当前位置:文档之家› 数学中考数学压轴题(讲义及答案)附解析

数学中考数学压轴题(讲义及答案)附解析

数学中考数学压轴题(讲义及答案)附解析

一、中考数学压轴题

1.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s . (1)a =______cm ,b =______cm ;

(2)t 为何值时,EP 把四边形BCDE 的周长平分?

(3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2.

2.在平面直角坐标系中,抛物线2

4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且

:3:4??=ABC BCE S S .

(1)求点A ,点B 的坐标;

(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式; ②求抛物线的解析式.

3.如图1,抛物线2

(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式;

(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.

(3)如图3,点M 的坐标为(

3

2

,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.

数学中考数学压轴题(讲义及答案)附解析

4.如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,cos

4

5

B ,点O是边BC上的动点,

以OB为半径的O与射线BA和边BC分别交于点E和点M,联结AM,作

∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.

(1)当点E为边AB的中点时,求DF的长;

(2)分别联结AN、MD,当AN//MD时,求MN的长;

(3)将O绕着点M旋转180°得到'O,如果以点N为圆心的N与'O都内切,求O的半径长.

5.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接

FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=1

3

,BC=8.

(1)求证:CF 是⊙O 的切线; (2)求⊙O 的半径OC ;

(3)如图2,⊙O 的弦AH 经过半径OC 的中点F ,连结BH 交弦CD 于点M ,连结FM ,试求出FM 的长和△AOF 的面积.

6.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个

不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.

问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得

cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.

拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,

tan 2C =,9DEP

S

=,求sin APB ∠的最大值.

7.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB . (1)求点C 的坐标; (2)求直线AB 的表达式;

(3)设抛物线2

2(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .

①若2AE AO =,求抛物线表达式;

②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)

8.对于平面内的点M 和点N ,给出如下定义:点P 为平面内的一点,若点P 使得

PMN 是以M ∠为顶角且M ∠小于90°的等腰三角形,则称点P 是点M 关于点N 的锐

角等腰点P .如图,点P 是点M 关于点N 的锐角等腰点.在平面直角坐标系xOy 中,点

O 是坐标原点.

(1)已知点(2,0)A ,在点123(0,2),(13),(13)P P P -,4(2,2)P -中,是点O 关于点A 的锐角等腰点的是___________.

(2)已知点(3,0)A ,点C 在直线2y x b =+上,若点C 是点O 关于点A 的锐角等腰点,求实数b 的取值范围.

(3)点D 是x 轴上的动点,(,0),(2,0)D t E t -,点(,)F m n 是以D 为圆心,2为半径的圆上一个动点,且满足0n ≥.直线24y x =-+与x 轴和y 轴分别交于点H K ,,若线段

HK 上存在点E 关于点F 的锐角等腰点,请直接写出t 的取值范围.

9.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l

O 于A B 、两点.

(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度. (2)已知M 是

O 一点,1cm OM =.

①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________. ②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm . 10.在平面直角坐标系中,直线4

(0)3

y x b b =-

+>交x 轴于点A ,交y 轴于点B ,10AB =.

(1)如图1,求b 的值;

(2)如图2,经过点B 的直线(4)(40)y n x b n =++-<<与直线y nx =交于点C ,与

x 轴交于点R ,//CD OA ,交AB 于点D ,设线段CD 长为d ,求d 与n 的函数关系式;

(3)如图3,在(2)的条件下,点F 在第四象限,CF 交OA 于点E ,45AEF ∠=?,点

P 在第一象限,PH OA ⊥,点N 在x 轴上,点M 在PH 上,MN 交PE 于点G ,

PH EN =,过点E 作EQ CF ⊥,交PH 于点Q , 32==EQ EF PM ,

∠=∠OBR HNM ,BC CR =,点G 的坐标为1927,55??

???

,连接FN ,求EFN 的面

积.

11.在菱形ABCD 中,P 为直线DA 上的点,Q 为直线CD 上的点,分别连接PC ,

PQ ,且PC PQ =.

(1)若60B ∠=?,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图①,易证:

DQ PD AB +=(不需证明);

(2)如图②,若∠B =120°,点P 在线段DA 上,点Q 在线段CD 的延长线上,如图③,猜想线段DQ ,PD 和AB 之间有怎样的数量关系?请直接写出对图②,图③的猜想,并选择其中一种情况给予证明.

12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k

y k x

=

<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.

(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长; ②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标. 13.如图,四边形AOBC 是正方形,点C 的坐标是(82,0).

(1)正方形AOBC 的边长为 ,点A

的坐标是 ;

(2)将正方形AOBC 绕点O 顺时针旋转45?,点A ,B ,C 旋转后的对应点为A ',

B ',

C ',求点A '的坐标及旋转后的正方形与原正方形的重叠部分的面积;

(3)动点P 从点O 出发,沿折线OACB 方向以1个单位/秒的速度匀速运动,同时,另一动点Q 从点O 出发,沿折线OBCA 方向以2个单位/秒的速度匀速运动,运动时间为t

秒,当它们相遇时同时停止运动,当OPQ △为等腰三角形时,求出t 的值(直接写出结果即可).

14.新定义,若关于x ,y 的二元一次方程组①111

222a x b y c a x b y c +=??+=?的解是00x x y y =??=?,关于

x ,y 的二元一次方程组②111222e x f y d e x f y d +=??+=?的解是11x x y y =??=?,且满足

10

00.1x x x -≤,10

0.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+??

-=+?的解是方程组10

310

x y x y +=??+=-?的模糊解,则m 的取值范围是________. 15.如图,在?ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.

16.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD =AO .点E 、F 为矩形边上的两个动点,且∠EOF =60°.

(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若∠OEB =75°,求证:DF =AE ; (2)如图2,当点E 、F 同时位于AB 边上时,若∠OFB =75°,试说明AF 与BE 的数量关

系;

(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.

17.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()

A.180° B.270° C.360° D.540°

(1)请写出这道题的正确选项;

(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.

(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.

(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.

18.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.

(1)如图1,连结AD,求证:∠ADC=∠DEC.

(2)若⊙O的半径为5,求CA?CE的最大值.

(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,

①求y关于x的函数解析式;

②若CB

BE

4

5

,求y的值.

19.如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC=8,点D在△ABC外,连接AD、BD,且∠ADB=90°,AB、CD相交于点E,AB、CD的中点分别是点F、G,连接FG.

(1)求AB的长;

(2)求证:AD+BD=2CD;

(3)若BD=6,求FG的值.

20.如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转α°(0°<α<180°),分别交直线BC、AD于点E、F.

(1)当α=_____°时,四边形ABEF是平行四边形;

(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形,

①当α=_______°时,构造的四边形是菱形;

②若构造的四边形是矩形,求该矩形的两边长.

21.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P、M、N、Q,

(1)如图①所示.当∠CNG=42°,求∠HMC 的度数.(写出证明过程)

(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C,交 AB 于点 P,直尺另一侧与三角形交于 N、Q 两点。请直接写出∠PQF、∠A、∠ACE 之间的关系.

22.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).

(1)当甲追上乙时,x = . (2)请用x 的代数式表示y .

问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.

(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;

(4)若从2:00起计时,求几分钟后分针与时针第一次重合?

23.如图,在ABC 中,3

5,7,tan 4

AB BC B ===,动点P 从点A 出发,沿AB 以每秒

5

3

个单位长度的速度向终点B 运动,过P 作PQ BC ,交AC 于点Q ,以PQ PB 、为

邻边作平行四边形PQDB ,同时以PQ 为边向下作正方形PQEF ,设点P 的运动时间为t 秒()0t >.

(1)点A 到直线EF 的距离______________;(用含t 的代数式表示) (2)当点D 落在落在PF 上时,求t 的值;

(3)设平行四边形PQDB 与正方形PQEF 重叠部分的面积为()0S S >,求S 与t 之间的函数关系式,并求出S 的最大值. (4)设:PDE APE S S m =△△,当

1

12

m 时,直接写出t 的取值范围.

24.(1)探究发现

数学活动课上,小明说“若直线21y x =-向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”

经过一番讨论,小组成员展示了他们的解答过程:

在直线21y x =-上任取点()01A -,

向左平移3个单位得到点()31,

'--A 设向左平移3个单位后所得直线所对应的函数表达式为2y x n =+.

因为2y x n =+过点()31,

'--A , 所以61n -+=-, 所以5n =,

填空:所以平移后所得直线所对应函数表达式为 (2)类比运用

已知直线21y x =-,求它关于x 轴对称的直线所对应的函数表达式; (3)拓展运用

将直线21y x =-绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式 .

25.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;

(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);

(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,

∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.

【参考答案】***试卷处理标记,请不要删除

一、中考数学压轴题 1.B

解析:(1)3,3;(2)t =2s ;(3)t =3

2s 或113

s 或5s . 【解析】 【分析】

(1)根据非负数的性质即可求出a ,b 的值;

(2)计算出四边形BCDE的周长,根据ED+DC=7<9判断出点P在BC上,从而得到BP的值,进而根据点P的速度求出时间即可;

(3)分别对点P和点Q的位置进行分类讨论,①当0<t≤3,②当3<t≤13

3

,③

13

3

<t≤5,表达出△BPQ的面积,列出方程即可解答.

【详解】

解:(1)∵(a-3)2+|2a+b-9|=0,

∴a-3=0,2a+b-9,

解得:a=3,b=3,

故答案为:3,3.

(2)C四边形BCDE=BC+CD+DE+EB=18cm

若EP把四边形BCDE的周长平分,

∵ED+DC=7<9,

∴点P在BC上,

则BE+BP=9cm,

BP=4cm,

∴t=

P

BP

v=2s,

∴当t为2s时,EP把四边形BCDE的周长平分.

(3)∵BC=6,ED=3,DC=4,

∴当点P与点Q相遇时,2t+t=6+3+4,解得:t=

13

3

s,

当t=3时,点P到达点C,点Q到达点D,

当t=5时,点P到达点D,两点运动停止,

①当0<t≤3,点P在BC上,此时点Q在线段ED上,如图1,

11

246

22

BPQ

S BP AB t

==??=,

解得:t=

3

2

s,

②当3<t≤

13

3

,相遇前,此时点P,点Q均在CD上,如图2,

则PC=2t-6,CQ=3+4-t , ∴PQ=3+4-t-(2t-6)

11

[34(26)]6622BPQ

S

PQ BC t t =

=?+---?= 解得:t =11

3

s , ③当

13

3

<t≤5,相遇后,点P ,点Q 均在CD 上,如图3,

则PQ=PC-CQ=2t-6-(7-t)=3t-13,

∴11(313)6622

BPQ

S

PQ BC t =

=?-?= 解得:t =5s

∴综上,t =3

2s 或113

s 或5s . 【点睛】

本题考查了几何图形与动点问题,涉及了非负数的性质、三角形的周长和面积,解题的关键是理解动点的运动路径,并根据动点的运动速度和时间表达出线段的长度,从而列出方程解答.

2.A

解析:(1) A (

12,0) B (72,0);(2) ①233

33

y x =-+,②24316373

y x x =

+

【解析】 【分析】

(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4??=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得

1

3

=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标;

(2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式. 【详解】

解:(1)∵抛物线的解析式为2

4(0)=-+>y mx mx n m ,

∴对称轴为直线422-=-

=m

x m

, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,

∴△AOE ∽△AGC , ∴

=AO AE

AG AC

, ∵:3:4ABC

BCE

S S

=, ∴CA :CE =3:4 ,则3

1

AE AC =, ∴

1

3

==AO AE AG AC , ∴1142=

=OA OG ,3342

==AG OG , 则23==AB AG ,7

2

=+=OB OA AB , ∴A (

12,0), B (7

2

,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,

由旋转的性质得:△BCO ≌△ACQ , ∴BO =AQ =7

2

,CO =CQ , ∴OQ =222271

()()2322=

-=-=AQ AO

∵CP y ⊥轴, ∴1

32

=

=OP OQ ∴点C 的坐标为(2,3)-,则3CG =由(1)得△AOE ∽△AGC ,1

3

==OE AE CG AC , ∴33OE =

,即点E 的坐标为3(0,3

, ①设CE 的解析式为y kx b =+,分别代入C (2,3)-,E 3

得: 233

3k b b ?+=??=

??,解得:233k b ?=?

???=??

, ∴CE 的解析式为233

y =; ②将A (

1

2

,0),C (2,3)分别代入24y mx mx n =-+得:

120448m m n m m n ?-+=??

?-+=?

,解得:99m n ?=????=??

∴抛物线解析式为2y x x =+

. 【点睛】

本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键.

3.E

解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P

点横坐标为

【解析】 【分析】

(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为

2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式;

(2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为

()2

,23x x

x -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到

22(1)33x AN AM +=

=,从而推出点F 的坐标21210(,)3333x x --+,由23

FN EM =,列出关于x 的方程求解即可;

(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=

4

5

GH.设点P (m ,-m2+2m+3),则T (m ,-2m+3),则PT=m2-4m ,GH=1-m , 可得m2-4m=4

5

(1-m ),解方程即可. 【详解】

(1)∵抛物线的顶点为C (1,4), ∴设抛物线的解析式为2

(1)4y a x =-+, ∵抛物线过点B,(3,0), ∴2

0(31)4a =-+, 解得a=-1,

∴设抛物线的解析式为2

(1)4y x =--+, 即2y x 2x 3=-++;

(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为

()2

,23x x

x -++,

∵抛物线的解析式为2y x 2x 3=-++, 当y=0时,2023x x =-++, 解得x=-1或x=3, ∴A (-1.0), ∴点D (0,3),

∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上, 则OM=x ,AM=x+1, ∴22(1)33

x AN AM +=

=, ∴2(1)21

11333

x x ON AN +=-=-=-, ∴21210

(

,)3333

x x F --+, ∴2210

3

32233FN EM x x x +-

-++

==, 解得x=1或x=2,

∴点E 的坐标为(2,3)或(1,4);

(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (

3

2

,0), 可得,3

023

k b b ?+=???=?,

解得k=-2,b=3,

∴直线DM 的解析式为y=-2x+3,

∴3

2

OM =

,3OD =, ∴tan ∠DMO=2,

如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线

CE于点H.

∵PQ⊥MT,

∴∠TFG=∠TPF,

∴TG=2GF,GF=2PG,

∴PT=2

5 GF,

∵PF=QF,

∴△FGP≌△FHQ,∴FG=FH,

∴PT=4

5 GH.

设点P(m,-m2+2m+3),则T(m,-2m+3),∴PT=m2-4m,GH=1-m,

∴m2-4m=4

5

(1-m),

解得:

111201

m

-

=

2

11201

m

+

=(不合题意,舍去),

∴点P的横坐标为11201

8

-

.

【点睛】

本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.

4.D

解析:(1)DF的长为15

8

;(2)MN的长为5;(3)O的半径长为

25

8

【解析】

【分析】

(1)作EH BM

⊥于H,根据中位线定理得出四边形BMFA是平行四边形,从而利用

cos

4

5

B=解直角三角形即可求算半径,再根据平行四边形的性质求FD即可;

(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ?~?,得到

AF MF

AF DF NF MF NF DF =?=,再通过平行证明AFN DFM ?~?,从而得到AF NF

AF MF NF DF DF MF

=?=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.

(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=?,再利用

cos 4

5

B =

解三角函数即可得出答案. 【详解】

(1)如图,作EH BM ⊥于H :

∵E 为AB 中点,45,cos 5

AB AD DC B ====

∴52AE BE ==

∴cos 4

5

BH B BE =

= ∴2BH =

∴2

253222EH ??=-= ???

设半径为r ,在Rt OEH ?中:

()2

2

2322r r ??

=-+ ???

解得:2516

r =

∵,E O 分别为,BA BM 中点

∴BAM BEO OBE ∠=∠=∠ 又∵CMN BAM ∠=∠ ∴CMN OBE ∠=∠ ∴//MF AB

∴四边形BMFA 是平行四边形

相关文档
  • 中考数学压轴题及解析

  • 中考数学压轴题含答案

  • 中考数学压轴题解析

  • 中考数学压轴题分析

  • 中考数学压轴选择题

  • 中考数学压轴题剖析

相关文档推荐: