当前位置:文档之家› ANSYS电磁兼容仿真软件解析

ANSYS电磁兼容仿真软件解析

ANSYS电磁兼容仿真软件解析
ANSYS电磁兼容仿真软件解析

ANSYS电磁兼容仿真设计软件

用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。

一、购置理由

1现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标GJB151A,GJB152A。

长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如果EMI测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。。

2目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经开

始高速通道设计的预研。在相关PCB布线工具的帮助下,将复杂的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括:

●高速通道中,连接器,电缆等三维全波精确和建模仿真,

这些结构的寄生效应对于信号的传输性能有至关重要的影

响;

●有效的PCB电源完整性分析工具,对PCB上的电源、地等

直流网络的信号质量进行仿真

●为提高仿真精度,需要SPICE模型,IBIS模型和S参数模

型的混合仿真

●需要同时进行时域和频域仿真和设计,观察时域的眼图、

误码率,调整预加重和均衡电路的频域参数,使得信号通道

的物理特性与集成电路和收/发预加重、均衡等相配合,达到

系统性能的最优

●有效的PCB的辐射控制与仿真手段,确保系统EMI性能达

标。

现在EDA市场上已经有一些SI/PI和EMI/EMC仿真设计工具,但存在多方面的局限性。我们的PCB布线工具虽然能解决一定的问题,

但是,由于工具本身主要是以布线功能为主,结合规则约束进行设计的,在解决我们上述问题时存在着明显的局限,主要有:

●主要以等效电路法建模与仿真,仿真的结构有限制,功能

不完备,如不能仿真非理想的电源/地,不能充分考虑信号线

的跨越分割和转换参考平面等,对于EMI/EMC,只能做规则

约束,无法进一步仿真。

●基本上都是以单点工具,也就是说,一个公司的工具只能

满足部分设计功能,在工程应用当中,不可避免地会带来接

口、仿真结果一致性等多方面问题,影响软件工具的使用效

果。

●在高速串行通道的仿真中,由于高速串行通道的信号传输

速率较高,信道中的模型多用S参数建立或由电磁场仿真工

具得到,而S参数的本质是频域的,传统的工具中对于S参

数的仿真功能非常有限,经常仿真不收敛或花费很长时间,

无法在工程实际中准确评估整个信号通道的特性。

●对于PCB的辐射,只能给出原则性的规则约束,而实际设

计中,很多因素相互矛盾,只能依赖经验进行取舍,无法考

虑电缆、机箱等三维结构的影响,不能保证最后的设计效果。

●仿真结构有限制,对于机箱的屏蔽结构,不能仿真任意形

状的屏蔽网结构,限制了设计思想,或者仿真时间过长,精

度不足,缺乏工程实用价值。

国内外众多成功经验证明,电子产品的SI/PI,EMI/EMC仿真和

高速通道性能仿真,需要进行两方面的仿真——即电磁场仿真和电路仿真。电磁场仿真主要是研究结构对系统SI/PI ,EMI/EMC以及高速串行通道的影响,根据机构的物理特性(几何结构和材料特性),通过电磁场计算,提取PCB、连接器、线缆等的寄生效应,生成S参数或Spice等效电路模型,或者直接得到结构的辐射特性和串扰特性,用于设计指导和性能改进。在电磁场仿真的同时,电路仿真也是必不可少的。一方面,电路仿真工具能够将非线性器件和电磁场仿真得到的结构等效电路结合到一起,通过仿真得到信号的波形和频谱,包括时钟线、数据线和电源/地平面的波形、串行通道的眼图和浴盆曲线等,直观地考察系统的SI/PI和传导EMI特性。另一方面,对于辐射干扰来说,EMI辐射的强度不仅与结构相关(通过电磁场仿真进行研究),还与参与辐射的信号频谱强度相关,频谱强度必须通过电路仿真才能得到。

3由于系统电磁兼容设计牵扯到电路设计、结构设计很多细节,出于保密和知识产权保护,无法与通过外包或第三方合作方式解决。通过建立电磁兼容仿真平台进行电磁兼容设计,不仅可以提高设计可靠性和效率,也可以帮助设计师增加电磁兼容的知识和经验,提高设计能力。以往这种经验和能力仅限在一两设计的文档中,或者个别个设计师个人电脑中,无法更大范围的共享,造成大量知识和经验丢失。

二、技术要求及设备选型情况

1.技术要求

系统电磁兼容仿真软件需要能够同时提供高性能电路仿真和电

磁场仿真的软件供应商,同时,电路和电磁场仿真工具还能集成在一起,实现双向调用,为设计带来极大方便,仿真软件主要功能包括:

●电源完整性设计仿真

仿真多层、任意形状的电源和地层,快速得到整个电源和地结构的谐振频率和谐振状态下的电压分布,用于优化退耦电容和关键性元器件的布局;仿真板上放置去耦电容的作用及布局,不仅可以计算任意的电源/地形状,还可以考虑退耦电容的寄生效应,软件可以通过多种方式定义退耦电容:并联测试RLC 等效电路、串联测试RLC等效电路或S参数文件;软件提供世界主流厂商的贴片电容元件库,可以非常方便地加入用户自定义器件模型。支持埋容层和频变材料特性;能够仿真分割的电源/地平面之间的耦合与隔离;直接得到任意电源/地平面的特性阻抗等参数,用于改进设计。

●信号完整性设计与参数抽取

拥有完备的信号完整性仿真能力,通过电磁场方法直接得到PCB 上信号线的真实传输特性,充分考虑PCB信号线的各种不连续性效应,包括信号的传输与反射、迟延,拐角、过孔效应,过孔耦合、信号线换层或跨越分割的参考平面,信号线与电源/地之间的噪声耦合等各种效应,直接得到信号线真实的S参数特性,并且可以输出S参数模型包括差分S参数模型,同时支持多种Spice等效电路模型输出,用于进一步的时域仿真。具有虚拟时域反射/传输测量功能,能够得到信号的时域传输与反射,耦合与串扰特性,用于信号完整性设计。

●直流压降仿真与可靠性验证

能够仿真供电系统的直流特性,直观地显示整个PCB上电流的流向和电路密度、直流压降等特性,通过设置阈值,能够自动诊断PCB 上的过孔和信号线,进行可靠性验证,标示出电流密度超标的过孔和信号线,避免由于局部电流过大造成的PCB失效,或者由于直流压降过大造成的工作不正常。还能降电流产生的损耗与热仿真工具工具结合仿真系统通风和散热。

●PCB辐射仿真

能够方便地定义电压源和电流源,用于PCB的辐射特性仿真,包括进场和远场特性、得到空间辐射分布、最大辐射场强随频率变化曲线等关键性EMI/EMC数据。辐射计算时,不仅能定义理想信号源,还可以通过文本格式导入信号幅度随频率变化的频变信号源,或者通过与Designer SI 的双向数据交换,直接导入电路仿真得到的真实信号源,精确仿真PCB的真实辐射特性。

●多种参数模型,和多种仿真方法

针对现代电路和PCB特点,提供并支持多种器件模型,包括IBIS,Spice, S参数,AMI模型等。对于高速通道常用的频域S参数模型,软件不仅支持卷积法仿真,还支持状态空间法仿真,从而确保了仿真的因果性,降低了对S参数文件数据的要求,同时又保证了求解的速度和精度,同时,可以实现了模型自动语法检查和复用,对于同一个参数模型文件,只需进行一次模型的导入,再次仿真直接调用状态空间模型,从而大大提高运行效率。

●多种种眼图算法

现代设计的高速通道仿真,需要快速得到串行通道的误码率。软件能够读入Spice网表模型和子电路、电磁场仿真模型、测量或输入的S参数模型、文本格式的数据波形、文本格式的码流文件等,进行线性和非线性电路的时域瞬态仿真,具备收敛算法和自动时间步长功能,确保仿真的速度和精确性。具有瞬态眼图、快速眼图和眼图验证三种眼图算法,能够相互验证,支持串扰眼图,确保仿真的正确性和理论基础,得到信号波形、误码率、统计眼图、浴盆曲线、等高线眼图等结果,从而实现高速通道的快速准确仿真。

●系统/整机的EMI/EMC设计仿真

通过精确的三维结构的电磁场仿真,得到电磁场强度分布和辐射特性,谐振模式等;从而可以准确的研究评估电子设备/系统的EMI/EMC,比如:设备的电磁泄漏,机箱机柜屏蔽效应设计,天线布局和互耦效应,辐射强度等。

●高速关键路径/复杂的三维高速结构的EMI/EMC/SI设计仿真

对于高速关键路径,如:子电路板/背板的高速信号线、过孔,电缆、封装、连接器等,可以仿真得到S参数等,分析信号的传输,反射,匹配特性,计算辐射和色散、模式转换和材料频变效应等对信号传输的影响,并进一步设计和优化。

●与第三方工具流畅的接口

可以方便导入各种PCB和结构设计数据,加以仿真。

2. 设备调研及选型情况

针对电磁兼容仿真平台,我们对多家厂商的产品也进行了调研,包括美国ANSYS和Cadence公司。

美国ANSYS公司是全球最大的CAE仿真软件提供商,其产品涉及领域跨电磁,流体,结构和热等多个领域。其中电磁仿真软件覆盖射频微波、PCB SI/PI/EMC、芯片设计验证、机电系统等领域。ANSYS 公司具备完备的系统电磁兼容仿真平台,包括:高速设计环境和仿真平台Designer SI(包含瞬态非线性电路仿真和快速眼图、眼图验证和瞬态眼图),专门针对PCB整版全波仿真的SIwave,高频结构仿真工具HFSS,用于机箱屏蔽设计和系统EMI/EMC仿真,优化和参数扫描模块Optimetrics,以及和EDA工具的接口Ansoftlinks for EDA,多处理器模块等,构成基本软件平台。针对不同类型的结构,利用针对性的电磁场进行仿真合抽取,并组装到电路仿真工具Designer SI 中进行瞬态仿真,得到模型、频谱和眼图,仿真的频谱还可以用于PCB的辐射分析,并进一步仿真PCB经机箱屏蔽后的辐射强度,从而全面、精确、快速地实现系统SI/PI 和EMI/EMC设计。

美国Cadence公司的主要产品是全定制IC设计仿真,数模混合IC设计仿真,封装和SiP设计仿真软件提供商,PCB仿真软件是其中很小的一部分。Cadence 能够同时提供从芯片到封装、再到PCB设计仿真的全流程工具,其PCB仿真工具Allegro SI/SQPI与PCB布板工具Allegro结合紧密,使用简单,仿真速度快。仿真得到的结果可以直接转化为设计约束,反标回PCB设计,作为布局布线的设计规则。但是,Cadence公司没有电磁场仿真工具,只有时域而没有频域分析

能力。无论SI还是PI仿真,都基于电路法的时域分析。仿真精度差,对器件有源模型依赖度高。Cadence的信号完整性和电源完整性相对独立,无法反映二者之间的相互作用。缺少电磁场仿真功能。

Cadence工具的特点:

●PCB仿真工具Allegro SI/SQPI与PCB布板工具Allegro结合

紧密,时域信号完整性仿真简单易用。

●适合几百兆以内的高速信号完整性分析,但是缺乏电磁场仿真

功能,频域仿真功能较弱。

●Cadence的信号完整性和电源完整性相对独立,没有协同设计

能力,其电磁兼容仿真只是做设计规则检查,并不能仿真实

际电路布局布线影响EMI效果。

三、设备描述

1、美国ANSYS公司是全球最大的CAE仿真软件提供商,其产品涉及领域跨电磁,流体,结构和热等多个领域。其中电磁仿真软件覆盖射频微波、PCB SI/PI/EMC、芯片设计验证、机电系统等领域。其中的PCB 寄生参数提取和SI/PI/EMI分析工具SIwave,高频结构仿真工具HFSS作为电磁场仿真的标准工具,是高速通道设计和系统电磁兼容设计仿真的必备软件。电磁场工具之间和不同的电磁场仿真模型之间也可以互相调用,能够大大简化和加快EMI/EMC问题的仿真和定位,给出设计指导,这是其他任何厂商所不具备的。 ANSYS的电磁仿真设计软件方案,已经在国内的中兴、华为、中电14所、航天一院12所,14所,航天4院17所,航天5院501所,502所,504

所,513所, Nokia中国研发中心和Rockwell、Marvell,HP、Motorola、LG、Sumsung等得到了成功应用,这些单位,既有军工研究所,还有商业企业和著名的跨国公司。

2、所选产品的详细说明

ANSYS的电磁仿真环境,由ANSYS工具与第三方EDA工具的接口AnsoftLinks,PCB电磁场仿真工具SIwave,三维高频结构全波电磁场仿真工具HFSS,信号完整性电路仿真分析工具Designer SI,电磁兼容自动优化模块PI Advisor组成。

软件模块描述

DesignerSI:ANSYS高速电路、系统仿真工具。

DesignerSI将电路设计,PCB版图和三维电磁场仿真工具无缝地集成到同一个环境的设计工具, 将高速设计所需的电路/系统时频域仿真技术和电磁场模型提取无缝地集成到一个自动化的设计环境中,在电路设计中全面考虑PCB、线缆等的影响,,为系统协同设计与验证提供了一套最完整的系统级解决方案。DesignerSI独有的"按需求解"的技术,它使你能够根据需要选择求解器,从而实现对设计过程的变量扫描,得到满足EMI相关标准的PCB布线,电缆选型和排布方式,开孔位置和大小等规则,从而指到电路和电气设计。DesignerSI提供了多种仿真技术,包括频域和时域系统仿真器、线性电路仿真器、谐波平衡仿真器、包络仿真器、瞬态仿真器、矩量法多层平面结构电磁场仿真器等,方便对高速电路和EMI问题进行时域和频域的仿真分析。

SIwave:PCB高速电路和电磁兼容仿真优化工具。

SIwave基于快速有限元法的PCB电磁场全波仿真算法,彻底突破了PCB 布线工具和加工工艺的种种限制,能够提取实际三维结构、包括非理想的电源/地平面在内的全波通道参数,精确仿真信号线的真实工作特性,精确度可以达到50GHz以上。此外,SIwave还可以仿真分析整个PCB的全波效应,对于真实复杂的PCB设计,包括多层、任意形状的电源和信号线, 可快速仿真整个电源和地结构的谐振频率,用来考察PCB板上关键器件的位置和关键网络的布线路径中潜藏辐射干扰源,并模拟放置去耦电容后对谐振的作用及影响;可以通过在电源和地等直流网络上设置端口,可以考察电源供电阻抗,了解电源分配系统(PDS)性能,并模拟放置去耦电容后对电源阻抗的影响;考察信号线和电源或地之间的耦合,了解同步开关噪声,仿真PCB电源完整性;可以添加独立源和频率变化的受控源做扫频分析,模拟数字电源或者数字信号对于敏感信号和敏感位置以及整个PCB的影响,从而评估电路中的干扰分布;可以做近场和远场的辐射分析,考察PCB的辐射特性。SIwave的DC直流分析,可以仿真走线和平面甚至过孔上的电流分布密度和直流压降。SIwave的仿真结果可以二维或三维图形显示,并可输出Spice等效电路模型用于时域仿真和系统的频域分析。SIwave支持Windows,Linux和Solaries操作系统,支持多CPU的64位超线程计算机系统。

电磁兼容自动优化模块PI-Advisor

电磁兼容自动优化工具,用于PCB或SiP设计前和设计后的电源

完整性优化策略,可以在PCB设计前,根据信号工作的频率和噪声要求,选取合适的电容类型和数量;在PCB设计后期,评估去耦电容的效果,并根据性能、成本、电容种类等指标自动优化PCB上的退耦电容,达到抑制噪声的目的。

HFSS三维高频结构电磁场仿真器

计算任意三维无源结构的高频电磁场仿真软件。它应用切向矢量有限元法求解射频、微波器件的电磁场分布,计算由于材料和辐射带来的损耗。可直接得到特征阻抗、传播系数、S参数及电磁场、辐射场、天线方向图等结果。可进行器件级和系统级EMI/EMC以及系统天线布局评估,研究机箱/机柜的屏蔽效应和汽车、卫星、飞机、舰船等各种平台系统天线间的互耦影响,计算无线系统中数字和射频信号之间的相互干扰。

AnsoftLinks接口软件

AnsoftLinks是 Ansoft工具和其他CAD、EDA设计工具的接口。通过AnsoftLinks,可以分析包括Protel,PowerPCB,BoardStation,ExpeditionPCB,Allegro和CR-5000在内的多种PCB格式数据;也可以导入AutoCAD,Pro/E,STEP,IGES,ACIS等机械结构设计文件。

软件模块特点:

功能完备:我们的电子设备涵盖了高速数字电路、数模混合电路、微波射频电路,和电源与控制系统等多个专业部门。这些部分通过PCB,线缆,连接器实现互联,装配在一起。ANSYS电磁兼容仿真平

台能够满足高速数字电路、数模混合电路、微波射频电路,和电源与控制系统的仿真能力,具备PCB、电路、线缆连接器、电源、机箱的建模和仿真能力。而且这些工具可以相互调用,协同仿真,满足系统的需要。

集成化:电磁兼容的三要素包含了辐射源、辐射路径和被干扰体。单纯的从一个要素入手,比如降低辐射源,或者保护被干扰体,都不是最合理的办法。ANSYS电磁兼容设计的关键之一是前期的合理指标分配,在辐射源、辐射路径和被干扰体之间找到平衡,合理分配各个子系统的电磁辐射指标,以及线缆孔缝的电磁泄露或隔离度。从而在设计后期,减小设计的电磁兼容压力,避免问题在最后一刻爆发带来的风险的设计延迟。ANSYS的电磁兼容仿真设计软件还可以与ANSYS 公司的结构、流体和热仿真工具集成在统一环境下,相互调用,实现多物理场耦合仿真。

流程和标准化:电磁兼容仿真尽管可以减小设计反复次数,但是一次仿真,需搜集模型或者自建模型和仿真,也需要花费大量时间和精力。随着设备系列化以及设计任务的增加,建立电磁兼容设计流程势在必行。依靠规范固定的电磁兼容设计流程,不仅可以将复杂的系统电磁兼容建模仿真工作简单化,降低对设计师对仿真的畏难情绪,还可以降低每次建模仿真的工作量,复用以前的仿真结果,极大提高设计仿真效率。ANSYS基于电磁兼容仿真平台,提供一套完备的EMI 设计仿真流程。

ANSYS电磁兼容仿真设计平台

Total: $

电磁兼容性EMC仿真

设计早期对电磁兼容性(EMC)问题的考虑 随着产品复杂性与密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。在较高的频率下,您通常用来计算EMC的经验法则不再适用,而且您还可能容易误用这些经验法则。结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC 仿真。 较高的时钟速率会加大满足电磁兼容性需求的难度。在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径与缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。 传统的电磁兼容设计方法 正常情况下,电气硬件设计人员与机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。她们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。 在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常就是唯一可行的选择。当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。 电磁兼容仿真的挑战 为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分就是非常必要的。设计师可借助麦克斯韦(Maxwell)方程的3D解法就能达到这一目的。麦克斯韦方程就是对电磁相互作用的简明数学表达。但就是,电磁兼容仿真就是计算电磁学的其它领域中并不常见的难题。 典型的EMC问题与机壳有关,而机壳对EMC影响要比对EMC性能十分重要的插槽、孔与缆线等要大。精确建模要求模型包含大大小小的细节。这一要求导致很大的纵横比(最大特征尺寸与最小特征尺寸之比),从而又要求用精细栅格来解析最精细的细节。压缩模型技术可使您在仿真中包含大大小小的结构,而无需过多的仿真次数。 另一个难题就是您必须在一个很宽的频率范围内完成EMC的特性化。在每一采样频率下计算电磁场所需的时间可能就是令人望而却步的。诸如传输线方法(TLM)等的时域方法可在时域内采用宽带激励来计算电磁场,从而能在一个仿真过程中得出整个频段的数据。空间被划分为在正交传输线交点处建模的单元。电压脉冲就是在每一单元被发射与散射。您可以每隔一定的时间,根据传输线上的电压与电流计算出电场与磁场。

ANSYS电磁兼容仿真软件解析

ANSYS电磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如果EMI测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。。 2目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经开

始高速通道设计的预研。在相关PCB布线工具的帮助下,将复杂的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括: ●高速通道中,连接器,电缆等三维全波精确和建模仿真, 这些结构的寄生效应对于信号的传输性能有至关重要的影 响; ●有效的PCB电源完整性分析工具,对PCB上的电源、地等 直流网络的信号质量进行仿真 ●为提高仿真精度,需要SPICE模型,IBIS模型和S参数模 型的混合仿真 ●需要同时进行时域和频域仿真和设计,观察时域的眼图、 误码率,调整预加重和均衡电路的频域参数,使得信号通道 的物理特性与集成电路和收/发预加重、均衡等相配合,达到 系统性能的最优 ●有效的PCB的辐射控制与仿真手段,确保系统EMI性能达 标。 现在EDA市场上已经有一些SI/PI和EMI/EMC仿真设计工具,但存在多方面的局限性。我们的PCB布线工具虽然能解决一定的问题,

高中物理静电场经典习题(包含答案)

1.(2012江苏卷).一充电后的平行板电容器保持两板间的正对面积、间距和电荷量不变,在两板间插入一电介质,其电容C 和两极板间的电势差U 的变化情况是( ) A .C 和U 均增大 B . C 增大,U 减小 C .C 减小,U 增大 D .C 和U 均减小 B 2(2012天津卷).两个固定的等量异号点电荷所产生电场的等势面如图中虚线所示,一带负电的粒子以某一速度从图中A 点沿图示方向进入电场在纸面内飞行,最后离开电场,粒子只受静电力作用,则粒子在电场中( ) A .做直线运动,电势能先变小后变大 B .做直线运动,电势能先变大后变小 C .做曲线运动,电势能先变小后变大 D .做曲线运动,电势能先变大后变小 C 3.(2012安徽卷).如图所示,在平面直角 中,有方向平行于坐标平面的匀强电场,其中坐标原点O 处的电势为0 V ,点A 处的电势为6 V, 点B 处的电势为3 V, 则电场强度的大小为 ( ) A.200V/m B.2003 V/m C.100 V/m D. 1003 V/m A 4.(2012重庆卷).空中P 、Q 两点处各固定一个点电荷,其中 P 点处为正点电荷,P 、Q 两点附近电场的等势面分布如题20图 所示,a 、b 、c 、d 为电场中的四个点。则( ) A .P 、Q 两点处的电荷等量同种 B .a 点和b 点的电场强度相同 C .c 点的电热低于d 点的电势 D .负电荷从a 到c ,电势能减少 D 5.(2012海南卷)关于静电场,下列说法正确的是( ) O x (cm) y (cm) A (6,0) B (0,3) ● ●

A.电势等于零的物体一定不带电 B.电场强度为零的点,电势一定为零 C.同一电场线上的各点,电势一定相等 D.负电荷沿电场线方向移动时,电势能一定增加 D 6.(2012山东卷).图中虚线为一组间距相等的同心圆,圆心处固 定一带正电的点电荷。一带电粒子以一定初速度射入电场,实线为 粒子仅在电场力作用下的运动轨迹,a、b、c三点是实线与虚线的 交点。则该粒子( ) A.带负电 B.在c点受力最大 C.在b点的电势能大于在c点的电势能 D.由a点到b点的动能变化大于有b点到c点的动能变化 CD 7.[2014·北京卷] 如图所示,实线表示某静电场的电场线,虚线表示该电场的等势面.下列判断正确的是() A.1、2两点的场强相等 B.1、3两点的场强相等 C.1、2两点的电势相等 D.2、3两点的电势相等 D本题考查电场线和等势面的相关知识.根据电场线和等势面越密集,电场强度越大,有E1>E2=E3,但E2和E3电场强度方向不同,故A、B错误.沿着电场线方向,电势逐渐降低,同一等势面电势相等,故φ1>φ2=φ3,C错误,D正确. 8.如图所示,A、B是位于竖直平面内、半径R=0.5 m的1 4圆弧形的光滑绝缘轨道, 其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度 E=5×103N/C.今有一质量为m=0.1 kg、带电荷量+q=8×10-5C的小滑块(可视为质 点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2, 求: (1)小滑块第一次经过圆弧形轨道最低点B时B点的压力.(2)小滑块在水平轨道上通过的总路程. 答案:(1)2.2 N(2)6 m解析:(1)设小滑块第一次到达B点时的速度为v B,对圆弧轨道最低点B的压

静电场作业含答案

班级 姓名 学号 静电场作业 一、填空题 1. 一均匀带正电的空心橡皮球,在维持球状吹大的过程中,球内任意点的场强 不变 。球内任意点的电势 变小 。始终在球外任意点的电势 不变 。(填写变大、变小或不变) 解: 2. 真空中有一半径为R ,带电量为 +Q 的均匀带电球面。今在球面上挖掉很小一块面积△S ,则球心 处的电场强度E = 。 解:电荷面密度 3. 点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示。S 为闭合曲面, 则通过该闭合曲面的电通量为 。 4 2εq q + 解:高斯定理 ;其中 为S 闭合面内所包围的所有电荷的代数和 4. 边长为a 的正六边形每个顶点处有一个点电荷 +q ,取无限远处 作为电势零点,则正六边形中心O 点电势为 V 。 a q 023πε 解:O 点电势为6个点电荷电势之和。每个q 产生的电势为 +2 041 r Q E ?=πε0 =E (r > R 球 (r < R 球 均匀带 电 球面 r Q U ?=041 πεR Q U ? =041 πεs 2 4R Q πσ= 2 4R s Q q π?= ∴4 022 022*******R s Q R R s Q r q E εππεππε?=??==4 0216R s Q επ?0 εφ∑? = ?=i S q S d E ∑i q a q r q U 0044πεπε= = q q U o 36= ?= ∴

5. 两点电荷等量异号,相距为a ,电量为q ,两点电荷连线中点O 处的电场强度大小E = 。 2 02a q πε 解: 6. 电量为-×10-9 C 的试验电荷放在电场中某点时,受到×10-9 N 的向下的力,则该点的电场强度 大小为 4 N/C 。 解:由电场强度定义知, 7. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d << R ),环上均匀 带正电,总电量为q ,如图所示,则圆心O 处的场强大小E =__________ __。 ) 2(420d R R qd -ππε 解:根据圆环中心E=0可知,相当于缺口处对应电荷在O 点处产生的电场 电荷线密度为 ; 缺口处电荷 8. 如图所示,将一电量为-Q 的试验电荷从一对等量异号点电荷连线的中点 O 处,沿任意路径移到无穷远处,则电场力对它作功为 0 J 。 解:根据电场力做功与电势差之间的关系可求 其中 d + - O q +q -?E 2 a 2 a 2 02 022422a q a q E E q πεπε= ? ? ? ??? ==+4 ==q F E d R q -=πλ2d d R q q ?-='π2) 2(4412420202 0d R R qd R d R qd R q E -= ?-= '=ππεπεππε) (∞-=U U q A O ; 0=∞U ; 04400=+ -= r q r q U o πεπε0 )(=--=∴∞U U Q A O

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用 复合材料,是由两种或两种以上性质不同的材料组成。主要组分是增强材料和基体材料。复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。复合材 料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。ANSYS作为一款著名的商业化大型通用有限元软件,广泛应用于航空航天领域,为飞机结构中的复合材料层合结构分析提供了完整精确的解决方案。1.复合材料的有限元模型建立针对飞机结构中的复合材料层合板、梁、实体以及加筋板等结构类型,ANSYS提供一种特殊的复合材料单元———层单元,以模拟各种复合材料,铺层数可达250层以上,并提供一系列技术模拟各种复杂层合结构。复合材料层单元支持非线性、振动特性、热应力、疲劳断裂等各种结构和热的分析功能和算法。2.复合材料的层合结构定义:■铺层结构:ANSYS对于每一铺层可先定义材料性质、铺层角、铺层厚度,然后通过由下到上的顺序逐层叠加组合为复合材料层合结构;也可以通过直接输入材料本构矩阵来定义复合材料性质。■板壳和梁单元截面形状:ANSYS利用截面形状工具可定义矩形、I型、槽型等各种形式;还可以定义各种函数曲线以模拟变厚度截面。3.特殊层合结构的模拟:?变厚度板壳铺层切断:将切断的某铺层厚度定义为零,即可模拟铺层切断前后的板壳实际形状。(图1上)?不同铺层板壳的节点协调:ANSYS板壳层单元的节点均可偏置到任意位置,使不同铺层数板壳的节点在中面或顶面、底面对齐。(图1下)?蜂窝/泡沫夹层结构:ANSYS通过板壳层单元来模拟夹层结构的特性,夹层面板和芯子可以是不同材料。(图2)?板-梁-实体组合结构:ANSYS将实体、板壳与梁等不同类型单元通过MPC技术相联系,各类单元的节点不需要重合并协调,便于飞机等复杂结构模型的处理。4.复合材料有限元模型的检查:复合材料结构模型建立后,可以将板壳和梁单元显示为实际形状,还可以通过图形显示和列表直观地观察铺层厚度、铺层角度和铺层组合形式,方便模型的检查及校对。(图3)5.复合材料层合结构分析ANSYS层单元支持各种静强度刚度、非线性、稳定性、疲劳断裂和振动特性等结构分析。完成分析后,可以图形显示或输出每个铺层及层间的应力和应变等结果(虽然一个单元包含许多铺层),根据这些结果可以判断结构是否失效破坏和满足设计要求。6.复合材料失效准则ANSYS已经预定义了三种复合材料破坏准则来评价复合材料结构安全性,包括最大应变/应力失效准则,蔡-吴(Tsai-Wu)准则。每种强度准则均可定义与温度相关,考虑不同温度下的材料性能。另外,用户也可自定义最多达六种的

第5章 静电场作业答案

第五章 静电场作业1 班级 姓名 学号 一 选择题 1. 两点电荷间的距离为d 时, 其相互作用力为F . 当它们间的距离增大到2d 时, 其相互作用力变为 (A) F 2 (B) F 4 (C) 2F (D) 4 F [ D ] 解:根据库仑定律 122014d q q F d πε= 12 22 0144d q q F d πε= 24 d d F F ∴= 选D 2. 关于电场强度, 以下说法中正确的是 (A) 电场中某点场强的方向, 就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同 (C) 场强方向可由F E q = 定出, 其中q 可正, 可负 (D) 以上说法全不正确 [ C ] 解:场强的定义为0F E q = ,即表示场强的大小又表示场强的方向,选C 3.在边长为a 的正方体中心处放置一电量为Q 的点电荷, 则在此正方体顶角处电场强度的大小为 (A) 202πQ a ε (B) 2 03πQ a ε (C) 20πQ a ε (D) 2 04πQ a ε [ B ] 解:点电荷Q 距顶点的距离为 2 r a = 则在顶点处场强的大小为 203Q E a πε== 选B 4.一个点电荷放在球形高斯面的中心, 下列哪种情况通过该高斯面的电通量有 变化? (A) 将另一点电荷放在高斯面外 (B) 将另一点电荷放在高斯面内 a

(C) 将中心处的点电荷在高斯面内移动 (D) 缩小高斯面的半径 [ B ] 解:根据高斯定理 d i S q E S ε?= ∑? ,高斯面内的电荷变化,则通过该高斯面的电通量有变化。 选B 二 填空题 1.一长为L 、半径为R 的圆柱体,置于电场强度为E 的均匀电场中,圆柱体轴线与场强方向平行.则: (1) 穿过圆柱体左端面的E 通量为2R Επ-; (2) 穿过圆柱体右端面的E 通量为2R Επ; 解:1)穿过左端面的电通量为21ΕS R ΕΦπ=?=- 2)穿过右端面的电通量为21ΕS R ΕΦπ=?= 2. 一个薄金属球壳,半径为1R ,带有电荷1q ,另一个与它同心的薄金属球壳,半径为2R )(12R R >,带有电荷2q 。试用高斯定理求下列情况下各处的电场强度的大小: 1)1R r <,E= 0 ;2)21R r R <<, E= 12 04q r πε ; 3)2R r >, E= 12 2 04q q r πε+。 解:1)1R r <: d i S q E S ε?= ∑? 内球面内无电荷 10 E = 2)21R r R <<:两球面间的电荷为1q ,根据高斯定理可得 12204r q E e r πε= 3)2R r >:两球面外的电荷为12q q +,同理可得 123204r q q E e r πε+= 三 计算题 1. 电荷Q 均匀地分布在长为L 的细棒上,求在棒的延长线上距棒中心为r 处的 2

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

静电场作业含答案.doc

班级 姓名 学号 静电场作业 一、填空题 1. 一均匀带正电的空心橡皮球,在维持球状吹大的过程中,球内任意点的场强 不变 。球内任意点 的电势 变小。始终在球外任意点的电势 不变。(填写变大、变小或不变) 解: 1 Q 1 Q E r 2 U r ( r > R 球外) 均匀带电 4 4 球面 1 Q E 0 ( r <R 球内) U R 4 0 2. 真空中有一半径为 R ,带电量为 +Q 的均匀带电球面。今在球面上挖掉很小一块面积△ S ,则球心处的 电场强度 E = 。 Q s Q 16 2 0R 4 s Q s 解:电荷面密度 4 R 2 q ? 4 R 2 q Q s 1 Q s E 2 4 R 2 4 0 R 2 16 2 0 R 4 4 0 r q 1 q 3 3. 点电荷 q 1 、q 2、 q 3 和 q 4 在真空中的分布如图所示。 S 为闭合曲面, q 4 q 2 q 4 q 2 则通过该闭合曲面的电通量为 。 S q i 解:高斯定理 E dS ;其中 q i 为 S 闭合面内所包围的所有电荷的代数和 S 4. 边长为 a 的正六边形每个顶点处有一个点电荷 +q ,取无限远处 +q +q 3q +q +q 作为电势零点,则正六边形中心 O 点电势为 V 。 O 2 a +q +q 解: O 点电势为 6 个点电荷电势之和。每个 q 产生的电势为 U q q 4 0 r 4 a U o q 6 3q 4 a 2 a

FLOEMC电磁兼容仿真分析软件

FLO/EMC电磁兼容仿真分析软件 为什么要重视电磁兼容性(EMC)的分析 众所周知,仅在几年前,EMC问题在整个设计流程中还只是个次要的问题。而今天,EMC设计问题扩展到传统设计流程的各个阶段。市场开拓者们要将大量资金和数周时间花费在屏蔽室,以谋求能顺利通过电磁兼容性测试。 这种现象不是偶然的,我们知道: ·EMI已经成为一个很严重的且在日益恶化的环境污染源 ·越来越多电器设备的投入使用 ·IC时钟频率的越来越高 ·辐射源辐射功率的增大 ·抗干扰性的减弱 ·无线通信的发展 诸如此类的原因导致了我们为了使同一环境中各种设备都能正常工作又互不干扰变得越来越困难,同时这种电磁环境对人类及生物也产生了越来越大的危害,解决电磁兼容性问题也变得越来越紧迫。 拿一个简单的例子,对于一台pc电脑来说,在EMC方面需要满足以下标准: 1.辐射性能方面(Emissions) a. EN 61000-3-2(Harmonics) b. EN 61000-3-3(Voltage Fluctuations and Flicker) c. EN 55022(Conducted Emissions) d. EN 55022(Radiated Emissions) 2.抗干扰性能标准EN55024(Immunity) a. EN 61000-4-2(Electrostatic Discharge) b. EN 61000-4-3(Radiated Electric Field) c. EN 61000-4-4(Fast Transients) d. EN 61000-4-5(High Energy Surges) e. EN 61000-4-6(Conducted RF) f. EN 61000-4-8(Radiated Magnetic Field) g. EN 61000-4-11(Voltage Dips and Interrupts) 而通常来说,整个测试的代价是需要4000美元和3天的时间。 在20世纪90年代前期,国内企业的产品在出口欧美等国市场时,必须出具电磁兼容合格报告才能获得市场准入,但是由于企业往往在产品设计和研发阶段没有考虑相关问题或是不了解国外的电磁兼容技术法规要求而导致不能顺利投放海外市场或花费很大的代价来满足国外相应的电磁兼容性能要求,这与国内的设计模式是分不开的,传统的设计方式遵循的是设计—样品生产—测试的模式,一旦测试不能通过测试标准,就必需按照设计流程重新开始!无疑,这样做的代价是冗长的设计周期和昂贵的设计成本。与此同时,国内缺乏相关技术标准,也缺乏相关的试验手段和条件来检测进口产品的电磁兼容性能。使得我国的电磁兼容技术远远落后于欧美等发达国家。 在90年代后期,国家和相关行业纷纷对产品的设备的电磁兼容性能制订标准规范,并制订了相关的认证实施措施;兴建了大量的电磁兼容实验室,规范国内外产品的电磁兼容性能。 在科学技术日益发展的今天,针对传统设计模式中解决电磁兼容性问题的弊端,国外企业纷纷引入电磁兼容分析软件,利用计算机在设计前期对系统电磁兼容性能进行模拟分析,即所

ANSYS有限元分析二维静态磁场仿真

一周总结报告 一、ANSYS学习 1.学习情况 目前正在边看书籍边操作ANSYS系统,已经了解了ANSYS的基本操作系统以及ANSYS 分析过程的三大步骤,大体上知道了它的整个工作流程。目前正在深入仔细学习每一部分的详细步骤。现在已经学习了ANSYS有限元分析典型步骤、实体建模、网格划分、创建有限元模型,正在学习加载和求解这一部分。 2.理论知识 (1)网格划分与创建有限元模型 ①设置单元属性,包括: a.选择单元类型,如常用的有PLANE13,PLANE53,INFIN110;在Element Type中设 置; b.设置单元实常数,如线圈横截面积、匝数、导体填充率等; c.设置材料属性,如泊松比、材料密等; d.设置单元坐标系统。 ②通过网格划分工具设置网格划分属性包括: a.单元属性分配设置,作用是在网格划分之前为模型(包括实体和有限元模型)分配单元属性; b.智能划分水平控制; c.单元尺寸控制,单元尺寸的意思是单元边的长度。 ③实体模型的划分 ANSYS有两种方式对实体模型进行网格划分。 映射网格划分方法:最大特点就是必须使用形状规则的单元划分,对于面对象必须使用三角形单元或四边形单元,对于体对象只能使用六面体单元。故划分对象必须形状规则。不是任何形状的对象都能用映射网格划分。 (2)加载和求解 有限元分析的主要目的在于得到系统在特定激励源和边界条件下的响应。这些激励以及边界条件统称为载荷。所以载荷包括边界条件和激励。磁场分析中常见的载荷有磁势、磁通量边界条件等。 载荷分为六大类:自由度约束、集中力载荷、面载荷、体载荷、惯性载荷以及耦合场载荷。关于载荷步、子步和平衡迭代,通过阅读理论知识自己的理解的总结是:一个实际加载过程需要多次施加不同的载荷才能满足要求,每一步就称为一个载荷步。一个载荷步可以通过多个子步来逐渐施加。平衡迭代用于考虑收敛的非线性分析。 3.仿真结果 目前按照教程的步骤将ANSYS从建立模型到加载求解再到查看后处理器的整个分析过程大体操作了一遍,目的就是先通过简单模型熟练ANSYS的整体操作。最终的分析结果如图所示。 4.下周计划 (1)学习ANSYS通用后处理器以及时间历程后处理器; (2)目前只是跟着书上的步骤可以进行操作,还得进一步熟练; (3)目前主要是用GUI方式进行,下一步要更加熟练使用命令流的操作方式。

ANSYS电磁兼容仿真软件

ANSYSt磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB言号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1 现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电 子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx 系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如果EMI测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。。 2 目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经开始高速通道设计的预研。在相关PCB布线工具的帮助下,将复杂的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上没有问题。但是随着应用深

入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括:高速通道中,连接器,电缆等三维全波精确和建模仿真,这些结构的寄生效应对于信号的传输性能有至关重要的影响; 有效的PCB电源完整性分析工具,对PCB上的电源、地等直流网络的信号质量进行仿真 为提高仿真精度,需要SPICE模型,IBIS模型和S参数模型的混合仿真 需要同时进行时域和频域仿真和设计,观察时域的眼图、误码率,调整预加重和均衡电路的频域参数,使得信号通道的物理特性 与集成电路和收/发预加重、均衡等相配合,达到系统性能的最优有效的PCB的辐射控制与仿真手段,确保系统EMI性能达标。 现在EDA市场上已经有一些SI/PI和EMI/EMC仿真设计工具,但存在多方面的局限性。我们的PCB布线工具虽然能解决一定的问题, 但是,由于工具本身主要是以布线功能为主,结合规则约束进行设计的,在解决我们上述问题时存在着明显的局限,主要有: 主要以等效电路法建模与仿真,仿真的结构有限制,功能不完备,如不能仿真非理想的电源/地,不能充分考虑信号线的跨越 分割和转换参考平面等,对于EMI/EMC只能做规则约束,无法进一 步仿真。

静电场练习题及答案

静电场练习题 一、电荷守恒定律、库仑定律练习题 4.把两个完全相同的金属球A和B接触一下,再分开一段距离,发现两球之间相互排斥,则A、B两球原来的带电情况可能是[ ] A.带有等量异种电荷B.带有等量同种电荷 C.带有不等量异种电荷D.一个带电,另一个不带电 8.真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q置于Q1、Q2连线上某 点时,正好处于平衡,则[ ] A.q一定是正电荷B.q一定是负电荷 C.q离Q2比离Q1远D.q离Q2比离Q1近 14.如图3所示,把质量为0.2克的带电小球A用丝线吊起,若将带电量为4×10-8库的小球B靠近它,当两小球在同一高度相距3cm时,丝线与竖直夹角为45°,此时小球B受到的库仑力F=______,小球A带的电量q A=______. 二、电场电场强度电场线练习题 6.关于电场线的说法,正确的是[ ] A.电场线的方向,就是电荷受力的方向 B.正电荷只在电场力作用下一定沿电场线运动 C.电场线越密的地方,同一电荷所受电场力越大 D.静电场的电场线不可能是闭合的 7.如图1所示,带箭头的直线是某一电场中的一条电场线,在这条线上有A、B两点,用E A、E B表示A、B两处的场强,则[ ] A.A、B两处的场强方向相同 B.因为A、B在一条电场上,且电场线是直线,所以E A=E B C.电场线从A指向B,所以E A>E B D.不知A、B附近电场线的分布情况,E A、E B的大小不能确定 8.真空中两个等量异种点电荷电量的值均为q,相距r,两点电荷连线中点处的场强为[ ] A.0 B.2kq/r2C.4kq/r2 D.8kq/r2 9.四种电场的电场线如图2所示.一正电荷q仅在电场力作用下由M点向N点作加速运动,且加速度越来越大.则该电荷所在的电场是图中的[ ] 11.如图4,真空中三个点电荷A、B、C,可以自由移动,依次排列在同一直线上,都处于平衡状态,若三个电荷的带电量、电性及相互距离都未知,但AB>BC,则根据平衡条件可断定[ ] A.A、B、C分别带什么性质的电 B.A、B、C中哪几个带同种电荷,哪几个带异种电荷 C.A、B、C中哪个电量最大 D.A、B、C中哪个电量最小 二、填空题 12.图5所示为某区域的电场线,把一个带负电的点电荷q放在点A或B时,在________点受的电场力大,方向为______.

ansys大作业ANSYS电磁场分析及与ansoft仿真分析结果比较要点

期末大作业 题目:简单直流致动器 ANSYS电磁场分析及与ansoft仿真分析结果比较作者姓名:柴飞龙 学科(专业):机械工程 学号:21225169 所在院系:机械工程学系 提交日期2013 年 1 月

1、 背景简述: ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用软件有限元分析软件,是现代产品设计中的高级CAE 工具之一。而ansoft Maxwell 软件是一款专门分析电磁场的分析软件,如传感器、调节器、电动机、变压器等。 本人在实验室做的课题涉及到电机仿真,用的较多的是ansoft 软件,因为其对电机仿真的功能更强大,电机功能模块更多,界面友好。 现就对一电磁场应用实例,用ANSYS 进行仿真分析,得到的结果与ansoft 得到的结果进行简单核对比较。 2、 问题描述: 简单直流致动器由2个实体圆柱铁芯,中间被空气隙分开的部件组成,线圈中心点处于空气隙中心。衔铁是导磁材料,导磁率为常数(即线性材料,r μ=1000),线圈是可视为均匀材料,空气区为自由空间(1=r μ),匝数为2000,线圈励磁为直流电流:2A 。模型为轴对称。 3、 ANSYS 仿真操作步骤: 第一步:Main menu>preferences

第二步:定义所有物理区的单元类型为PLANE53 Preprocessor>Element type>Add/Edit/Delete 第三步:设置单元行为 模拟模型的轴对称形状,选择Options(选项) 第四步:定义材料 Preprocessor>Material Props> ?定义空气为1号材料(MURX = 1) ?定义衔铁为2号材料(MURX = 1000) ?定义线圈为3号材料(自由空间导磁率,MURX=1)

大学物理静电场练习题及答案

练习题 7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大? 解: 这是一个条件极值问题。设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为 ()2 41 r q q Q F -= πε 由极值条件0d d =q F ,得 Q q 2 1= 又因为 2 02221 d d r q F πε-=<0 这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。 7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。设平衡时两线间夹角2θ很小。(1)试证平衡时有下列的近似等式成立: 3 1022??? ? ??=mg l q x πε 式中x 为两球平衡时的距离。 (2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少? (3)如果每个球以-19s C 1001??-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。小球平衡时,有 F T =θsin mg T =θcos 由此二式可得 mg F = θtan

因为θ很小,可有()l x 2tan ≈θ,再考虑到 2 024x q F πε= 可解得 3 1 022? ?? ? ??=mg l q x πε (2)由上式解出 C 10382282 13 0-?±=??? ? ? ?±=.l mgx q πε (3) 由于 t q q x t q q mg l t x d d 32d d 322d d 313 10=???? ??==-πευ 带入数据解得 -13s m 10401??=-.υ 合力的大小为 2 22 220 1222412cos 2? ? ? ??+? ? ? ? ??+? ? ===d x x d x e F F F x πεθ () 2 322 2043241 d x x e += πε 令0d d =x F ,即有 ()()0482341825222 232202=??? ?????+?-+d x x d x e πε 由此解得α粒子受力最大的位置为 2 2d x ± =

大系统强电磁脉冲综合仿真解决方案

大系统强电磁脉冲综合仿真解决方案 一、必要性 电磁兼容(EMC)已经成为一个日益严重的环境污染源,这是因为: ●越来越多电器设备的投入使用 ●IC时钟频率的越来越高 ●辐射源辐射功率的增大 ●设备抗干扰性的减弱 ●无线通信的迅速发展 诸如此类的原因使得同一环境中各种设备既能正常工作又互不干扰变得越来越困难,同时这种电磁环境对人类的健康产生了越来越大的危害,系统(汽车、飞机、舰船、导弹、卫星等)中的机箱电磁泄露,设备之间的相互干扰导致彼此的器件的误动作,解决电磁兼容性问题已经刻不容缓。解决电磁兼容性问题不能只靠运气和测试,测试的时间成本和费用成本都非常高,利用电磁分析工具可以高效地解决电磁兼容问题,提高产品竞争力。 EMC问题成为电子设备设计流程中一个非常重要的环节,并且贯穿设计流程的各个阶段。人们往往要将大量资金和时间花费在样机生产和EMC测试的循环流程中。而通常来说,整个测试需要花费很长的时间并要支付高额的测试费用,不利于产品的快速研发。 在90年代后期,国家已经明确制订了电子设备的电磁兼容性标准和规范以及严格的认证措施,规范国内外产品的电磁兼容性能。而传统的设计流程依然遵循经验设计——样机生产——测试的模式,也就是常说的Try and Cut方法,一旦测试不能通过,就必需按照设计流程重新开始!无疑,这样做的代价是冗长的设计周期和高昂的成本。 在科学技术日益发展的今天,针对传统设计模式解决电磁兼容性问题的弊端,利用计算机仿真技术在设计前期对系统电磁兼容性能进行模拟分析,即所谓的design-level analysis,找出影响电磁兼容性能的关键因素,有针对性的加以改进,将很多的设计风险扼杀在萌芽状态,从而能大大缩短设计周期和节省设计成本。

ANSYS电磁兼容仿真软件解析

ANSYS 电磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及 机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1 现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和 电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx 系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标 GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计 手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如 果EMI 测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的 措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。 2 目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经

开始高速通道设计的预研。在相关PCB 布线工具的帮助下,将复杂 的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上 没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板 的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效 位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括: ● 高速通道中,连接器,电缆等三维全波精确和建模仿真,这 些结构的寄生效应对于信号的传输性能有至关重要的影响; ● 有效的PCB电源完整性分析工具,对PCB 上的电源、地等 直流网络的信号质量进行仿真 ●为提高仿真精度,需要SPICE 模型,IBIS模型和S 参数模 型的混合仿真 ●需要同时进行时域和频域仿真和设计,观察时域的眼图、 误码率,调整预加重和均衡电路的频域参数,使得信号通道 的物理特性与集成电路和收/发预加重、均衡等相配合,达到 系统性能的最优 ● 有效的PCB的辐射控制与仿真手段,确保系统EMI性能 达标。 现在EDA 市场上已经有一些SI/PI 和EMI/EMC 仿真设计工具,但存在多方面的局限性。我们的PCB 布线工具虽然能解决一定的问

静电场作业含答案

班级 姓名 学号 静电场作业 一、填空题 1. 一均匀带正电的空心橡皮球,在维持球状吹大的过程中,球内任意点的场强 不变 。球内任意点的电势 变小 。始终在球外任意点的电势 不变 。(填写变大、变小或不变) 解: 2. 真空中有一半径为R ,带电量为 +Q 的均匀带电球面。今在球面上挖掉很小一块面积△S ,则球心处的 电场强度E = 。 解:电荷面密度 3. 点电荷q 1、q 2、q 3和q 4在真空中的分布如图所示。S 为闭合曲面, 则通过该闭合曲面的电通量为 。 0 4 2εq q + 解:高斯定理 ;其中 为S 闭合面内所包围的所有电荷的代数和 4. 边长为a 的正六边形每个顶点处有一个点电荷 +q ,取无限远处 作为电势零点,则正六边形中心O 点电势为 V 。 a q 023πε 解:O 点电势为6个点电荷电势之和。每个q 产生的电势为 q +q 2 041 r Q E ?=πε0 =E (r > R 球外) (r < R 球内) 均匀带电 球面 r Q U ?=041 πεR Q U ?=041 πεs 2 4R Q πσ= 2 4R s Q q π?= ∴4 022 022*******R s Q R R s Q r q E εππεππε?=??==4 0216R s Q επ?0 εφ∑?= ?=i S q S d E ∑i q a q r q U 0044πεπε= = q q U 36= ?= ∴

5. 两点电荷等量异号,相距为a ,电量为q ,两点电荷连线中点O 处的电场强度大小E = 。 2 02a q πε 解: 6. 电量为-5.0×10-9 C 的试验电荷放在电场中某点时,受到20.0×10-9 N 的向下的力,则该点的电场强度 大小为 4 N/C 。 解:由电场强度定义知, 7. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d << R ),环上均匀 带正电,总电量为q ,如图所示,则圆心O 处的场强大小E =__________ __。 ) 2(420d R R qd -ππε 解:根据圆环中心E=0可知,相当于缺口处对应电荷在O 点处产生的电场 电荷线密度为 ; 缺口处电荷 8. 如图所示,将一电量为-Q 的试验电荷从一对等量异号点电荷连线的中点 O 处,沿任意路径移到无穷远处,则电场力对它作功为 0 J 。 解:根据电场力做功与电势差之间的关系可求 其中 d -Q O q +q -?E 2 a 2 a 2 02 022422a q a q E E q πεπε= ? ? ? ??? ==+4 ==q F E d R q -= πλ2d d R q q ?-='π2) 2(4412420202 0d R R qd R d R qd R q E -= ?-= '=ππεπεππε) (∞-=U U q A O ; 0=∞U ; 04400=+ -= r q r q U o πεπε0 )(=--=∴∞U U Q A O

相关主题
文本预览
相关文档 最新文档