重要的专业方向。众所周知,金属工具的制造和使用标志着人类文明的一个重大的进步。从青铜到钢铁,再到当今形形色色的合金材料,人类在自身不断进步的同时,从未放松过对金属材料的研究与开发。金属材料工程是国家重点支持的研究方向,每年都有大量的资金投入,成果也很显著。该专业研究范围很广,可以说所有的金属元素都在其研究范围之内。目前国内主要侧重于铁合金铝合金以及其他一些特种金属材料的研究与开发。 金属材料工程是一门实用性很强的专业,通过对金属材料制备工艺及其原理的探究,研究成果可以直接应用于现实生产,所取得的进展和人民群众的日常生活密切相关。喜欢理论研究的人可以在此发挥自己的才能,在这里有广阔的理论研究空间。材料技术人员虽然掌握了许多种金属材料的制备工艺,但至今还没有完全弄清楚其中的道理,而从理论上阐明这一切对材料科学的进一步发展意义非凡。于是从中也演化出计算机模拟各种原子分子的相互作用,从而设计出符合要求的材料,这对现实生产有着极其重要的指导作用。近年来,这一领域还有许多新的发展,比如储氢材料摩擦材料以及和纳米技术相结合的协同材料等等。 金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属合金金属间化合物和特种金属等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几个方面开始: 一、分类 金属材料通常分为黑色金属、有色金属和特种金属材料。 ①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含铁小于2%~4%的铸铁, 含碳小于2%的碳铁,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。 ②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、半 金属、贵金属稀有金属和稀土金属等。有色金属的强度和硬度一般比纯金属高,并且电阻大电阻温度系数小。 ③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工 艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减震阻尼等特殊功能合金等。金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造、有色金属及合金。变形金属通过压力加工如锻造轧制冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成型金属是通过喷射成型工艺制成具有一定形状和组织性能的零件与毛胚。金属材料的性能可分为工艺性能和使用性能两种。 二、性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。材料的工艺性能指材料适应冷、热加工方法的能力。

金属材料抗拉强测量不确定度

金属材料抗拉强度测量不确定度分析 1.试验依据 GB228-2002(金属材料拉伸试验方法) 试验采用RGM-100型万能材料试验机,以20~30MPa/s 速率加荷直至将试样拉伸至断裂。试样拉断时的最大力所对应的应力即为金属材料的抗拉强度。 2.钢材抗拉强度测量的影响因素 根据钢材抗拉强度的计算公式为: 24d F πσ= (1) 式中:σ -抗拉强度,单位MPa (N/mm 2); F -拉力,单位 N ; d -钢材直径,单位mm 。 对于钢材抗拉强度检测,只要温度在室温(25~35℃)附近变化不大,温度对试验结果的影响就可以忽略不计;另外,只要加荷速率控制在规范允许范围内(规范允许范围:10-30MPa/s ;实际加荷速率:20-30MPa/s ),加荷速率的影响也可以忽略不计。能够对试验测试结果产生影响的因素主要有:重复测试(同一批试件在相同试验条件下重复测量结果的差异性)、试件截面积变化(归结为直径d 偏差)、荷载测量的精度以及测量结果的数据修约。上述影响因素中,试件材质非均匀性直接表现在测量结果的数据变化上,属于A 类不确定度评定;其余影响因素都是由于影响量的误差而导致试验测试量的偏差,均属B 类不确定度评定。金属材料抗拉强度测量不确定度影响因素汇总于表1中。 表1 影响金属材料抗拉强度测量准确性的主要因素 3.标准不确定度评定 3.1 样品不均匀性引起的标准不确定度R u

从根据这10个测试数据进行钢材抗拉强度测量不确定度的评定,属于A 类不确定度评定,相应的测量不确定度称为重复测量不确定度R u ,可采用贝塞尔法按(2)式进行评定: R u =∑=--n i i n n 1 2)()1(1σσ (2) 式中:n 为重复测量次数,σ i 为第i 次测量的材料强度测量值,σ为同一材料的试件强度各次测量结果的平均值。按式(2)计算,重复测量导致的试件抗拉强度测量标准不确定度为:R u 3.2 试件尺寸导致的测量标准不确定度d u 由于试件直径偏差导致的试件抗拉强度测量不确定度属B 类不确定度。 对于偏差为±a 的影响量x 的不确定度)(x u ,可按式(4)进行评定: )(x u =k a (3) 直径尺寸出现在区间d ±αmm 内各点的概率相等,即直径误差分布为均匀分布,所以其包含因子k =3。根据式(4),试件直径d 的测量不确定度)(d u 为: k a d u =)( (mm ) (4) 试件抗拉强度 σ 对试件直径 d 的灵敏系数d c = d ??σ可以通过对式(1)求偏导数得到: d c =d ??σ=38d F π-=d σ2 (5) 取 σ =σ,d 取标称尺寸,代入上式中得d c MPa/mm ) 由试件直径偏差引起的试件抗拉强度测量标准不确定度d u 为: d u =d c ?)(d u (6) 3.3 试验机拉力误差引起的试件抗拉强度测量标准不确定度F u

金属材料的应用

Ⅰ金属在生活中的应用 炊具 从烤制烤鸭的烤炉,到烤面包的烤箱,再到我们吃时用的刀叉,无一不是金属制成的;各种各样的炒锅,炉灶,抽油烟机等炊具,也无一不是金属制成的。 (烤炉烤箱:使用全不锈钢面板结构,永不生锈,坚固耐用;炒锅:传统炒锅主要由铁制成,铁锅注意不要经常烹饪液体食物以防生锈;抽油烟机:机壳目前也比较流行采用钢化玻璃和不锈钢材料。风轮由硅合金铝片冲压而成,经久耐用不变型,动平衡性能好。风道:由冷轧薄钢板表面喷塑处理而成) 金属包装材料 1、易拉罐 大部分易拉罐为铝制或钢制,作为啤酒和碳酸饮料的包装形式极其方便。当代社会对易拉罐的回收和再利用至关重要。 2、铝箔真空包装 铝箔袋包装通常指的是铝塑复合真空包装袋,此类产品具有良好的隔水、隔氧功能。可以量体定做多种样式。 Ⅱ金属在工业中的应用 航空航天 铝合金 特点:比模量与比强度高、耐腐蚀性能好、加工性能好、成本低廉等,被认为是航空航天工业中用量最大的金属结构材料。主要用作航空航天结构的承载结构。 (比模量是材料的模量与密度之比,是材料承载能力的一个重要指标,比模量越大,零件的刚性就愈大,也称为“比刚度”或“比弹性模量”,单位为m) 钛合金 特点:与铝、镁、钢等金属材料相比,钛合金具有比强度很高、抗腐蚀性能良好、抗疲劳性能良好、热导率和线膨胀系数小等优点,可以在350~450℃以下长期使用,低温可使用到-196℃。用于航空发动机的压气机叶片、机匣以及机体主承力构件。 (抗疲劳性:轴承材料抵抗疲劳破坏的性能;线膨胀系数:物理名词,有时也称为线弹性系数,指固体物质的温度每改变1℃时,其长度的变化和它在0℃时长度之比。单位为1/开。符号为αl。) 高温合金 用于航天领域的高温合金中以镍基高温合金应用最为广泛,常用做航天发动机涡轮盘和叶片的材料。 (高温金属:指在650°C以上温度下具有一定力学性能和抗氧化、耐腐蚀性能的合金。目前常是镍基、铁基、钴基高温合金的统称。) 超高强度钢 超高强度钢具有很高的抗拉强度和足够的韧性,并且有良好的焊接性和成形性。飞机起落架、火箭发动机壳体、发动机喷管和各级助推器。 (抗拉强度:材料在拉伸断裂前所能够承受的最大拉应力。) 汽车 铝合金 代替钢铁降低汽车自重,全铝轿车全新的轻量化结构,使车身重量比传统钢制车身轻40%以上。

金属材料力学性能

一.名词解释 1,E,弹性模量,表征材料对弹性变形的抗力, 2,δs:呈现屈服现象的金属拉伸时,试样在外力不增加仍能继续伸长的应力,表征材料对微量塑性变形的抗力。 3,σbb:是灰铸铁的重要力学性能指标,是灰铸铁试样弯曲至断裂前达到的最大弯曲里 (按弹性弯曲应力公式计算的最大弯曲应力) 4δ:延伸率,反应材料均匀变形的能力。 5,韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力(或指材料抵抗裂纹扩展能力)6低温脆性:某些金属及中低强度钢,在实验的温度低于某一温度Tk时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔集聚型变为穿晶解理型,断口特征由纤维状态变为结晶状,这就是低温脆性 7 Kic:断裂韧度,为平面应变的断裂韧度,表示在平面应变条件下材料抵抗裂变失稳扩展的能力 8 弹性比功(弹性比能):表示单位体积金属材料吸收变形功的能力 9σ-1:疲劳极限,表明试样经无限次应力循环也不发生疲劳断裂所对应的能力 10循环韧性(消振性):表示材料吸收不可逆变形功的能力(塑性加载) 11Ψ:断面收缩率,缩经处横截面积的最大缩减量与原始横截面积的百分比, 12Ak:冲击功、,冲击试样消耗的总能量或试样断裂过程中吸收的总能量 13蠕变:材料在长时间的恒温应力作用下,(即使应力低于屈服强度)也会缓慢地产生塑性变形的现象。 14σtて:在规定温度(t)下,达到规定的持续时间(て)而不发生断裂的最大应力。 15:氢致延滞断裂:由于氢的作用而产生的延滞断裂现象。 17.δ0.2:屈服强度 18.△K th:疲劳裂纹扩展门槛值,表征阻止裂纹开始扩展的能力 19δbc:抗拉强度,式样压至破坏过程中的最大应力。 20.包申效应:金属材料经过预加载产生少量塑变,卸载后再同向加载,规定残余伸长应力增加,反向加载,规定残余应力减低的现象,称为包申效应。 21.NSR:缺口敏感度,缺口试样的抗拉强度δbn与等截面尺寸光滑试样的抗拉强度δb之比。 22.力学行为:材料在外加载荷,环境条件及综合作用下所表现出的行为特征。 23.强度 24:应力腐蚀:金属在拉应力和特定化学介质共同作用下,进过一段时间后所产生的应力脆断现象。 25.滞弹性:(弹性后效)在弹性范围内快速加载或卸载后,随时间延长而产生附加弹性应变的现象。 二、填空题 17、断裂可以分为(裂纹形成)与(扩展)两个阶段。静拉伸断裂宏观断口分为(纤维区)、(放射区)、(剪切唇)三个区域。该断口微观特征:(纤维状)对于脆性穿晶断裂断口主要特征:(放射状)和(结晶状) 18、典型疲劳断裂的宏观断口分为三个区(疲劳源)(疲劳区)(瞬间区)疲劳断口宏观特征(贝纹线、海滩花样)、微观特征(疲劳条带) 19、应力腐蚀微观断口可以看到呈(枯树枝状)的微观裂纹,呈(泥状花样)的腐蚀产物和(腐蚀抗) 20微孔聚集型断裂的微观特征(韧窝),解理断裂的微观特征主要有(解理台阶)和(河流花样),沿晶断裂的微观特征(冰糖状) 断口和(晶粒状)断口。 21应力状态系数值越大,表示应力状态越(软),材料越容易产生(塑性)变形和(韧性)断

金属材料在产品设计中应用

金属材料在产品设计中的应用设计中,除了少数材料所固定的特征以外,大部分的材料都可以通过表面处理的方式来改变产品表面所需的色彩、光泽、肌理等需要。通过改变产品表面的色彩、光泽、纹理、质地等方式,可以直接提高产品的审美功能,从而增加产品的附加值。在产品造型设计中要根据产品的性能、使用环境、材料性质等条件正确选择表面处理工艺与面试材料,使材料的颜色、光泽、肌理及加工工艺特性与产品的形态、功能、工作环境匹配适宜,以获得大方美观的外观效果,给人美的感受。 金属材料是金属及其合金的总称。金属表面处理的分类: (1),表面精加工处理 A,切削和研削 定义:利用刀具或砂轮对金属表面进行加 工的工艺。 效果:得到高精度的表面。 B,研磨 定义:是可以达到把金属表面加工成平滑面效果的工艺。 效果:可以得到光面、镜面、梨皮面的效果。 设计案例分析: 林德伯格公司为其一款造型简洁独特的眼镜框专门设计了这个眼镜盒。不锈钢材

料要具有亚光的效果,可以通过研磨、喷砂和化学处理等工艺达到。在这款设计 中,研磨工艺的应用,使得眼镜盒的设计更加朴素, 简洁。整个设计的理念在材料、造型和功能之间达到 完美的和谐。 (2),表面层改质处理 定义:表面层改质处理是通过化学或者电化学的方法将金属表面转变成金属氧化物或者无机盐覆盖膜的过程。 效果:改变金属表面的颜色、肌理及硬度,提高及金属表面的耐蚀性、耐磨性及着色性。 设计案例分析: 设计讲解:设计师对产品采用的铝材料应用了阳极氧化工艺处理,使得水壶得到新鲜氧化膜,具有多孔状结构,使膜层具有极好的吸附性,对各种染料表现出极强的吸附能力,因而再进过一定的工艺处理,就可染上鲜艳的色彩。阳极氧化工艺的应用,使得水壶本身不仅得到了保护,还得到了装饰,增加了产品的附加值。(3),表面被覆处理 原理: 通过在纪念树表面覆盖一层皮膜,从而改变材料表面的物理化学性质,赋予材料的表面肌理、色彩等。 设计案例分析:

金属材料力学性能

金属材料力学性能文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面 积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σu n , σu ={σs σb 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax =(F A )max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ;

金属材料的应用现状及发展趋势分析

金属材料的应用现状及发展趋势分析 在进行金属材料的应用现状及发展趋势分析之前,先简要介绍一下金属材料。金属材料是最重要的工程材料之一。按冶金工艺,金属材料可以分为铸锻材料、粉末冶金材料和金属基复合材料。铸锻材料又分为黑色金属材料和有色金属材料。黑色金属材料包括钢、铸铁和各种铁合金。有色金属是指除黑色金属以外的所有金属及其合金,如铝及铝合金、铜及铜合金等。工程结构中所用的金属材料90%以上是钢铁材料,其资源丰富、生产简单、价格便宜、性能优良、用途广泛。钢有分为碳钢和合金钢,铸铁又分为灰口铸铁和白口铸铁。 一、金属材料的应用现状 金属材料的结构及其性能决定了它的应用。而金属材料的性能包括工艺性能和使用性能。工艺性能是指在加工制造过程中材料适应加工的性能,如铸造性、锻造性、焊接性、淬透性、切削加工性等。使用性能是指材料在使用条件和使用环境下所表现出来的性能,包括力学性能(如强度、塑性、硬度、韧性、疲劳强度等)、物理性能(如熔点、密度热容、电阻率、磁性强度等)和化学性能(如耐腐蚀性、抗氧化性等)。 金属材料具有许多优良性能,是目前国名经济各行业、各部门应用最广泛的工程材料之一,特别是在车辆、机床、热能、化工、航空航天、建筑等行业各种部件和零件的制造中,发挥了不可替代的作用。 (1)、在汽车中的应用。缸体和缸盖,需具有足够的强度和刚度,良好的铸造性能和切削加工性能以及低廉的价格等,目前主要用灰铸钢和铝合金;缸套和活塞,对活塞材料的性能要求是热强性高,导热性好,耐磨性和工艺性好,目前常用铝硅合金;冲压件,采用钢板和钢带制造,主要是热轧和冷轧钢板。热轧钢板主要用于制造承受一定载荷的结构件,冷轧钢板主要用于构型复杂、受力不大的机器外壳、驾驶室、轿车车身等。还有汽车的曲轴和连杆、齿轮、螺栓和弹簧等,都按其实用需要使用的了不同的金属材料 (2)、在机床方面的应用。机床的机身、底座、液压缸、导轨、齿轮箱体、轴承座等大型零件部,以及其他如牛头刨床的滑枕、带轮、导杆、摆杆、载物台、手轮、刀架等,首选材料为灰铸铁,球磨铸铁也可选用。随着对产品外观装饰效果的日益重视,不锈钢、黄铜的

金属材料屈服强度的影响因素.

金属材料屈服强度及其影响因素 屈服强度是指材材料开始产生宏观塑性变形时的应力。对于屈服现象明显的材料,屈服强度就屈服点的应力—屈服值;对于屈服现象不明显的材料,通常将应力-应变曲线上以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 屈服强度通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。 影响屈服强度的因素 影响屈服强度的内在因素有: 1.金属本性及晶格类型——纯金属单晶体的屈服强度由位错运动时所受的阻力决定。这些阻力有晶格阻力和位错间交互作用产生的阻力之分。其中晶格力与位错宽度和柏氏矢量有关,而两者又与晶体结构有关。位错间交互产生的阻力包括平行位错间交互产生的阻力和运动位错与林位错交互产生的阻力。用公式表示:T=αGb/L,式中α为比例系数,又因为密度ρ与1/L2成正比,因此,T=αGb ρ1/2,由此可见,密度增加,屈服强度也随之增加。 2.晶粒大小和亚结构——晶粒大小的影响是晶界影响的反映,减小晶粒尺寸将增加位错运动障碍的数目,减小晶粒内位错塞积群的长度,将使屈服强度提高。许多金属与合金的屈服强度与晶粒大小的关系均符合霍尔佩奇公式σ s =σ j +k y d-1/2,式中,σ j 是位错在基体金属中运动的总阻力,亦称摩擦阻力,它决定于 晶体结构和位错密度;k y 是度量晶界对强化贡献大小的钉扎常数,或表示滑移带端部的应力集中系数;d为晶粒平均尺寸。亚晶界的作用和晶界类似,也阻碍位错的运动。 3.溶质元素——纯金属中融入溶质原子形成间隙型或置换型固溶合金将会显著提高屈服强度,此即为固溶强化。这主要是由于溶质原子和溶剂原子直径不同,在溶质周围形成了晶格畸变应力场,该应力场产生交互作用,使位错运动受阻,从而提高屈服强度。 4.第二相——工程上的金属材料,其显微组织一般是多相的。第二相对屈服强度的影响与质点本身在金属材料屈服变形过程中能否变形有很大关系。据此可将第二相质点分为不可变形和可变形的两类。 根据位错理论,位错线只能绕过不可变形的第二相质点,为此,必须克服弯曲位错的线张力。不可变形第二相质点的金属材料,其屈服强度与流变应力就决定于第二相质点之间的间距。对于可变形的第二相质点,位错可以切过,使之同基体一起变形,由此也能提高屈服强度。 第二相的强化效果还与其尺寸、形状、数量和分布以及第二相与基体的强度、塑性相应硬化特性、两相间的晶体学配合和界面能等因素有关。在第二相体积比相同的情况下,长形质点显著影响位错运动,因而具有此种组织的金属材料,其屈服强度就比球状的高。 综上所述,表征金属微量塑性变形抗力的屈服强度是一个对成分、组织极其敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺可使屈服强度产生明显变化。

金属材料检测报告

金属材料检测报告 抗拉强度(tensilestrength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临 界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着 横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变 形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈

缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensilestrength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yieldstrength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yieldstrength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值); (2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。

第二章 金属材料力学性能基本知识及钢材的脆化

金属材料力学性能基本知识 及钢材的脆化 金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。 通常所指的金属材料性能包括以下两个方面: 1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。 2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。工艺性能对制造成本、生成效率、产品质量有重要影响。 1.1材料力学基本知识 金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。材料在外力作用下所表现的一些性能称为材料的力学性能。锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。 1.1.1 强度 金属的强度是指金属抵抗永久变形和断裂的能力。材料强度指标可以通过拉伸试验测出。把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。在拉伸曲线上可以得到该材料强度性能的一些数据。图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。所以曲线称为P—AL曲线或一一s曲线。图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:

相关主题
文本预览
相关文档 最新文档