当前位置:文档之家› 土壤微生物数量测定方法整理

土壤微生物数量测定方法整理

土壤微生物数量测定方法整理
土壤微生物数量测定方法整理

土壤微生物的分离鉴定及数量测定

(一)培养基的制备

Ⅰ测定微生物总量培养基:

1. 细菌培养基(牛肉膏蛋白胨琼脂培养基)

牛肉膏Beefextract 5.0g

蛋白胨Peptone 10.0g

NaCI 5.0g

蒸馏水H20 1000m1

琼脂15~20g

PH 7.2~7.4

制备步骤:

⑴在100 mL小烧杯中称取牛肉膏5.0g,蛋白胨10.0g,加50 mL蒸馏水,置电炉搅拌加热至牛肉膏,蛋白胨完全溶解.

⑵向小铝锅中加入500 mL蒸馏水,将溶解的牛肉膏,蛋白胨倒入铝锅中并用自来水洗2~3次.加入

5.0gNaC1,在电炉上边加热边搅拌.

⑶加入洗净的琼脂条,继续搅拌,加热至琼脂完全熔化,补足水量至1000 mL.

⑷用NaOH或HC1调至pH7.0. 用酸度计或用玻棒沾少许液体用精密pH试纸测定其pH值,并用10%NaOH 调至所需pH值,必要时用滤纸或脱脂棉过滤。一般比要求的pH高出0.2,因为高压蒸汽灭菌后,pH常降低。

⑸根据不同需要,可将配好的培养基分装入配有棉塞的试管或三角瓶内。注意分装时避免培养基挂在瓶口或管口上引起杂菌污染。如液体培养基,应装试管高度的1/4左右;固体培养基装试管高度的1/5左右;装入三角瓶的量以三角瓶容量的一半为限。,塞好棉塞,装入小铁丝筐,然后用旧报纸将棉塞部分包好. 标签表明培养基的名称、配制日期等。

⑹高压蒸汽灭菌,用0.1Mpa(15lb/in2)121℃灭菌(15-20)30min.

2. 放线菌培养基(改良高氏1号琼脂培养基)

可溶性淀粉20g

KNO3 1g

K2HPO40.5g

MgSO4? 7H2O 0.5g

NaCl 0.5g原0.05g

FeSO4? 7H2O 0.01g

pH 7.2-7.4

制备步骤:

(1)计算根据配方计算各种药品所需要的量,然后再分别称量。

(2)称量准确称量各种成分。

(3)溶化配制时,先用少量冷水将淀粉调成糊状,倒入少许沸水中,在火上加热,边搅拌边依次逐一溶化其他成分,溶化后,补足水分到1000ml,调PH(可不调)。

(4)分装、包扎、灭菌。

注:各成分按配方顺序依次溶解,对于微量成分,可预先配成高浓度的溶液,方便配置时量的控制。配制时,先用少量冷水,将淀粉调成糊状,倒入少于所需水量的沸水中,在火上加热,边搅拌边依次逐一溶化其他成分,溶化后,补足水分到1000ml,调pH。

另:倒平板之前,在溶化的培养基中加重铬酸钾溶液,每300mL培养基加3%重铬酸钾1mL(l00ppm)。

3. 真菌培养基(马丁(Martin)-孟加拉红琼脂培养基)

葡萄糖10.0g

MgSO4.7H2O 0.5g

蛋白胨 5.0g

孟加拉红33.4mg (或者每升加1%溶液3.3mL)

K2HPO41g

蒸馏水H20 1000m1

PH 自然(4-5)

制备步骤:

(1)计算根据配方计算各种药品所需要的量,然后再分别称量。

(2)称量和熔化按培养基配方,准确称取各成分,并将各成分依次溶化在少于所需要的水量中待各成分完全溶化后,边加边搅拌, 以防糊底,补足水分到所需体积。再将孟加拉红配成1%的溶液,在1000ml培养液中加入1%的孟加拉红溶液3.3ml,混匀后,加入琼脂加热溶化。

(3) 分装、加塞、包扎、灭菌。

(4) 链霉素的加入由于链霉素受热易分解,所以临用时将培养基溶化后待温度降低至45摄氏度左右时才能加入。

注:⑴灭菌前加卡那霉素20μg/ml,或者倒平板之前加链霉素。

⑵倒平板之前加乳酸,每100mL培养基加0.lmL。

Ⅱ测定功能菌所用培养基:

1.亚硝酸细菌培养基(改良的斯蒂芬逊(Stephenson)培养基A)

(NH4)2SO4 2.0g

NaH2PO40.25g

MnSO4·4H2O 0.01g

MgSO4·7H2O 0.03g

K2HPO40.75g

CaCO3 5.0g

蒸馏水1000ml

PH 7.2

注:CaCO3最后加,不需要溶解,直接调PH,培养基中有这个成分是为了缓冲pH。因为硝化细菌的生长会产生酸化效应,使得氢离子过剩,到了一定程度硝化作用将无法继续,所以要碱性物质平衡酸碱。下同。

2.硝酸细菌培养基(改良的斯蒂芬逊(Stephenson)培养基B)

NaH2PO40.25g

K2HPO40.75g

MgSO4·7H2O 0.03g

MnSO4·4H2O 0.01g

CaCO3 1.0g

Na2CO3 1.0g

NaNO2 1.0g

蒸馏水1000ml

PH 7.2

3. 反硝化细菌培养基

柠檬酸钠 5.0 g

KNO3 2.0 g

KH2PO4 1.0 g,

K2HPO4 1.0 g

MgSO4·7H2O 0.2 g

蒸馏水1000 ml

pH值7.2~7.5

4.好气性自生固氮菌培养基(改良阿须贝(Ashby)无氮培养基)

苯甲酸钠 1.5 g

K2HPO4 0.2 g

MgSO4·7H2O 0.2 g

NaCl 0.2 g

CaSO4·2H2O 0.1 g

PH 7.4—7.6

注:在培养基分装入试管时,每管加入一1cm滤纸长条,要露出液面。

5.氨氧化细菌培养基(蛋白胨氨化培养基)

K2HPO4 0.5 g

KH2PO40.5 g,

MgSO4·7H2O 0.5 g

蛋白胨 5.0 g

蒸馏水1000ml

PH 7.0~7.2

6. 好气性纤维素分解菌培养基(依姆歇涅茨基纤维素分解菌培养基)KH2PO4 1.0 g

FeCl3·6 H2O 0.1 g

MgSO4·7H2O 0.3 g

CaCl2·6H2O 0.1 g

NaCl 0. 1 g

NaNO3 2.5 g

pH 7.2~7.4

注:在培养基分装入试管时,每管加入一1cm滤纸长条,需露出液面。

(二)试剂的配制

1.格里斯试剂(Griess Reagent)第一、第二液:

第一液:将0.5g的对氨基苯磺酸(Sulfanilic Acid)溶于150ml的20-30%稀醋酸溶液中,保存于棕色瓶中。

第二液:将0.5gα-萘胺(α-naphthylamine)加入50ml蒸馏水中,煮沸后,缓缓加入150ml的20-30%稀醋酸溶液中,保存于棕色瓶中。

2. 纳氏试剂

甲液:将20.0g碘化汞和10.0g碘化钾溶于100ml蒸馏水中。

乙液:将20.0g氢氧化钾溶于100ml水中。

分别配制甲、乙二液,待冷却后混合,放置2天后使用。保存于棕色瓶中。取上清液使用,保存期三周,随着沉淀增加会影响测定结果。

3.二苯胺试剂:

溶1.0g无色的二苯胺(Diphenylamine)于20ml蒸馏水中,然后徐徐加入100ml浓硫酸(相对密度1.84)中,保存于棕色瓶中。

(三)实验器材

1.仪器设备

4℃冰箱、立式自动电热压力蒸汽灭菌器、恒温培养箱、电子天平、电热恒温水浴锅、超净工作台、微量移液器、全温空气摇床、旋涡混合器、磁力搅拌器、微波炉等。

2.器材准备

⑴将90ml水装入250ml三角瓶中,并装有15-20个玻璃珠,灭菌。

⑵将9ml水装入试管,灭菌。

⑶试管架,1ml无菌吸管,记号笔,白瓷比色板,接种环,酒精灯等。

(四)实验方法

1.样品采集

在靠近植株根系部, 去除表层0-5cm的表土,采集5-20 cm土壤剖面,多点采集, 混匀后四分法取1 kg, 装无菌塑料袋带回,4℃冰箱保存。

2.悬液制备

称取10g土壤样品,放入盛有90ml无菌水的三角瓶中,置于摇床上室温振荡20min,

使土样与水充分混合,将土壤中的微生物细胞充分分散,从土壤中分离出来。此为10-1土壤悬液,吸取lml此土壤悬液于9ml无菌水中,另用无菌吸管吹吸3次混匀,制成10-2土壤悬液。以此类推依次制成10-3、10-4、10-5、10-6、10-7、10-8不同稀释度的土壤悬液。

3.土壤悬液稀释度选择

⑴细菌:10-4~10-6

⑵放线菌:10-3~10-5

⑶真菌:10-2~10-4

以上采用稀释平板法,分别设置三个浓度梯度,二次重复。

⑷亚硝酸细菌:10-3~10-6

⑸硝酸细菌:10-3~10-6

⑹反硝化细菌:10-4~10-7

⑺好气性自生固氮菌:10-3~10-6

⑻氨氧化细菌:10-5~10-8

⑼好气性纤维素分解菌:10-2~10-5

以上采用最大或然法(MPN),分别设置四个浓度梯度,三次重复。

4.接种(平板接种技术)

平板接种是用接种环将菌种接至平板培养基上,或用移液管,滴管将一定体积的菌液移至平板培养基上,然后进行培养.其目的是进行菌落形态观察,分离纯化菌种,活菌计数,或进行其它试验.其方法有多种,根据实验的目的要求不同,可分以下几种.

①斜面菌种接至平板

划线法:按无菌操作的方法自斜面用接种环直接取少量菌体,在平板培养基表面自左至右轻轻连续划线或分区划线,注意不要划破培养基.或先制成菌悬液,接种在平板边缘的一处,将接种环灼烧灭菌,再从有菌的部位如上方法划线接种.

点接法:一般用于霉菌菌落观察的接种.无菌操作下,用接种针从斜面或孢子悬液中取少量孢子,轻轻点接在平板培养基上,点接的部位和点接的次数根据实验目的与要求确定.

②菌悬液接至平板

涂抹法:用灭菌的移液管或滴管吸取一定体积的菌液移至平板上,然后用无菌的玻璃涂棒将菌液均匀涂布在整个平板上.

混菌法:先将菌液加入培养皿中,然后加入融化并冷却至45~50℃的固体培养基,轻轻摇匀,平置,待完全凝固后倒置培养.

③平板菌种接至斜面

此法一般是将分离培养得到的单菌落,在无菌操作下分别接种到斜面培养基上,以便进一步扩大培养或作保存之用.接种之前先选好平板上的单菌落,并做好标记.左手拿平板,右手拿接种环,在火焰上方或火焰旁边操作,灼烧接种环后将接种环在空白培养基处冷却,以免将菌种烫死,然后挑取菌落,在火焰旁边稍等片刻,此时左手将平板放下,拿起斜面培养基,按斜面接种的方法接种.

5.培养

将所有试管和平板置于25-28℃黑暗条件下避光培养。培养时间由短到长分别为:

⑴真菌:2~3d;

⑵细菌:3~4d;

⑶放线菌:5~7d。

⑷氨氧化细菌:7~8d;

⑸好气性自生固氮菌:7~8d;

⑹亚硝酸细菌:10~14d;

⑺硝酸细菌:10~14d;

⑻反硝化细菌:10~14d;

⑼好气性纤维素分解菌:10~14d;

6.结果观察

⑴亚硝酸细菌:取出培养液5滴于白瓷比色板上,加入格里斯试剂(Griess Reagent)第一、第二液各两滴,如有亚硝酸盐存在,则呈红色。

⑵硝酸细菌:取出培养液5滴于白瓷比色板上,加入格里斯试剂(Griess Reagent)第一、第二液各两滴,如不呈红色,表示亚硝酸均已经完全消失。此时,另取培养液5滴于白瓷比色板上,加二苯胺试剂2滴,如呈蓝色,则表示亚硝酸已经被氧化成硝酸,说明有硝酸细菌的存在。

⑶反硝化细菌:加入格利斯亚硝酸试剂,观察颜色变化,确定正负反应。

⑷好气性自生固氮菌:观察试管培养液表面与滤纸接触处有无褐色或黏液状菌膜生成,或有无圆晕混浊出现。

⑸氨氧化细菌:取出培养液5滴于白瓷比色板上,加入纳氏试剂两滴,如有氨氧化细菌存在,则呈棕色或褐色。

⑹好气性纤维素分解菌:观察滤纸条是否成团,有无黄色或橘黄色菌斑出现及滤纸断裂情况。

7. 镜检计数

稀释平板菌落计数

平板接种培养有混合平板培养法和涂抹平板培养法两种方法.

⑴混合平板培养法

将无菌平板编上10-7,10-8,10-9号码,每一号码设置三个重复,用无菌吸管按无菌操作要求吸取1×10-9稀释液各1mL放入编号10-9的3个平板中,同法吸取10-8稀释液各1mL放入编号1×10-8的3个平板中,再吸取1×10-7稀释液各1mL放入编号1×10-7的3个平板中,由低浓度向高浓度时,吸管可不必更换.然后在9个平板中分别倒入已熔化并冷却至45~50℃的细菌培养基(图5-2),轻轻转动平板,使菌液与培养基混合均匀,冷凝后倒置,在30℃下培养.至菌落长出后即可计数.

⑵涂抹平板计数法

涂抹平板计数法与混合法基本相同,所不同的是先将培养基熔化后趁热倒入无菌平板中,待凝固后编号,然后用无菌吸管吸取0.1mL菌液对号接种在不同稀释度编号的琼脂平板上,每个编号设三个重复.再用无菌刮铲将菌液在平板上涂抹均匀(图24-3),每个稀释度用一个灭菌刮铲,更换稀释度时需将刮铲灼烧灭菌.在由低浓度向高浓度涂抹时,也可以不

更换刮铲.将涂抹好的平板平放于桌上20~30min,使菌液渗透入培养基内,然后将平板倒转,保温培养,至菌落长出后即可计数.

计算结果时,常按下列标准从接种后的3个稀释度中选择一个合适的稀释度,求出每克菌剂中的含菌数.

(1)同一稀释度各个重复的菌数相差不太悬殊.

(2)细菌,放线菌,酵母菌以每皿30~300个菌落为宜,霉菌以每皿10~100个菌落为宜.

选择好计数的稀释度后,即可统计在平板上长出的菌落数,统计结果按下式计算.

混合平板计数法:

每g样品的菌数=同一稀释度几次重复的菌落平均数×稀释倍数

涂抹平板计数法:

每g样品的菌数=同一稀释度几次重复的菌落平均数×10×稀释倍数

尽管使用不同的培养基,但细菌、放线菌和真菌都可能在同一个培养基上生长,所以必须用显微镜做进一步的观察。明显有菌丝的一般是真菌,真菌的菌丝为丝状分枝,比较粗大;而放线菌菌丝呈放射状,比较细。细菌有球状和杆状,有些细菌也形成细小的菌丝。酵母菌的菌落与细菌的菌落很相似,但在显微镜下容易分辨。酵母菌个体比较大,一般有圆形、椭圆形、卵形、柠檬形或黄瓜形,有些还有瘤状的芽。

在两级稀释度中,选细菌和放线菌的菌落数为30~200个、真菌菌落数为20~40个的培养皿各5个,取其平均值计算出每组的菌落数。如果菌落很多,可将其分成2~4等份进行计数。微生物生物量可以通过微生物细胞个体大小和密度计算得到。

8.计算

土壤微生物数量(cfu·g-1)=MD/W

式中M为菌落平均数:D为稀释倍数;W为土壤烘干质量(g)。

背景知识:

微生物

微生物(microorganism简称microbe是包括细菌、病毒、真菌以及一些小型的原生动物、显微藻类等在内的一大类生物群体,它个体微小,却与人类生活关系密切。涵盖了有益有害的众多种类,广泛涉及健康、食品、医药、工农业、环保等诸多领域。

微生物的定义

现代定义:微生物是一切肉眼看不见货看不清的微小生物的总称。

形体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。(但有些微生物是可以看见的,像属于真菌的蘑菇、灵芝等。)

1 特点:个体微小,一般<0.1mm。构造简单,有单细胞的,简单多细胞的,非细胞的。进化地位低。

2 分类:原核类: 三菌,三体。三菌:细菌、蓝细菌、放线菌三体:支原体、衣原体、立克次氏体。真核类: 真菌,原生动物,显微藻类。非细胞类: 病毒,亚病毒( 类病毒,拟病毒,朊病毒)。

3 五大共性:体积小,面积大;吸收多,转化快;生长旺,繁殖快;适应强,易变异;分布广,种类多微生物的类群

种类

原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。

真核:真菌、藻类、原生动物。

非细胞类:病毒和亚病毒。

一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:

细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。

1 细菌:(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物

(2)分布:温暖,潮湿和富含有机质的地方

(3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形

基本结构:细胞膜细胞壁细胞质核质。特殊结构:荚膜、鞭毛、菌毛、芽胞

(4)繁殖: 主要以二分裂方式进行繁殖的

(5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基啊行大量繁殖时,便会形

成一个肉眼可见的,具有一定形态结构的子细胞群落.

菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同.

2 放线菌

(1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物

(2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中

(3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生

孢子)

(4)繁殖:通过形成无性孢子的形式进行无性繁殖

(5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉

真菌

真菌(Fungus)是一种真核生物。最常见的真菌是各类蕈类,另外真菌也包括霉菌和酵母。现在已经发现

了七万多种真菌,估计只是所有存在的一小半。大多真菌原先被分入动物或植物,现在成为自己的界,分为四门

真菌通常又分为三类,即酵母菌、霉菌和蕈菌(大型真菌),它们归属于不同的亚门。

真菌的细胞既不含叶绿体,也没有质体,是典型异养生物。它们从动物、植物的活体、死体和它们的排泄物,以及断枝、落叶和土壤腐殖质中、来吸收和分解其中的有机物,作为自己的营养。真菌的异养方式有寄生和腐生。

真菌常为丝状和多细胞的有机体,其营养体除大型菌外,分化很小。高等大型菌有定型的子实体。除少数例外,真菌都有明显的细胞壁,通常不能运动,以孢子的方式进行繁殖。真菌菌落:大小:大。形状:绒毛状,絮状,蛛网状。颜色:五颜六色(孢子的颜色)

真菌:念球菌、粘菌等。

细菌的菌落特征与繁殖

细菌在固体培养基上分裂繁殖时,许多细胞堆集在一起,形成肉眼可见的群体称为菌落。不同种类的细菌其菌落形态互不相同,表现在大小、形状、边缘、隆起、光泽、质地和颜色等方面。细菌菌落大小不一,小的不到1毫米,大的可以铺满整个培养皿;菌落形状有圆形、不规则形、卷发状、假根状等;菌落的隆起形状有扩展、台状、低凸、乳头状等;有的菌落有光泽、有的没有;有的菌落较粘,有的则较脆;菌落一般呈灰色,少数为白色、黄色、红色、绿色和棕色等。大小:小。形状:光滑,粘稠或粗糙干燥。颜色:多为白色。

细菌一般进行无性繁殖,表现为细胞的横分裂,称为裂殖。裂殖结果形成两个大小相同的子细胞。在最适宜的条件下,20~30分钟就能分裂1次,并可继续分裂若干次。当继续分裂时,常因养料供应不足或温度

变化以及其它种种原因而停止分裂或死亡。

放线菌的菌落特征与繁殖

放线菌的菌落质地致密,表面呈紧密的绒状,或坚实、干燥而多皱。由于基内菌丝长在培养基内,所以菌落与培养基结合较紧,不容易被挑起,或者被挑起后不容易破碎。当孢子丝形成大量孢子布满菌落表面时,使菌落呈絮状、粉末状或颗粒状,而与细菌菌落判然有别。此外,如用放大镜仔细观察,可以看见菌落周围有放射状菌丝。

放线菌主要通过形成无性孢子的方式进行繁殖。其孢子丝成熟时,分化形成许多孢子,称为分生孢子。分生孢子常具色素,呈白、灰、黄、橙黄、红、蓝、绿等颜色。

孢子丝形成孢子的方式有凝聚分裂和横隔分裂两种。大多数放线菌按凝聚分裂方式形成孢子,其过程是在孢子丝内从顶端到基部,细胞质分段围绕核质,逐渐凝聚成一串大小相似的小段,然后每一小段外面产生新的孢子壁而形成孢子,最后孢子丝壁破裂,将孢子释放出来。少数放线菌按横隔分裂方式形成孢子,其过程是在孢子丝内产生许多距离均等的横隔,然后在横隔处断裂形成孢子。另外有些放线菌可在菌丝上形成孢子囊,在孢子囊内形成孢囊孢子,但这样的种类很少。

土壤稀释液的配制:

悬液制备

准确称取待测土样品10g,放入装有90mL无菌水并放有小玻璃珠的250mL三角瓶中,用手或置摇床上振荡20min,使微生物细胞分散,静置20~30s,即成10-1稀释液;

再用1mL无菌吸管,吸取10-1稀释液1mL,移入装有9mL无菌水的试管中,吹吸3次,让菌液混合均匀,即成10-2稀释液;

再换一支无菌吸管,吸取10-2稀释液1mL,移入装有9mL无菌水的试管中,也吹吸3次,即成10-3稀释液;

以此类推,连续稀释,制成10-4,10-5,10-6,10-7,10-8,10-9,10-10等一系列稀释菌液

注意事项:

1、培养基提前一天倒入培养皿,室温存放一天,另培养基表明干燥。

2、做无菌水接种对照,检测污染情况。

3、吸取10-6,10-8和10-10稀释液100ul,均匀涂布。

土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1土壤微生物碳的测定方法(熏蒸提取----仪器分析法) 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生 物生物量碳,用一定体积的LK 2SO 4 溶液提取土壤,借用有机碳自动分析仪测定微 生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 实验试剂 1)无乙醇氯仿(CHCL 3 ); 2)L硫酸钾溶液:称取87g K 2SO 4 溶于1L蒸馏水中 3)工作曲线的配制:用L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下, 仪器会自带的标曲,一般不用自己做的) 操作步骤 土壤的前处理(过筛和水分调节略) 熏蒸 称取新鲜(相当于干土,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO 2 ,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完

全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不可久放,应该快速浸提)※ 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个的滤头,一个才1元)。 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 计算 SMBC=(E C CHCL3—E C CK)*TOC仪器的稀释倍数*原来的水土比/ 2 土壤微生物生物量氮(茚三酮比色法) 土壤微生物生物氮一般占土壤全氮的2%—7%,是土壤中有机—无机态氮转化的一个重要环节,关于土壤微生物氮的测定常见的熏蒸浸提法有两种,一是全氮测定法,另一个是茚三酮比色法,如下 基本原理(茚三酮比色法)

微生物大小及数量的测定

姓名班级13级生命基地班学号同组者: 科目微生物学实验题目微生物大小及数量的测定组别3 【实验题目】 微生物大小及数量的测定 【实验目的】 1.了解显微镜测定微生物大小与血球计数板测定微生物数量的原理。 2.学习并掌握显微镜下测定微生物细胞大小的技术,包括目镜测微尺、镜台测微尺的校正 技术与测定细胞大小的技术。 3.了解血球计数板的结构,学习并掌握血球计数板计数微生物数量的技术,包括样品的点 样、菌数计数的方法与计算。 【实验器材】 1、菌种: 酵母菌液,枯草芽孢杆菌 2、试剂: 结晶紫,蒸馏水,香柏油,二甲苯等 3、仪器和用具: 显微镜,目镜测微尺,镜台测微尺,血球计数板、盖玻片、吸水纸、计数器、滴管、擦镜纸,酒精灯等 【实验原理】 一、微生物大小的测定 1、测微尺的构造 微生物细胞的大小,是微生物重要的形态特征之一,也是分类鉴定的依据之一。由于菌体很小、只能在显微镜下来测量。显微镜测微尺是由目镜测微尺和镜台接物测微尺组成。 目镜测微尺 目镜测微尺是一块圆形玻璃片,其中有精确的 等分刻度,在5mm 刻尺上分50 份,或把10 mm 长度刻成100等分。测量时,将其放在接目镜中的 隔板上(此处正好与物镜放大的中间像重叠)来测量 经显微镜放大后的细胞物象。由于不同目镜、物镜 组合的放大倍数不相同,目镜测微尺每格实际表示 的长度也不一样,因此目镜测微尺测量微生物大小 时须先用置于镜台上的镜台测微尺校正,以求出在 图1

姓名 班级 13级生命基地班 学号 同组者: 科目 微生物学实验 题目 微生物大小及数量的测定 组别 3 一定放大倍数下,目镜测微尺每小格所代表的相对长度。 镜台测微尺 镜台测微尺是中央部分刻有精确等分线的载玻片,一般将lmm 等分为100格,每格长l0μm (即0.0lmm ),是专门用来校正目镜测微尺的。校正时,将镜台测微尺放在载物台上,由于镜台测微尺与细胞标本是处于同一位置,都要经过物镜和目镜的两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就是细胞的真实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表的长度,然后移去镜台测微尺,换上待测标本片,用校正好的目镜测微尺在同样放大倍数下测量微生物大小。 2、 球菌用直径表示大小;杆菌用宽和长来表示。 二、血球计数板测定微生物数量 镜检计数法适用于各种含单细胞菌体的纯培养悬浮液,如有杂菌或杂质常不易分辨。菌体较大的酵母菌或霉菌泡子可采用血球计数板;一般细菌则采用彼得罗夫·霍泽(Petroff Hausser)细菌计数板。两种计数板的原理和部件相同,只是细菌计数板较薄,可以使用油镜观察。而血球计数板较厚,不能使用油镜,故细菌不易看清。 血球计数板是一块特制的厚载玻片,载玻片上有4条槽而构成3个平台。中间的平台较宽,其中间又被一短横槽分隔成两半,每个半边上面各有一个方格网(图3)。每个方格网共分9大格,其中间的一大格(又称为计数室)常被用作微生物的计数。计数室的刻度有两种:一种是大方格分为16个中方格,而每个中方格又分成25个小方格;另一种是一个大方格分成25个中方格,而每个中方格又分成16个小方格。但是不管计数室是哪一种构造,它们都有一个共同特点,即每个大方格都由400个小方格组成(图4)。 每个大方格边长为1mm ,则每一大方格的面积为1mm 2,每个小方格的面积为1/400mm 2,盖上盖玻片后,盖玻片与计数室底部之间的高度为0.1mm ,所以每个计数室(大方格)的体积为0.1mm 3,每个小方格的体积为l /4000mm 3。计数时,通常数五个中方格的总菌数,然后求得每个中方格的平均值,再乘上25或16,就得出一个大方格中的总菌数,然后再换算成1ml 目镜测微尺 镜台测微尺 图2: 目镜测微尺和镜台测微尺的校准

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

微生物数量测定.

《环境微生物新技术》课程作业 2.微生物数量测定方法有哪些?空气、水、土壤样品分别适用哪些方法?请举例说明。 常见微生物数量的测定方法 <1> 1.计数器测定法: 即用血细胞计数器进行计数。取一定体积的样品细胞悬液置于血细胞计数器的计数室内,用显微镜观察计数。由于计数室的容积是一定的(O.1mm3),因而根据计数器刻度内的细菌数,可计算样品中的含菌数。本法简便易行,可立即得出结果。 本法不仅适于细菌计数,也适用于酵母菌及霉菌孢子计数。2、电子计数器计数法: 电子计数器的工作原理是测定小孔中液体的电阻变化,小孔仅能通过一个细胞,当一个细胞通过这个小孔时,电阻明显增加,形成一个脉冲,自动记录在电子记录装置上。 该法测定结果较准确,但它只识别颗粒大小,而不能区分是否为细菌。因此,要求菌悬液中不含任何碎片。 3、活细胞计数法 : 常用的有平板菌落计数法,是根据每个活的细菌能长出一个菌落的原理设计的。取一定容量的菌悬液,作一系列的倍比稀释,然后将定量的稀释液进行平板培养,根据培养出的菌落数,可算出活菌数。

此法灵敏度高,是一种检测污染活菌数的方法,也是目前国际上许多国家所采用的方法。使用该法应注意:①一般选取菌落数在30~300之间的平板进行计数,过多或过少均不准确;②为了防止菌落蔓延,影响计数,可在培养基中加入O.001%2,3,5一氯化三苯基四氮唑(TTC);③本法限用于形成菌落的微生物。 广泛应用于水、牛奶、食物、药品等各种材料的细菌检验,是最常用的活菌计数法。 4、比浊法 比浊法是根据菌悬液的透光量间接地测定细菌的数量。细菌悬浮液的浓度在一定范围内与透光度成反比,与光密度成正比,所以,可用光电比色计测定菌液,用光密度(OD值)表示样品菌液浓度。此法简便快捷,但只能检测含有大量细菌的悬浮液,得出相对的细菌数目,对颜色太深的样品,不能用此法测定。 5、测定细胞重量法 此法分为湿重法和干重法。湿重法系单位体积培养物经离心后将湿菌体进行称重;干重法系单位体积培养物经离心后,以清水洗净放人干燥器加热烘干,使之失去水分然后称重。 此法适于菌体浓度较高的样品,是测定丝状真菌生长量的一种常用方法。 6、测定细胞总氮量或总碳量 氮、碳是细胞的主要成分,含量较稳定,测定氮、碳的含量可以推知细胞的质量。此法适于细胞浓度较高的样品。

凯氏定氮法:土壤微生物量氮测定

土壤微生物量氮的测定方法 1.试剂配制: (1)混合催化剂:按照硫酸钾:五水硫酸铜:硒粉=100:10:1,称取硫酸钾100g、 五水硫酸铜10g、硒粉1g。均匀混合后研细,贮于瓶中。 (2)密度为1.84浓硫酸。 (3)40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶 解定容至1L。 (4)2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入20ml混合指示剂。(按体 积比100:2加入混合指示剂) (5)混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中, 用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 (6)0.01mol的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至 1000ml,用基准物质标定之。 (7)0.5M K2SO4溶液:称取K2SO4 87.165g溶解于蒸馏水中,搅拌溶解,(可加 热)定容至1L。 (8)去乙醇氯仿的配制:在通风柜中,量取100毫升氯仿至500毫升的分液漏斗 中,加入200毫升的蒸馏水,加塞,上下振荡10下,打开塞子放气,而后加塞再振荡10下,反复3次,将分液漏斗置于铁架台上,静止溶液分层,打开分液漏斗下端的阀,将下层溶液(氯仿)放入200毫升的烧杯中,将剩余的溶液倒入水槽,用自来水冲洗。再将烧杯中的氯仿倒入分液漏斗中,反复3次。将精制后的氯仿倒入棕色瓶中,加入无水分析纯的CaCl2 10g,置于暗处保存。 2.试验步骤:。 (1)制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。 (2)测定:滤液要是不及时测定,需立即在-15℃以下保存,此滤液可用于微生物碳氮的测定。微生物碳测定只吸取2ml,采用重铬酸钾-硫酸亚铁滴定法测定。微生物氮吸取滤液10ml于消化管中,加入2g催化剂,在再加5ml浓硫酸,管口放一弯颈小漏斗,将消化管置于通风橱内远红外消煮炉的加热孔中。打开消煮炉上的所有加热开关进行消化,加热至微沸,关闭高档开关,继续加热。消煮至

微生物大小与数量的测定实验报告

山东大学实验报告2017年11月27日 ________________________________________ _________________________ 科目:微生物学实验题目:微生物大小与数量的测定姓名:丁志康 一、目的要求 1.学习并掌握用测微尺测定微生物大小的方法。 2.增强微生物细胞大小的感性认识。 3. 明确血细胞计数板计数的原理。 4. 掌握使用血细胞计数板进行微生物计数的方法。 二、基本原理 一)微生物大小的测定 1.微生物细胞的大小是微生物基本的形态特征,也是分类鉴定的依据之一。微生物 大小的测定,需要在显微镜下,借助于特殊的测量工具——测微尺,包括目镜测 微尺和镜台测微尺。 2.镜台测微尺是中央部分可有精确等分线的载玻片,一般是将1mm等分为100格每 格长0.01mm(即10μm)。镜台测微尺并不直接用来测量细胞的大小,而是用于 矫正目镜测微尺每格的相对长度。 3.目镜测微尺是一块可放入接目镜内的圆形小玻片,其中央有精确的等分刻度,有 等分为50小格和100小格两种。测量时,需将其放在接目镜中的隔板上,用以 测量经显微镜放大后的细胞物象。由于不同显微镜或不同的目镜和物镜组合放大 倍数不同,目镜测微尺每小格所代表的实际长度也不一样。因此,用目镜测微尺 测量微生物大小时,必须先用镜台测微尺进行校正,以求出该显微镜在一定大放 大倍数的目镜和物镜下,目镜测微尺每小格所代表的相对长度。然后根据微生物 细胞相当于目镜测微尺的格数,即可计算出细胞的实际大小。 4.球菌用直径来表示其大小;杆菌则用宽和长的范围来表示。如金黄色葡萄球菌直 径约为0.8μm,枯草芽孢杆菌大小为0.7~0.8×2~3μm。 二)微生物数量的测定 1.微生物数量的测定有多种方法,本次试验中使用显微镜直接计数法。显微镜直接 计数法是将少量待测样品的悬浮液置于一种特别的具有确定面积和容积的载玻 片上(又称计菌器),于显微镜下直接计数的一种简便、快速、直观的方法。目前 国内外常用的计菌器有:血细胞计数板、Peteroff-Hauser计菌器以及Hawksley 计菌器等,它们都可用于酵母、细菌、霉菌孢子等悬液的计数,基本原理相同。 后两种计菌器由于盖上盖玻片后,总容积为0.02mm3,而且盖玻片和载波片之间 的距离只有0.02mm,因此可用油浸物镜对细菌等较小的细胞进行观察和计数。(除 了用这些计菌器外,还有在显微镜下直接观察涂片面积与视野面积之比的估算法, 此法一般用于牛乳的细菌学检查。)显微镜直接计数法的优点是直观、快速、操

土壤微生物测定方法

土壤微生物测定 土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。土壤微生物活性的表征量有:微生物量、C/N、土壤呼吸强度和纤维呼吸强度、微生物区系、磷酸酶活性、酶活性等。 测定指标: 1、土壤微生物量(MierobialBiomass,MB) 能代表参与调控土壤能量和养分循环以及有机物质转化相对应微生物的数量,一般指土壤中体积小于5Χ103um3的生物总量。它与土壤有机质含量密切相关。 目前,熏蒸法是使用最广泛的一种测定土壤微生物量的方法阎,它是将待测土壤经药剂熏蒸后,土壤中微生物被杀死,被杀死的微生物体被新加人原土样的微生物分解(矿化)而放出CO2,根据释放出的CO2:的量和微生物体矿化率常数Kc可计算出该土样微生物中的碳量。 因此碳量的大小就反映了微生物量的大小。 此外,还有平板计(通过显微镜直接计数)、成份分析法、底物诱导呼吸法、熏蒸培养法(测定油污染土壤中的微生物量—碳。受土壤水分状况影响较大,不适用强酸性土壤及刚施 用过大量有机肥的土壤等)、熏蒸提取法等,均可用来测定土壤微生物量。 熏蒸提取-容量分析法 操作步骤: (1)土壤前处理和熏蒸 (2)提取 -1K2SO 4(图将熏蒸土壤无损地转移到200mL聚乙烯塑料瓶中,加入100mL0.5mol·L 水比为1:4;w:v),振荡30min(300rev·min -1),用中速定量滤纸过滤于125mL塑料瓶中。熏蒸开始的同时,另称取等量的3份土壤于200mL聚乙烯塑料瓶中,直接加入100mlL0.5mol·L -1K2SO4提取;另作3个无土壤空白。提取液应立即分析。 (3)测定 吸取10mL上述土壤提取液于150mL消化管(24mmх295mm)中,准确加入10mL0.018 mol·L -1K2Cr2O7—12mol·L-1H2SO4溶液,加入2~3玻璃珠或瓷片,混匀后置于175±1℃ 磷酸浴中煮沸10min(放入消化管前,磷酸浴温度应调至179℃,放入后温度恰好为175℃)。冷却后无损地转移至150mL三角瓶中,用去离子水洗涤消化管3~5次使溶液体积约为80mL, 加入一滴邻菲罗啉指示剂,用0.05mol·L -1硫酸亚铁标准溶液滴定,溶液颜色由橙黄色 变 为蓝色,再变为红棕色,即为滴定终点。 (4)结果计算

土壤微生物研究土壤采集方法

土壤微生物研究规范——II. 土壤样品的运输和贮存 1. 土壤微生物样品的运输 土样从采集点到实验室往往需要经历一定时间的运输,土样运输过程中难免影响土壤的温度、水分、氧气等环境条件,所以要尽快置于黑暗、低温(4℃)的密闭环境,尽量维持土壤含水量稳定不变,黑暗环境是为了避免光照下藻类在土壤表明的生长,低温是为了减少细菌繁殖,维持微生物区系稳定。一般装于聚乙烯袋子,并松扎。另外,储存时尽可能避免物理压实,样品袋不要堆叠过多,以免破坏土壤原有的团粒结构,并导致底层样品处于厌氧环境。 微生物取样的土壤样品需要在0-4℃的条件下保存,所以土壤样品应及时保存在保温箱或冰箱中(设置0-4℃),并最好在一周内完成前期处理。 如果采集地有冰箱、熏蒸所需的真空干燥器和通风橱等设施,建议将微生物土壤样品熏蒸浸提后,以冷冻的浸提液保存在塑料小瓶中,以方便运送。 如果采集地没有通风橱等设施,建议将所取的土壤样品过筛后冷藏在保温箱中,以方便运送。具体的流程如下: (1)提前准备好保温箱及冷冻好的冰板。冰板需要提前1-2 d冷冻,可以再用自封袋装一定量水分放平冷冻为规则的冰块备用。 (2)按照微生物取样规范进行取样,及时过筛去除根系、土壤动物等杂质,放置在0-4℃保鲜冰箱中保存。用于DNA或RNA分析的土壤样品应用干冰速冻。用于RNA分析的土壤样品在运输过程中应用干冰保持低温。用于DNA分析的土壤样品应用冰盒运输,也可用干冰。 (3)运输当天将土壤样品密封好,放入保温箱中,保温箱底部、四周及顶部均放置冰板和用自封袋密封的冰块,保证样品四周均可接触冰板或冰块。注意保证土壤样品和冰块分别密封,以防路途中融化的水分进入土壤样品造成污染。 (4)到达目的地后,迅速将样品放入保鲜冰箱(0-4℃)保存待测。 如果采样地条件允许,可以根据规范上的实验方法,将样品熏蒸、浸提后保存在塑料小方瓶中,-20℃冷冻,然后再按照上述流程放置保温箱中运送到目的地,迅速放置在冷冻冰箱中(-20℃)保存待测。 如果购买不到保温箱,可以选用运输水果、蔬菜等的白色泡沫箱,密封严实后亦可。由于泡沫箱保温效果可能不及保温箱,路途较远时应多放置冰板及冰块,途中尽量不要打开,放入及取出都要及时,且需要提前确认样品采集地和目的地

微生物大小测定

微生物的大小测定 胡雪芳 201300261033 【实验目的】 1.了解显微镜测定微生物大小的原理。 2.学习并掌握显微镜下测定微生物细胞大小的技术,包括目镜测微 尺、镜台测微尺的校正技术与测定细胞大小的技术。 【实验原理】 微生物细胞的大小,是微生物重要的形态特征之一,也是分类鉴定的依据之一。由于菌体很小、只能在显微镜下来测量。用于测量微生物细胞大小的工具有目镜测微尺和镜台测微尺。 1.目镜测微尺 目镜测微尺是一块圆形玻片,在玻片中央把5mm长度刻成50等分,或把10 mm长度刻成100等分(如图1所示)。 图1 目镜测微尺 测量时,将其放在接目镜中的隔板上(此处正好与物镜放大的中间像重叠)来测量经显微镜放大后的细胞物象。由于不同目镜、物镜组合的放大倍数不相同,目镜测微尺每格实际表示的长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上的镜台测微尺校

正,以求出在一定放大倍数下,目镜测微尺每小格所代表的相对长度。 2.镜台测微尺 镜台测微尺是中央部分刻有精确等分线的载玻片,一般将lmm等分为100格,每格长l0μm(即0.0lmm),是专门用来校正目镜测微尺的(如图2所示)。 图2 镜台测微尺 校正时,将镜台测微尺放在载物台上,由于镜台测微尺与细胞标本是处于同一位置,都要经过物镜和目镜的两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就是细胞的真实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表的长度,然后移去镜台测微尺,换上待测标本片,用校正好的目镜测微尺在同样放大倍数下测量微生物大小。 【实验材料】 1.菌株 酵母菌液, 枯草芽孢杆菌斜面培养物

土壤微生物数量测定方法整理

土壤微生物的分离鉴定及数量测定 (一)培养基的制备 Ⅰ测定微生物总量培养基: 1. 细菌培养基(牛肉膏蛋白胨琼脂培养基) 牛肉膏Beefextract 5.0g 蛋白胨Peptone 10.0g NaCI 5.0g 蒸馏水H20 1000m1 琼脂15~20g PH 7.2~7.4 制备步骤: ⑴在100 mL小烧杯中称取牛肉膏5.0g,蛋白胨10.0g,加50 mL蒸馏水,置电炉搅拌加热至牛肉膏,蛋白胨完全溶解. ⑵向小铝锅中加入500 mL蒸馏水,将溶解的牛肉膏,蛋白胨倒入铝锅中并用自来水洗2~3次.加入 5.0gNaC1,在电炉上边加热边搅拌. ⑶加入洗净的琼脂条,继续搅拌,加热至琼脂完全熔化,补足水量至1000 mL. ⑷用NaOH或HC1调至pH7.0. 用酸度计或用玻棒沾少许液体用精密pH试纸测定其pH值,并用10%NaOH 调至所需pH值,必要时用滤纸或脱脂棉过滤。一般比要求的pH高出0.2,因为高压蒸汽灭菌后,pH常降低。 ⑸根据不同需要,可将配好的培养基分装入配有棉塞的试管或三角瓶内。注意分装时避免培养基挂在瓶口或管口上引起杂菌污染。如液体培养基,应装试管高度的1/4左右;固体培养基装试管高度的1/5左右;装入三角瓶的量以三角瓶容量的一半为限。,塞好棉塞,装入小铁丝筐,然后用旧报纸将棉塞部分包好. 标签表明培养基的名称、配制日期等。 ⑹高压蒸汽灭菌,用0.1Mpa(15lb/in2)121℃灭菌(15-20)30min. 2. 放线菌培养基(改良高氏1号琼脂培养基) 可溶性淀粉20g KNO3 1g K2HPO40.5g MgSO4? 7H2O 0.5g NaCl 0.5g原0.05g FeSO4? 7H2O 0.01g pH 7.2-7.4 制备步骤: (1)计算根据配方计算各种药品所需要的量,然后再分别称量。 (2)称量准确称量各种成分。 (3)溶化配制时,先用少量冷水将淀粉调成糊状,倒入少许沸水中,在火上加热,边搅拌边依次逐一溶化其他成分,溶化后,补足水分到1000ml,调PH(可不调)。 (4)分装、包扎、灭菌。

土壤微生物量测定方法

土壤微生物量测定方法 一、土壤微生物生物量碳(氯仿熏蒸-K2SO4提取-碳分析仪器法) 1、试剂 (1)去乙醇氯仿制备:在通风橱中,将分析纯氯仿与蒸馏水按1 ? 2(v : v)加入分液漏斗中,充分摇动1 min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿中加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于试剂瓶中,在低温(4℃)、黑暗状态下保存。 (2)氢氧化钠溶液[c(NaOH)= 1 mol L-1]:通常分析纯固体氢氧化钠中含有碳酸钠,与酸作用时生成二氧化碳,从而影响滴定终点判断和测定的准确度。配制时应先除去碳酸钠,根据碳酸钠不溶于浓碱,可先将氢氧化钠配成50%(w : v)的浓氧溶液,密闭放置3~4 d。待碳酸钠沉降后,取56 ml 50%氢氧化钠上清液(约19 mol L-1),用新煮沸冷却的除去二氧化碳的蒸馏水释稀到1 L,即为浓度1 mol L-1 NaOH溶液,用橡皮塞密闭保存。 (3)硫酸钾提取剂[c(K2SO4)= mol L-1]:取1742.5 g分析纯硫酸钾,用研钵磨成粉末状,倒于25 L塑料桶中,加蒸馏水至20 L,盖紧螺旋盖置于摇床(150 r min-1)上溶解24 h 即可。 (4)六偏磷酸钠溶液[ρ(Na)= 5 g 100 ml-1,pH ]:称取50.0 g分析纯六偏磷酸钠溶于800 ml高纯度去离子水中,用分析纯浓磷酸调节至pH ,用高纯度去离子水定容至1 L。要注意的是六偏磷酸钠溶解速度很慢应提前配制;由于其易粘于烧杯底部,若加热常因受热不均使烧杯破裂。 ) (5)过硫酸钾溶液[ρ(K2S2O8)= 2 g 100 ml-1]:称取20.0 g分析纯过硫酸钾,溶于高纯度去离子水中,定容至1 L。值得注意过硫酸钾溶液易被氧化,应避光存放且最多使用7 d。 (6)磷酸溶液[ρ(H3PO4)= 21 g 100 ml-1]:量取37 ml 分析纯浓磷酸(85%),慢慢加入到188 ml高纯度去离子水中即可。 (7)邻苯二甲酸氢钾标准溶液[ρ()= 1000 mg C L-1]):取2.1254 g经105℃烘2~3 h的分析纯邻苯二甲酸氢钾,溶于高纯度去离子水,定容至1 L。 2、仪器设备 碳–自动分析仪(Phoenix 8000)、容量瓶(100 ml)、振荡器(300 r min-1)、可调加液器(50 ml)、可调移液器(5 ml)、烧杯(盛滤液用)(50~100 ml)、聚乙烯提取瓶(100,150 ml),聚乙烯塑料桶(20 L,带螺旋盖),三角瓶(150 ml)、其它常规仪器。 3、操作步骤 ; (1)土样前处理 新鲜土壤应立即处理或保存于4℃冰箱中,测定前先仔细除去土样中可见植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2 mm),彻底混匀。如果土壤过湿,应在室内适当风干,以手感湿润疏松但不结块为宜(约为饱和持水量的40%)。如果土壤过于干燥,用蒸馏水调节至饱和持水量的40%。将土壤置于密封的大塑料桶内在25℃条件下预培养7~15 d,桶内有适量水以保持相对湿度为100%,并在桶内放一小杯1 mol L-1 NaOH 溶液以吸收土壤呼吸产生的CO2。经过预培养的土壤应立即分析。如需保留,应放置于4℃

微生物大小的测定及微生物数量的直接计数法

微生物大小的测定及微生物数量的直接计数法摘要:本文使用了目镜测微尺和镜台测微尺来测量野生酵母的细胞大小,得到的结果是宽在5.78~11之间,长在8.25~20之间。然后用血细胞计数板对酵母菌进行计数,并绘制其生长曲线,有四个时期,分别是延滞期、对数期、稳定期和衰亡期。 关键词:细胞大小血细胞计数板酵母菌生长曲线 前言 生产生活中利用微生物时,需要了解微生物的一些基本物理属性,如菌体的大小形状等。本实验利用显微测微尺对野生酵母进行测量,并用血球计数板对酵母菌进行其生长曲线的测定,了解去生长规律。通过此综合性实验加深对无菌操作的印象,并将其掌握。 1实验材料与仪器 1.1实验材料与试剂 麦芽汁培养基、生理盐水、果汁(自制)、活化的酵母菌、酒精 1.2实验仪器 锥形瓶、试管、接种环、移液枪、显微镜、目镜测微尺、镜台测微尺、盖玻片、载玻片、滴管、血细胞计数板、吸水纸、酒精灯 2实验方法 2.1预准备 2.1.1培养基的制备 麦芽汁培养基(130.1g/L)200ml*4瓶 麦芽汁琼脂培养基(145.1g/L)5ml*2支试管150ml*1瓶 生理盐水9ml*20支 (制备后高压蒸汽灭菌121℃,20min) 2.1.2酵母分离纯化 平板划线分离:先倒制无菌琼脂培养基平板,待充分冷却凝固后,用接种环以无菌沾取少量待分离的含菌样品,在无菌琼脂平板表面进行有规则的划线。划线的方式有连续划线、平行划线、扇形划线或其它形式的划线。通过这样在平板上进行划线稀释, 微生物细胞数量将随着划线次数的增加而减少, 并逐步分散开

来。经培养后,可在平板表面形成分散的单 个菌落。但单个菌落并不一定是由单个细 胞形成的,需再重复划线1-2次, 并结合显 微镜检测个体形态特征, 才可获得真正的 纯培养物。 斜面接种是从已生长好的菌种斜面上 挑取少量菌种移植至另一支新鲜斜面培养基上的一种接种方法。具体操作如下:接种前在试管上贴上标签,注明菌名、接种日期、接种人姓名等。贴在距试管口约2-3cm的位置。点燃酒精灯。用接种环将少许菌种移接到贴好标签的试管斜面上。操作必须按无菌操作法进行。 简述如下:1)手持试管:将菌种和待接斜面的两支试管用大拇指和其他四指握在左手中,使中指位于两试管之间部位。斜面面向操作者,并使它们位于水平位置。2)旋松管塞:先用有于松动棉塞或塑料管盖,以便接种时拔出。3)取接种环:右手拿接种环(如握钢笔一样),在火焰上将环端灼烧灭菌。然后将有可能伸入试管的其余部分均灼烧灭菌,重复此操作,再灼烧一次。4)拔管塞:用右手的无名指、小指和手掌边先后取下菌种管和待接试管的管塞,然后让试管口缓缓过火灭菌(切勿烧得过烫)。5)接种环冷却:将灼烧过的接种环伸入菌种管,先使环接触没有长菌的培养基部分,使其冷却。6)取菌:待接种环冷却后,轻轻沾取少量菌体或胞子,然后将接种环移出菌种管,注意不要使接种环的部分碰到管壁,取出后不可使带菌接种环通过火焰。7)接种:在火焰旁迅速将沾有菌种的接种环伸入另一支待接斜面试管。从斜面培养基的底部向上部作“Z”形来回密集划线,切勿划破培养基。有时也可用接种针仅在斜面培养基的中央拉一条直线作斜面接种,直线接种可观察不同菌种的生长特点。8)塞管塞:取出接种环,灼烧试管口,并在火焰旁将管塞旋上。塞棉塞时不要用试管去迎棉塞,以免试管在移动时纳入不洁空气。9)将接种环灼烧灭菌。放下接种环,再将棉花塞旋紧。

土壤微生物测定指标的分析方法和适用范围

土壤微生物监测常规测定指标的分析方法和适用范围

其他方法: 一、土壤DNA提取和纯化: 方案1,参考(1, 2) 1.称取样品土样5g, 加入灭菌的石英砂,液氮研磨;

不要液氮研磨,这样子对DNA伤害很大,几乎全部片段化了。可以加上PBS洗涤下土壤,一是能够去除些杂质,二是能够使得土壤处于悬浮状态,然后可以在涡旋仪上剧烈涡旋2-3min,使得土壤颗粒破碎。然后12000rpm离心5min,弃上清。 2.加入1 3.5mL的DNA提取Buffer,100微升20mg/mL蛋白酶K,37℃225rpm摇30min-2h 3.加入700微升20%SDS,65℃水浴2h,间隔15min颠倒摇匀数次; 4.6000rpm室温离心15min,收集中间液相层;向沉淀中加入3mLDNA提取液,300微升20%SDS,65℃水浴30min,同上离心,收集中间液相层,合并;重复一次;可考虑再 增加抽提一次。或者用5mL而不是3mL。最后实在装不下了可以分在两个50mL离心管里面离心。 5.向收集的液相层中加入等体积氯仿:异戊醇(24:1)抽提一次,8000rpm离心10min,收集上部液相层; 6.第5步收集液相层中加入0.1倍体积的乙酸钠,0.6倍体积的异丙醇,4℃过夜沉淀; 这个千万不要4度过夜啊,四度过夜你会发现很多的絮状悬浮物,我之前犯过类似错误,这个是SDS和高浓度的盐在低温条件下析出来了。室温放置1-2h就好。 7.过夜沉淀物12000rpm离心15min,弃上清;向沉淀中加入10mL冷乙醇洗涤,12000rpm离心5min,弃上清;12000rpm离心30sec,移液枪析出残留液体; 8.室温自然干燥沉淀,干燥后向沉淀中加入400微升TE溶解。 方案2: 购买DNA提取试剂盒,如SoilMaster DNA Extraction Kit (Epicenter) 或UltraClean Soil DNA Isolation Kit (MO BIO) 二、DNA定量和质量检测: 提取后的DNA使用紫外分光光度法进行浓度和纯度检测。DNA纯度以OD260/ OD280比值来反映。当OD60 /OD80比值<1.8时,说明样品存在蛋白质或酚等杂质,可采用平衡酚/氯仿/异戊醇再抽提除去蛋白质或用乙醚抽提去除残留酚,再用无水乙醇沉淀,TE悬浮后再测定。当OD60/OD280比值>2.0,说明样品存在RNA污染,可以用RNA酶处理样品去处RNA 。和定量,应用1%琼脂糖凝胶电泳检测DNA大小及完整度。 三、土壤宏基因组测序 将质检合格的土壤DNA随机打断,加接头序列构建测序文库,利用Roche 454或Illumina Hiseq系统进行测序反应。 四、生物信息分析: 1.原始数据整理、过滤及质量评估: 应用中科院青能所自主开发的质量控制软件QC-Chain进行原始测序数据的质量控制,去除低质量碱基和read,并进行污染序列的监控(3)。

微生物大小及数量的测定

微生物大小及数量的测 定 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

微生物大小及数量的测定 一、实验目的: 1、学习并掌握使用显微镜测微尺测定微生物大小的方法 2、掌握对不同形态细菌细胞大小测定的分类学基本要求,增强对微生物细胞大小的感性认识 3、学习并掌握使用血细胞计数板测定微生物细胞或孢子数量的方法 二、实验器材 1、菌种: 枯草芽孢杆菌、酿酒酵母 2、溶液和试剂 香柏油、二甲苯、美兰染液 3、仪器和其他用品 目镜测微尺、镜台测微尺、普通光学显微镜、擦镜纸、软布、血细胞计数板、凹载玻片、盖玻片、接种环、酒精灯、试管、吸管、移液枪 三、实验原理 1、测微尺: 微生物大小的测定,需要借助于特殊的测量工具——显微测微尺,它包括目镜测微尺和镜台测微尺两个互相配合使用的部件。 镜台测微尺是一个在特制载玻片中央封固的标准刻尺,其尺度总长为1mm,精确分为10个大格,每个大格又分为是10个小格,共100个小格,每个小格长度为,即10μm。刻线外有一直径为φ3,粗线为的圆,以便调焦时寻找线条。刻线上还覆盖有厚度为的盖玻片,可保护刻线久用而不受损伤。。镜台测微尺并不直接用来测量细胞的大小,而是用于校正目镜测微尺每一格的相对长度。 目镜测微尺是一块可放入接目镜内的圆形小玻片,其中央有精确的等分刻度,一般有等分为50个小格和100个小格两种。测量时,需将其放在接目镜中的隔板上,用以测量经显微镜放大后的细胞物象。由于不同显微镜或不同的目镜和物镜组合放大倍数不一样,目镜测微尺每小格在不同条件下所代表的实际长度也不一样。因此,用目镜测微尺测量微生物大小时,必须先用镜台测微尺进行校正,以求出该显微镜在一定放大倍数的目镜和物镜下,目镜测微尺每小格所代表的相对长度。然后根据微生物细胞相当于目镜测微尺的格数,即可计算出细胞的实际大小。 球菌用直径表示大小,杆菌用长和宽来表示大小 2、显微镜计数:

微生物大小及数量的测定

微生物大小及数量的测定 一、实验目的: 1、学习并掌握使用显微镜测微尺测定微生物大小的方法 2、掌握对不同形态细菌细胞大小测定的分类学基本要求,增强对微生物细胞大小的感性认识 3、学习并掌握使用血细胞计数板测定微生物细胞或孢子数量的方法 二、实验器材 1、菌种: 枯草芽孢杆菌、酿酒酵母 2、溶液和试剂 香柏油、二甲苯、美兰染液 3、仪器和其他用品 目镜测微尺、镜台测微尺、普通光学显微镜、擦镜纸、软布、血细胞计数板、凹载玻片、盖玻片、接种环、酒精灯、试管、吸管、移液枪 三、实验原理 1、测微尺: 微生物大小的测定,需要借助于特殊的测量工具——显微测微尺,它包括目镜测微尺和镜台测微尺两个互相配合使用的部件。 镜台测微尺是一个在特制载玻片中央封固的标准刻尺,其尺度总长为1mm,精确分为10个大格,每个大格又分为是10个小格,共100个小格,每个小格长度为0.01mm,即10μm。刻线外有一直径为φ3,粗线为0.1mm 的圆,以便调焦时寻找线条。刻线上还覆盖有厚度为0.17mm的盖玻片,可保

护刻线久用而不受损伤。。镜台测微尺并不直接用来测量细胞的大小,而是用于校正目镜测微尺每一格的相对长度。 目镜测微尺是一块可放入接目镜内的圆形小玻片,其中央有精确的等分刻度,一般有等分为50个小格和100个小格两种。测量时,需将其放在接目镜中的隔板上,用以测量经显微镜放大后的细胞物象。由于不同显微镜或不同的目镜和物镜组合放大倍数不一样,目镜测微尺每小格在不同条件下所代表的实际长度也不一样。因此,用目镜测微尺测量微生物大小时,必须先用镜台测微尺进行校正,以求出该显微镜在一定放大倍数的目镜和物镜下,目镜测微尺每小格所代表的相对长度。然后根据微生物细胞相当于目镜测微尺的格数,即可计算出细胞的实际大小。 球菌用直径表示大小,杆菌用长和宽来表示大小 2、显微镜计数: 显微镜计数是将少量待测样品的悬浮液置于一种特定的具有确定容积的载玻片上(又称计菌器),于显微镜下直接观察、计数的方法。目前国内外常用的计菌器有:血细胞计数板、Peteroff-Hauser计菌器以及Hawksley计菌器等,它们可用于各种微生物单细胞(孢子)悬液的计数,基本原理相同。其中血细胞计数板较厚,不能用油镜,常用于个体相对较大的酵母细胞、霉菌孢子等的计数,

土壤微生物生物量的测定(滴定法)(精)

1. 土壤微生物生物量的测定 (滴定法 一、实验目的和内容 土壤微生物生物量是指土壤中体积小于5~10μm 3活的微生物总量, 是土壤有机质中最活跃的和最易变化的部分。耕地表层土壤中,土壤微生物量碳(Bc 一般占土壤有机碳总量的 3%左右,其变化可直接或间接地反映土壤耕作制度和微生物肥力的变化,并可以反映土壤污染的程度。近 30年来,国外许多学者对土壤微生物生物量的测定方法进行了比较系统的研究,但由于土壤微生物的多样性和复杂性,还没有发现一种简单、快速、准确、适应性广的方法。目前广泛应用的方法包括:氯仿熏蒸培养法(FI 、氯仿熏蒸浸提法(FE 、基质诱导呼吸法(SIR 、精氨酸诱导氨化法和三磷酸腺苷(A TP 法。 氯仿熏蒸浸提法(FE 的原理是:土壤经氯仿熏蒸处理,微生物被杀死,细胞破裂后, 细胞内容物释放到土壤中,导致土壤中的可提取碳、氨基酸、氮、磷和硫等大幅度增加。通过测定浸提液中全碳的含量可以计算土壤微生物生物量碳。 二、实验材料和用具 仪器:培养箱;真空干燥器;真空泵;往复式振荡机(速率 200次每 min ; 1L 广口玻璃瓶;定量滤纸;紫外分光光度计; LNK-872型消煮炉(江苏省宜兴市科教仪器研究所试剂: 1. 无乙醇氯仿:市售的氯仿都含有乙醇(作为稳定剂 ,使用前必须除去乙醇。方法为:量取 500ml 氯仿于 1000ml 分液漏斗中,加入 50ml 硫酸溶液[ρ(H2SO 4=5%], 充分摇匀, 弃除下层硫酸溶液, 如此进行 3次。再加入 50ml 去离子水, 同上摇匀, 弃去上部的水分,如此进行 5次。将下层的氯仿转移存放在棕色瓶中,并加入约 20g 无水 K 2CO 3,在冰箱的冷藏室中保存备用。 2. 硫酸钾溶液 [c(K2SO4=0.5mol·L -1]称取硫酸钾(K 2SO 4,化学纯 87.10g ,先溶于

相关主题
文本预览
相关文档 最新文档