当前位置:文档之家› 阴极保护与案例分析

阴极保护与案例分析

阴极保护与案例分析
阴极保护与案例分析

标题:阴极保护基本原理[精华]

内容:

一、腐蚀电位或自然电位

每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。

相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V)

金属电位(CSE)

高纯镁 -1.75

镁合金(6%Al,3%Zn,0.15%Mn) -1.60

锌 -1.10

铝合金(5%Zn) -1.05

纯铝 -0.80

低碳钢(表面光亮) -0.50to-0.80

低碳钢(表面锈蚀) -0.20to-0.50

铸铁 -0.50

混凝土中的低碳钢 -0.20

铜 -0.20

在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。

二、参比电极

为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较:

土壤中或浸水钢铁结构最小阴极保护电位(V)

被保护结构相对于不同参比电极的电位

饱和硫酸铜氯化银锌饱和甘汞

钢铁(土壤或水中) -0.85-0.75 0.25 -0.778

钢铁(硫酸盐还原菌)-0.95-0.85 0.15 -0.878

三、阴极保护

阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。

1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,

产生该问题的主要原因是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。

2、外加电流阴极保护是通过外加直流电源以及辅助阳极,迫使电流从土壤中流向被保护金属,使被保护金属结构电位低于周围环境。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。

阴极保护的运行管理

内容:

一、阴极保护投入前的准备和验收

(一)阴极保护投入前对被保护管道的检查

1、管道对地绝缘的检查

从阴极保护的原理介绍,已得知没有绝缘就没有保护。为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。应检查管道的绝缘法兰的绝缘性能是否正常;管道沿线布置的设施如阀门、抽水缸、闸井均应与土壤有良好的绝缘;管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施。管道在地下不应与其它金属构筑物有“短接”等故障。

管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤,均应在施工验收时使用DCVG检漏仪检测,修补后回填。

2、管道导电性检查

对被保护管道应具有连续的导电性能。

3、旧管道对地绝缘状态的检查,应按设计要求处理。对是否修补防腐涂层,排除接地故障(如防静电接地极等),应根据技术经济条件比较确定。对管道导电性的检查,仍需按前述要求进行。

(二)对阴极保护施工质量的验收

1、对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成,并符合图纸设计要求。

2、对阴极保护的站外设置的选材、施工是否与设计一致。对通电点、测试桩、阳极地床、阳极引线的施工与连接应严格符合规范要求。尤其是阳极引线接正极,管道汇流点接负极,严禁电极接反。

3、图纸、设计资料齐全完备。

二、阴极保护投入运行

1、组织人员测定全线管道自然电位、土壤电阻率、各站阳极地床接地电阻。同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。

2、阴极保护站投入运行

按照直流电源(整流器、恒电位仪、蓄电池等)操作程序给管道送电,使电位保持在-1.30伏左右,待管道阴极极化一段时间(四小时以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在24小时以上)。再重复第一次测试工作,并做好记录。若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止。

3、保护电位的控制

各站通电点电位的控制数值,应能保证相邻两站间的管段保护电位达到-0.85伏,同时,

各站通电点最负电位不允许超过规定数值。调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡。

4、当管道全线达到最小阴极保护电位指标后,投运操作完毕。各阴极保护站进入正常连续工作阶段。

三、阴极保护站的日常维护管理

1、阴极保护设施的日常维护

电气设备定期技术检查。电气设备的检查每周不得少于一次,有下列内容:

1)检查各电气设备电路接触的牢固性,安装的正确性,个别元件是否有机械障碍。检查接接阴极保护站的电源导线,以及接至阳极地床、通电点的导线是否完好,接头是否牢固。

2)检查配电盘上熔断器的保险丝是否按规定接好,当交流回路中的熔断器保险丝被烧毁时,应查明原因及时恢复供电。

3)观察电气仪表,在专用的表格上记录输出电压、电流、通电点电位数值,与前次记录(或值班记录)对照是否有变化,若不相同,应查找原因,采取相应措施,使管道全线达到阴极保护。

4)应定期检查工作接地和避雷器接地,并保证其接地电阻不大于10欧姆,在雷雨季节要注意防雷。

5)搞好站内设备的清洁卫生,注意保持室内干燥,通电良好,防止仪器过热。

2、恒电位仪的维护。

1)阴极保护恒电位仪一般都配置两台,互为备用,因此应按管理要求定时切换使用。改用备用的仪器时,应即时进行一次观测和维修。仪器维修过程中不得带电插、拔各插接件、印刷电路板等。

2)观察全部零件是否正常,元件有无腐蚀,脱焊、虚焊、损坏、各连接点是否可靠,电路有无故障,各紧固件是否松动,熔断器是否完好,如有熔断,需查清原因再更换。

3)清洁内部,除去外来物。

4)发现仪器故障应及时检修,并投入备用仪器,保证供电。每年要计算开机率。

全年小时数-全年停机小时数

开机率=──────────────

全年小时数

3、硫酸铜电极的维护。

1)使用定型产品或自制硫酸铜电极,其底部均要求做到渗而不漏,忌污染。使用后应保持清洁,防止溶液大量漏失。

2)作为恒定电位仪信号源的埋地硫酸铜参比电极,在使用过程中需每周查看一次,及时添加饱和硫酸铜溶液。严防冻结和干涸,影响仪器正常工作。

3)电极中的紫铜棒使用一段时间后,表面会粘附一层兰色污物,应定期擦洗干净,露出铜的本色。配制饱和硫酸铜溶液必须使用纯净的硫酸铜和蒸馏水。

4、阳极地床的维护。

1)阳极架空线:每月检查一次线路是否完好,如电杆有无倾斜,瓷瓶、导线是否松动,阳极导线与地床的连接是否牢固,地床埋设标志是否完好等。发现问题及时整改。

2)阳极地床接地电阻每半年测试一次,接地电阻增大至影响恒电位仪不能提供管道所需保护电流时,应该更换阳极地床或进行维修,以减小接地电阻。

5、测试桩的维护。

1)检查接线柱与大地绝缘情况,电阻值应大于100千欧,用万用表测量,若小于此值应检查接线柱与外套钢管有无接地,若有,则需更换或维修。

2)测试桩应每年定期刷漆和编号。

3)防止测试桩的破坏丢失,对沿线城乡居民及儿童作好爱护国家财产的宣传教育工作。

6、绝缘法兰的维护。

1)定期检测绝缘法兰两侧管地电位,若与原始记录有差异时,应对其性能好坏作鉴别。如有漏电情况应采取相应措施。

2)对有附属设备的绝缘法兰(如限流电阻、过压保护二极管、防雨护罩等)均应加强维护管理工作,保证完好。

3)保持绝缘法兰清洁、干燥,定期刷漆。

7、阴极保护管理

1)每条阴极保护管道,都应制符合本管道实际情况的《阴极保护运行管理规定》,使阴极保护的日常测试、控制、调整、维修等方面的工作均按此进行。

2)加强阴极保护的组织、领导。保持室内设备整洁,达到无故障、无缺陷、无锈蚀、无外来物。实现三图上墙,即线路走向图、保护电位曲线图、岗位责任制。

3)阴极保护站投产后,电气设备接线不得擅自改动,需要改变的应由主管部门作出方案,经批准后方能执行。

4)每日检查测量通电点电位,填写好运行日志,向生产调度部门汇报阴极保护站运行情况。

5)阴极保护站向管道输送电不得中断。停运一天以上须报主管部门备案。利用管道停电方法调整仪器,一次不得超过2小时,全年不超过30小时。保证全年98%以上时间给管道送电。

6)保持通电点电位在规定值,沿管道测定阴极保护电位,此种测量在阴极保护站运行初期每周一次,以后每两周或一月测量一次。并将保护电位测量记录造表、绘图上报主管部门。

7)每年在规定时间内测量管道沿线自然电位和土壤电阻率各一次。

8)检查和消除管道接地故障,使全线达到完全的阴极保护。

四、牺牲阳极的维护

管道牺牲阳极保护日常维护工作量不多,除按外加电流阴极保护的要求进行保护电位测量,测试桩维护保养,绝缘法兰检测,接地故障排除等工作外,建议每月测定各参数。据此分析管道保护状况。若阳极性能变坏,则需采取相应措施。

五、阴极保护系统常见故障的分析

1、保护管道绝缘不良,漏电故障的危害

在阴极保护站投入运行,或牺牲阳极保护投产一段时间后,出现了在规定的通电点电位下,输出电流增大,管道保护距离却缩短的现象,或者在牺牲阳极系统中,牺牲阳极组的输出电流量增大,其值已超过管道的保护电流需要,但保护电位仍达不到规定指标的现象。发生上述情况的原因,主要是被保护金属管道与未被保护的金属结构物“短路”,这种现象称之为阴极保护管道漏电,或者叫做“接地故障”。

接地故障,使得被保护管道的阴极保护电流流入非保护金属体,在两管道的“短接”处形成“漏电点”,这就会造成阴极保护电流的增大;阴极保护电源的过负荷和阴极保护引起的干扰。

另外,阳极地床断路、阴极开路、零位接阴断路都会导致阴极保护不能投保。例如:格尔木站、甘森站,93年由于阳极电缆断路,造成阴极保护体系不能正常工作,判断阳极地床连接电缆断路时,可采用:

(1)测输出电流,将恒电位仪开启,在恒电位仪阳极输出端串上一电流表,如果电流为零,则说明有断路现象。

(2)将恒电位仪机后阳极输出线断开,接入临时地床或其它接地装置,若有输出电压、电流,则可断定阳极地床连接线断路。在阳极电缆与地床阳极接线处应设置接线用水泥井或标志。

2、造成管道漏电的原因

(1)施工不当,交叉管道间距不合规范,即当两条管道,一条为阴极保护的管道,另一条为未保护的管道交叉时,施工要求应保持管道间的垂直净距不小于0.3m,并在交叉点前后一定长度内将管道作特别绝缘,如果施工时不严格按照上述规定去做,那么在管道埋设一

段时间后,在土壤应力的作用下,管道相互可能搭接在一起,会造成绝缘层破损,金属与金属的相连,形成漏电点。

(2)绝缘法兰失效或漏电,绝缘法兰质量欠佳,在使用一段时间后绝缘零件受损或变质,使法兰不再绝缘,从而使得两法兰盘侧不再具有绝缘性能,阴极保护电流也就不再有限制;或者是输送介质中有一些电解质杂质使绝缘法兰导通,不再具有绝缘性能。从上述原因看,漏电点只可能发生在保护管道与非保护管道的交叉点,或保护管道的绝缘法兰处,因此查找漏电点就带有上述局限性。但如果地下管网复杂,被保护管道与多条和线有交叉穿越,则使得漏电点的查找出现复杂现象。常常要根据现场实际情况,反复测量、多方位检查并综合判断才能找到真正的漏电故障点。

3、漏电点的查找

(1)利用查找管道绝缘层破损点,从而确定管道的漏电点或短接点的方法。此方法首先将脉冲信号送到被测管道上,如果管道防腐绝缘层良好,流入管道的电流很弱,仪表没有显示。如果管道防腐层有破损,电流将从土壤中通过破损处漏入管道,电流的流动会在周围土壤中将产生明显的电位梯度。当探测人员手持两个参比电极在管道正上方探测行走时,伏特计将明显的抖动,当伏特计指针停止抖动时,两个参比电极的中间既为防腐层漏点位置,该方法简便宜行,定位准确,是目前国际上公认的检漏方法(DCVG)。

(2)可利用测定管内电流大小的方法寻找漏电点。因为无分支的阴极保护管道,管内电流是从远端流向通电点。当非保护管道接入后就会形成分支电路,使保护电流经过漏电点会变小。因此,可利此法来寻找漏电点的位置。利用此法测定时,在有怀疑的管段上可依次选点,用IR压降法或者补偿法(详见有关说明)测定管内电流。再通过比较各点电流的大小来确定漏电点的电位。

(3)绝缘法兰漏电的测定。当绝缘法兰漏电而导致阴极保护系统故障时,则可通过在绝缘法兰两侧管段上,分别测量管地电位,若保护侧为保护电位,非保护侧为自然电位,则绝缘法兰正常。否则,有问题存在。也可在非保护侧测法兰端部的对地电位,如此电位比非保护管道或其它金属构筑物的电位要负,则此绝缘法兰漏电。

测定流过绝缘法兰的电流,也可用来判定绝缘法兰的性能。若绝缘法兰非保护端一侧,能测出电流,则法兰漏电;若测不出电流,绝缘法兰不漏电。

(4)近间距电位测量法CIPS.

在测试桩上测量保护电位只能反映管道的整体保护水平,不能说明管道各点都得到了保护。采用近间距测量方式,是沿管道每隔1—2米测量一次管地电位,可以准确的检测出没有得到保护的管段。

4、阳极接地故障

阴极保护另一常见故障是由阳极接地引起的。阳极接地电阻与阳极地床的设计与施工质量密切相关。“冻土”会使阳极地床电阻增加几倍至十几倍,“气阻”也会使阳极地床电阻增加。当阳极使用一段时间后,也会由于腐蚀严重,表面溶解不均匀造成电流障碍。因此,在阴极保护的仪器上会出现电位升高,而保护电流下降的现象。此时,应通过测量,更换或检修阳极地床,来使阴极保护正常运行。另一薄弱环节,是阳极电缆线与阳极接头处的密封与绝缘,若施工不妥则会造成接头处的腐蚀与断路。使阴极保护电流断路而无法输入给管道。

辅助阳极的选择及计算

内容:

辅助阳极又称阳极接地装置,阳极地床。它是强制电流阴极保护中不可缺少的重要组成部分,通过辅助阳极把保护电流送入土壤,经土壤流入被保护的管道,使管道表面进行阴极极化(防止电化学腐蚀)电流再由管道流入电源负极形成一个回路,这一回路形成了一个电解池,管道为负极处于还原环境中,防止腐蚀;而辅助阳极进行氧化反应,遭受腐蚀,也

可能是周围电解质被氧化。

阴保站的电能60%消耗在阳极接地电阻上,故阳极材料的选择和埋设方式、场所的选择,对减小电阻节约电能是至关重要的。阳极材料必须有良好的导电性能,在与土壤或地下水接触时有稳定的接地电阻,即使在高电流密度下,其表面的极化较小;化学稳定性好,在恶劣环境中腐蚀率小;有一定的机械强度并便于加工和安装;价格低来源方便。

1、辅助阳极埋设位置的选择

辅助阳极与管道距离愈远电流分布愈均匀,但过远会增加引线上的电压降和投资。从实测数据来看辅助阳极距汇流点200米以内时,对电流分布影响较大,远于300米后影响就不大了。故在长输管道的干线上阳极一般设在距管道300~500米之间为宜。管道较短或油气管道较密集的地区,采用50~300米之间是合适的。花格线设计是450m,对于土壤电阻率很大的地区是否过远,是值得研究的问题。因此对处于特殊地形、环境的管道,辅助阳极的距离和埋设方式应根据现场情况慎重选定。

在阴保站址选定的同时,应在预选站址与管道的一侧选择阳极安装的位置,其原则是:

(1)地下水位较高或潮湿低洼处;

(2)土层厚,无块石,便于施工;

(3)土壤电阻率一般应小于50欧姆米,特殊地区也应小于100欧姆米

(4)对邻近的地下金属构筑物干扰小,阳极地床与被保护管道之间不得有其它金属管道。

(5)考虑阳极附近地域近期发展规划及管道发展规划以避免建后可能出现的搬迁。

(6)阳极地床位置与管道汇流点距离适当

(7)地面金属构筑物较多,用地狭窄时,可采用深井阳极,以减小对其它金属构物的干扰又节约用地。

阳极接地电阻约占直流回路电阻60%左右,大部分能量损失是由它造成的,因此合理选择阳极地床位置,降低接地电阻是十分重要的工作。

2、辅助阳极的结构

2.1浅埋式地床结构

将电极埋入距地表1~5米的土层中,这是管道阴极保护一般选用的阳极埋设形式。浅埋式阳极又可分为立式,水平式两种,对于钢铁阳极可能两种联合称为联合式阳极。

(1)立式阳极

由一根或多根垂直埋入地中的阳极排列构成,电极间用电缆联接。其优点有:

a.全年接地电阻变化不大;

b.当阳极尺寸相同时,立式地床的接地电阻较水平式小。

(2)水平式阳极

将阳极以水平方向埋入一定深度的地层中,其优点有:

a.安装土石方量较小,易于施工;

b.容易检查地床各部分的工作情况。

(3)联合式阳极

指采用钢铁材料制成地床,它由上端联接着水平干线的一排立式阳极所组成。

2.2深埋式阳极(深井式)

当阳极地床周围存在干扰、屏蔽、地床位置受到限制,或者在地下管网密集区进行区域性阴极保护时,使用深埋式阳极,可获得浅埋式阳极所不能得到的保护效果。深埋式地床根据埋设深度不同可分为浅深井(20~40米)、中深井(50~100米)和深井(>100米)三种。深埋式阳极地床的特点是接地电阻小,对周围干扰小,消耗功率低,电流分布比较理想。它的缺点是施工复杂技术要求高,单井造价贵。尤其是深度超过100米的深阳极,施工需要大钻机,这就限制了它的应用。

3、阳极地床填料的应用

石墨阳极无论采用浅埋或深埋都必须添加回填料。高硅铁阳极一般需要添加回填料,但在

高考化学离子反应方程式的常见出题陷阱

高考化学离子反应方程式的常见出题陷阱【】:对高三生而言,应及时了解、掌握高考备考知识,只有这样,才能提前做好准备。小编为您推荐高考化学离子反应方程式的常见出题陷阱,希望对您有助! 高考化学离子反应方程式的常见出题陷阱如下: 离子反应方程式的常见出题陷阱有以下几个方面: 1、弱电解质不能拆。如碳酸钙与醋酸反应: CaCO3+H+=Ca2++H2O+CO2就是非常典型的错误。但是不仅如此,我们还应该知道其他常见的不能拆的弱电解质,如HF 、HClO等。 2、电荷不守恒。如氯化铁跟铜反应:Fe3++Cu=Fe2++Cu2+是比较明显的电荷不守恒的方程式,此类一般较易找出。 3、反应事实,尤其是碰到强氧化剂时。如向次氯酸钙溶液通入SO2:Ca2++2ClO+SO2+H2O= CaSO3+2HClO就是没有考虑ClO的强氧化性会生成CaSO4,从而导致错误。 4、遗落。硫酸铜溶液跟氢氧化钡溶液反应: Ba2++SO42-=BaSO4就属于缺项。 5、配比。如稀硫酸与氢氧化钡反应:H+ + OH- + SO42-+Ba2+ = BaSO4+H2O错在H+和SO42-,以及OH-和Ba2+的比例应该始终是2:1。 6、分步。如多元弱酸的电离以及弱酸盐的水解等。 7、普通过量CO2 、SO2 、H2S问题。即在通常情况下,过

量CO2和NaOH反应生成的是NaHCO3而不是Na2CO3。SO2 、H2S也是同样的道理。 8、反应方程式与量无关。这种情况会出现于Al3+与过量氨水反应,AlO2-与过量CO2 反应,苯酚和CO2 反应等。9、酸式盐的过量少量。比如区别Ca(HCO3)2与过量、少量NaOH溶液反应的异同实质。 以上几点是离子反应题中最常出现的错误类型归纳,熟悉这些之后,做这类题目便可信手拈来,不易再误入陷阱。【总结】:高考化学离子反应方程式的常见出题陷阱为大家介绍完了,希望大家在高三期间好好复习,为高考做准备,大家加油。 更多精彩内容推荐: 名师解读:高考化学备考五大误区 高三化学无机方程式应考技巧

阴极保护技术的应用

阴极保护技术的应用 摘要 简要说明了阴极保护技术在国内外的发展现状,原理及前景;并分别在钢铁在海水中和钢筋混凝土中说明了阴极保护技术在防腐蚀中的重要作用。 关键词:阴极保护,腐蚀,防腐蚀 阴极保护概述 阴极保护技术是电化学保护技术的一种,其原理是向被腐蚀金属结构物表面施加一个外加电流,被保护结构物成为阴极,从而使得金属腐蚀发生的电子迁移得到抑制,避免或减弱腐蚀的发生。阴极保护技术分为牺牲阳极阴极保护和外加电流阴极保护,目前该技术已经基本成熟,广泛应用到土壤、海水、淡水、化工介质中的钢质管道、电缆、钢码头、舰船、储罐罐底、冷却器 等金属构筑物的腐蚀控制。 国内外阴极保护的发展 1823 年,英国学者汉·戴维(Davy)接受英国海军部对木制舰船的铜护套的腐蚀的研究,用锡、铁和锌对铜进行保护,并将采用铁和锌对铜保护的相关报告于1824年发表,这就是现代腐蚀科学中阴极保护的起点。虽然戴维采用了阴极保护技术对铜进行保护,但对其工作原理却并不清晰。1834年,电学的奠基人法拉第奠定了阴极保护的原理;1890 年爱迪生根据法拉第的原理,提出了强制电流阴极保护的思路。1902 年,K·柯恩采用爱迪生的思路,使用外加电流成功地

实现了实际的阴极保护。1906 年,德国建立第一个阴极保护厂;1910 年~1919年,德国人保尔和佛格尔用10年的时间,在柏林的材料试验站确定了阴极保护所需要的电流密度,为阴极保护的实际使用奠定了基础。 我国的阴极保护工作开始于1958年。其直接原因是当时一条长输管道(克拉玛依-独山子输油管道)埋地11 个月就开始穿孔漏油,最严重时每天都要穿孔几次。1961年将原管道停产并施加了阴极保护,施加阴极保护后,该管道连续运行了20多年未出现漏油,1986 年有关专家通过考察、分析、评估,认定此管道还可工作20年。 自阴极保护作为一种金属防腐蚀技术开始至今, 阴极保护系统 的设计方法, 大致经历了以单纯依据经验和简单的暴露试验进行阴 极保护系统设计的经验设计方法, 以欧姆定律为基础进行阴极保护 系统设计的传统计算设计方法、应用现代数值计算方法和以计算机作为计算工具进行阴极保护系统设计的现代设计方法的发展阶段。 随着航海业的产生和发展, 大量使用金属材料, 腐蚀问题也随 之而来。人们开始寻求对船舰等各种海上设施进行保护的方法。十九世纪二十年代初, 汉雷弗·戴维爵士从英国海军部接受一项保护舰船铜包层的任务。在实验室里, 他进行了大量的实验后发现可以用锌或铁对铜进行阴极保护。他在另一项研究中发现, 用一定比例的锌或铁能满足船上铜包层的阴级保护的需要。他首次对号舰的表面铜包层进行阴级保护, 并取得了良好了效果。这个时期, 由于缺乏科学的、系统的金属防腐蚀理论基础, 人们对阴极保护系统的设计仅仅是单

巡检及维护管理办法.

【该版本有效】 燃气设施巡检及维护管理办法 修订人: 审核人: 批准人: 2015-03-31批准2015-04-01实施

燃气设施巡检及维护管理办法修订记录单 修订部门:生产技术部修订时间:2015.3.20

重庆燃气有限公司燃气设施巡检及维护管理办法 第一章总则 第一条为确保城镇燃气设施安全、可靠、平稳运行,依据《城镇燃气管理条例》、《城镇燃气设施运行、维护和抢维修安全技术规程CJJ51-2006》并结合公司实际情况,特制定本办法。 第二条公司生产管理坚持责任、安全、效率统一的原则。 第三条本办法适用于重庆燃气有限公司燃气设施的巡检维护。 第二章管理范围与职责 第四条公司管辖范围内的燃气设施主要是燃气输配系统设施,包括城区燃气管网、阀井、调压装置、计量装置等。 巡护是指从事燃气供应的专业人员,为保障燃气设施的正常运行,预防事故发生所进行的检查维护工作,按照工艺要求和操作规程对燃气设施进行巡查、记录、维修等常规工作。 燃气设施的巡检及维护为本公司相关各层级机构的管理范围。

第五条生产技术部是燃气设施巡检及维护管理的监督和管理机构,其职责主要有: (一)负责贯彻国家有关燃气营运及配套技术工作的方针、政策、法令、法规和有关技术标准、技术规范、操作规程。 (二)负责燃气设施巡检及维护管理办法的制定、修订及完善。 (三)负责制定巡检及维护的工作质量标准及考核评分细则。 (四)负责组织对巡检维护人员的培训工作。 (五)负责对巡检及维护工作的日常受控管理,并建立相应记录。 (六)负责制定巡检及维护工作的资料记录模版并印刷制作成册。 第六条 HSE办公室是燃气设施巡检及维护管理的监督部门。其职责主要有: 1、负责对日常巡检及维护工作质量的监督抽查,并根据考核细则对巡检及维护效果进行考核,建立相关记录。 2、负责对日常抽查中要求整改事项的跟踪、监督及落实。 第七条企管法规部管理职责

管道阴极保护基本知识

管道阴极保护基本知识-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀

消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化

离子反应规律及离子方程式书写知识点总结

离子反应规律和离子方程式书写 1 基本概念 离子反应:在溶液(或熔化态)中有离子参与或有离子生成的化学反应统称离子反应。它包括有离子参与或有离子生成的氧化还原反应和非氧化还原反应两大类。 2 强电解质和弱电解质 在溶液中(或熔化状态)本身能发生电离的化合物叫电解质,不能发生电离的化合物叫非电解质。在溶液中能全部电离成离子的电解质叫强电解质,它包括大多数的盐类、强酸和强碱。;在溶液中只有部分电离为离子的电解质叫弱电解质,它包括弱酸(H2SO3、HF、HClO)以及弱碱(NH3?H2O)等。 2 离子反应规律(仅讨论非氧化还原反应的离子反应) 复分解反应发生的条件 对于复分解反应而言,有下列三种物质之一生成的反应就能进行完全:①更难溶物质;②更难电离的物质;③气态物质。简言之,复分解反应的方向总是朝着有利于某种离子浓度减少的一方进行。 沉淀的生成及转化 常见难溶物有:①酸:H2SiO3 ;②碱:Mg(OH)2 、Al(OH)3、Cu(OH)2、Fe(OH)3等;③盐:AgCl、 AgBr、AgI、BaCO3、BaSO4、Ca3(PO4)2等。 常见弱电解质有:①弱酸:HF、H2CO3、HClO、CH3COOH等;②弱碱:NH3?H2O;③其它:H2O、C6H5OH 等 (3) 气态物质生成 常见气态物有:SO2、CO2、NH3、H2S 等 3 离子方程式的书写 3.1.1 离子方程式书写方法步骤—“写拆删查“ 以次氯酸钠溶液中通入二氧化碳为例 第一步“写“ 2NaClO + CO2 + H2O = 2HClO + Na2CO3 第二步“拆“ 2Na+ + 2ClO- + CO2 + H2O = 2HClO + 2Na+ + CO32- 第三步“删“ 2ClO- + CO2 + H2O = 2HClO + CO32- 第四步“查“查原子个数、离子电荷是否配平 [说明] ①原则上说,电解质要不要拆分改写为离子形式,应以物质客观存在的形式为依据。若化合物主要以离子形式存在,则应“拆”为离子形式表示;若化合物主要以“分子”形式存在,则不能“拆”,而仍应以“分子”形式表示。如浓H2SO4应以分子式表示,稀H2SO4则应“拆”为离子式(2H+ 和SO42- )表示。

管道维护保养管理办法

管道维护保养管理办法 1 目的 为规范维修保养作业,提高维护保养质量,保证站场、管道安全运行,特定本管理办法。 2 范围 本办法适用于本厂范围内所有长输管道、采集气管道维护保养作业活动的管理。 3 术语 本办法采用Q/SHSOO01.1-2001标准和本厂QHSE管理手册中的术语。 4 职责 4.1 生产技术科是采集气管道的归口管理部门,负责督促采气队及时进行站场管道维护,负责划分巡管任务;气源调度科是长输管道的归口管理部门,负责督促输气队及时进行站场管道维护。 4.2 质量安全环保科负责审核采输气队提交的管道维护保养方案的QHSE措施。 4.3 采输气队按照归口部门划分的巡管任务,根据实际情况,落实到采输配气站,并监督执行情况;负责本队管道的具体维护保养工作。 5 工作内容 5.1 管道维护保养 5.1.1 采输气队要加强站场日常维修管理,明确责任和范围。 5.1.2 采输气队根据各自管辖站场的实际情况,合理安排除锈刷漆作业,确保站场设施的整洁、美观。 5.1.3 站场人员要经常性地检查站场设施运行情况,加强日常维护保养,使生产设施无跑、冒、滴、漏现象,确保生产设施完好。 5.1.4 对检查中有问题的生产设施,要尽快进行维修或整改,对不能解决的问题,应逐级上报,确保生产设施的正常运行,保证生产安全。 5.2 输气管网的巡查 5.2.1 基本任务 5.2.1.1 提高管道输送能力利用率及管道输送效率,延长管道使用寿命,实

现安全、经济运行。 5.2.1.2 认真贯彻执行国务院2001年8月2日颁发的《石油、天然气管道保护条例》。 5.2.1.3 确保管道沿线无新违章情况,管道附属设施完好。 5.2.2 管道的巡查 5.2.2.1 工作内容 a)检查沿线的护坡、堡坎、排水沟是否跨蹋,如跨蹋应及时上报和修复。 b)检查并及时清除管道上方的深根植物,防止深根植物破坏管道防腐层。 c)检查管道是否漏气,发现漏气及时处理或报告上级派人处理。 d)检查穿越、跨越管道的稳定情况。 e)检查裸露管段的防腐层情况。 f)检查和保养线路阀室内的设备和仪表,使之能正常工作。 g)检查管道上是否存在违章建筑。 h)检查和做好阴极保护站的维护工作,测量管道对地电位,维护好测试桩、里程桩及转角桩。 i)线路分水器放水,排除管内积液、污物。 j)积极向沿线群众宣传天然气输送管道安全保护条例和相关安全知识,动员群众协助管理好天然气输送管道。 5.2.2.2 工作要求及方法 a)每月沿天然气采集气管道、长输管道全面巡视4次,遇特殊情况(如洪水、泥石流等)必须增加巡管次数。对特殊地段(如河道穿跨越,铁路、公路穿越,护坡、护坎及开发区)应进行重点巡查。每次巡线必须如实做好记录,填写《巡管报告单》,发现问题应及时处理,并向有关部门汇报。 b)认真宣传、贯彻、执行国家关于保护天然气管道的有关法规、及省、市、县、单位关于保护天然气管道的规定。积极取得沿线各地方政府的理解和支持。宣传、发动沿线广大群众共同做好天然气输送管道的保卫及日常管理、维护工作,保证天然气输送管道的正常运行。 c)严格遵守各项规章制度和技术操作规程,切实做到对天然气输送管道的走向清楚,埋地深度清楚,管道的规格清楚,周围的地貌、建筑清楚;保证管道

长输管道阴极保护及阴极保护站维护基础知识

长输管道阴极保护及阴极保护站维护基础知识[转] 长输管道阴极保护及阴极保护站维护基础知识 2013-12-8 09:55 阅读(2) 转载自专业管道检测 已经是第一篇 | 下一篇:一建《建设工程法... 1.目的 为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到 科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。一.防腐蚀的重要意义 自然界中,大多数金属是以化合状态存在的。通过炼制,被赋予能量,才从离 子状态转变成原子状态。然而,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的 金属材料, 约相当于金属产量的20,40,,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀 而造成的经济损失,美国为国民经济总产值的4.2,; 英国为国民经济总产值的3.5,;日本为国民经济总值1.8 ,。 二.防腐蚀工程发展概况 六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构 筑物上得到应用。我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、 大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。 2.阴极保护原理

2.1 所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。)。通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。 2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电 解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。 阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是: (a)两电极电位不同的两电极; (b)两电极必须在同一电解质溶液里; (c)两电极间必须有导线连接。 该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1 安培) 或处于低土壤电阻率环境下(土壤电阻率小于100 欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3 年,最多5 年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,产生该问题的主要原因通常是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。 强制电流保护原理:由外部的直流电源向被保护金属构筑物通以保护电流,使 之阴极极化,达到阴极保护的一种方法。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。 强制电流保护原理图;

阴极保护技术在埋地管道上的应用案例的总结

阴极保护技术在埋地管道上的应用案例的总结 课程:现代阴极保护技术 班级: 学号: 姓名:

目录 1.阴极保护技术介绍 1.1阴极保护技术原理 1.2阴极保护方法 1.2.1牺牲阳极阴极保护技术 1.2.2强制电流阴极保护技术 2. 阴极保护技术在埋地管道上的应用 2.1 阴极保护技术的应用现状 2.2 埋地管道采取防腐措施的必要性 3.应用实例分析 3.1 西气东输东输管道工程阴极保护 3.1.1 阴极保护设计参数选定 3.1.2 阴极保护站位置的确定 3.1.3 阴极保护系统的构成 3.1.4 管道外防腐涂层与阴极保护的协调问题 3.2 天津渤西油气处理厂管道牺牲阳极保护 3.2.1 保护电位的确定 3.2.2 阳极材料及数量的确定 3.2.3 阳极分布及埋设 3.3 长庆油田靖咸长输管道、靖惠管道、第三采油厂管道的检测与评定 3.4 油气管道阴极保护的现状与展望 参考文献

1.阴极保护技术介绍 1.1阴极保护技术原理 阴极保护是通过阴极电流使金属阴极极化实现。通常采用牺牲阳极或外加电流的方法。系统的检测主要通过每间隔一定的距离所测得的阴极保护数据来准确分析判定管道的阴极保护状态。 1.2阴极保护方法 1.2.1牺牲阳极阴极保护技术 牺牲阳极法是将需要保护的金属结构作为阴极,通过电气连接与电子电位更低的金属或合金连接,使其满足腐蚀电池形成的条件,让电子电位低的阳极材料向电子电位高的阴极材料不间断地提供电子。牺牲阳极因较活泼而优先溶解,向被保护金属通入一定量的负极直流电,使其相对于阳极接地装置变成一个大阴极而免遭腐蚀, 而阳极则遭到强烈腐蚀;此时阴极材料的结构首先极化,在结构表面富集电子,不再产生离子,进而减缓并停止结构腐蚀进程,从而达到保护阴极材料的目的。 1.2.2强制电流阴极保护技术 强制(外加)电流是通过外加的直流电源(整流器等),直接向被保护的金属材料施加阴极电流,使其发生阴极极化,同样达到保护阴极金属材料的目的。而给辅助阳极(一般为高硅铸铁或废钢)施加阳极电流,构成一个腐蚀电池,也可使金属结构得到保护。 2.阴极保护技术在埋地管道上的应用 2.1 阴极保护技术的应用现状 目前,在西方发达国家,金属阴极保护防腐得到广泛应用,并取得了明显的效果。国内埋地管网阴极保护做得较好,一般都要求埋地的新建金属管道必须采用阴极保护储罐和钢质管道在改造时应逐步采用阴极保护。近年来,国内的阴极保护技术发展较快,阳极材料、保护参数的遥控遥测、保护电源等技术日趋完善。 2.2 埋地管道采取防腐措施的必要性 输送油、气的钢质管道大都处于复杂的土壤环境中,输送的介质也具有腐蚀性。因此,管道的内壁和外壁均可能遭到腐蚀。一旦管道被腐蚀穿孔,造成油、气漏失,不仅使运输中断,还会污染环境,并可能引发火灾。防止埋地管道的被腐蚀,是管道工程的重要任务,埋地管道的腐蚀,可分为内壁腐蚀和外壁腐蚀。 3.应用实例分析 3.1 西气东输东输管道工程阴极保护 3.1.1阴极保护设计参数选定 在西气东输管道工程阴极保护设计过程中,对于设计基本参数的选取,进行了认真细致的核实。结合三层PE防腐层的结构和特点、以及国内该防腐层的生产加工能力和技术水平,同时对比分析了相关的国内外标准,最终选定阴极保护参数如下:最小保护电流密度Js=3-5μA/m2,最小保护电位V=-0.85V或更负(相对饱和Cu/CuSO4参比电极,下同),最大保护电位(通电状态下)V=-1.25V。考虑西气东输管道工程最大站间距仅为217km,最小间距141km,按双侧保护间距和Js=4μA/m2的电流密度计算,保护电流约为:2Imax=5.54A ,2Imin=3.60A。

阴极保护的基本知识

阴极保护的基本知识 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。美国腐蚀工程师协会(NACE)对阴极保护的定义是:通过施加外加的电动势把电极的腐蚀电位移向氧化性较低的电位而使腐蚀速率降低。牺牲阳极阴极保护就是在金属构筑物上连接或焊接电位较负的金属,如铝、锌或镁。阳极材料不断消耗,释放出的电流供给被保护金属构筑物而阴极极化,从而实现保护。外加电流阴极保护是通过外加直流电源向被保护金属通以阴极电流,使之阴极极化。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构。 保护电位是指阴极保护时使金属腐蚀停止(或可忽略)时所需的电位。实践中,钢铁的保护电位常取-0.85V(CSE),也就是说,当金属处于比-0.85V(CSE)更负的电位时,该金属就受到了保护,腐蚀可以忽略。 阴极保护是一种控制钢质储罐和管道腐蚀的有效方法,它有效弥补了涂层缺陷而引起的腐蚀,能大大延长储罐和管道的使用寿命。根据美国一家阴极保护工程公司提供的资料,从经济上考虑,阴极保护是钢质储罐防腐蚀的最经济的手段之一。 网状阳极阴极保护方法 网状阳极阴极保护方法是目前国际上流行且成熟的针对新建储罐罐底外壁的一种有效的阴极保护新方法,在国际和国内都得到了广泛应用。网状阳极是混合金属氧化物带状阳极与钛金属连接片交叉焊接组成的外加电流阴极保护辅助阳极。阳极网预铺设在储罐基础中,为储罐底板提供保护电流。 网状阳极保护系统较其它阴极保护方法具有如下优点: 1)电流分布均匀,输出可调,保证储罐充分保护。 2)基本不产生杂散电流,不会对其它结构造成腐蚀干扰。 3)不需回填料,安装简单,质量容易保证。 4)储罐与管道之间不需要绝缘,不需对电气以及防雷接地系统作任何改造。 5)不易受今后工程施工的损坏,使用寿命长。 6)埋设深度浅,尤其适宜回填层比较薄的建在岩石上的储罐。 7)性价比高,造价仅为目前镁带牺牲阳极的1倍;虽然长期由恒电位仪提供

高中化学离子方程式大全

高中化学方程式 1、向氢氧化钠溶液中通入少量CO2: 2NaOH + CO2 ==== Na2CO3+ H2O 离子方程式:CO2+ 2OH- CO32-+ H2O 2、在标准状况下过量CO2通入NaOH溶液中:CO2+NaOH NaHCO3 离子方程式:CO2+ OH- HCO3- 3、烧碱溶液中通入过量二氧化硫: NaOH +SO2==NaHSO3 离子方程式:OH- +SO2 HSO3- 4、在澄清石灰水中通入过量二氧化碳:Ca(OH)2+ 2CO2══Ca(HCO3)2 离子方程式:CO2+ OH- HCO3- 5、氨水中通入少量二氧化碳: 2NH3?H2O+CO2== (NH4)2 CO3+ H2O 离子方程式:2NH3?H2O+CO2== 2NH4++2H2O 6、用碳酸钠溶液吸收少量二氧化硫: Na2CO3+ SO2 Na2SO3+ CO2↑ 离子方程式:CO32-+ SO2 SO32-+ CO2↑ 7、二氧化碳通入碳酸钠溶液中:Na2CO3+CO2 +H2O══2 NaHCO3 离子方程式:CO32-+ CO2 +H2O══HCO3- 8、在醋酸铅[Pb(Ac)2]溶液中通入H2S气体:Pb(Ac)2+H2S=PbS↓+2HAc 离子方程式:Pb(Ac)2+H2S=PbS↓+2HAc 9、苯酚钠溶液中通入少量二氧化碳: CO2+H2O+C6H5ONa→C6H5OH+ NaHCO3 离子方程式:CO2+H2O+C6H5O-→C6H5OH+ HCO3- 10、氯化铁溶液中通入碘化氢气体: 2FeCl3+2 HI 2Fe Cl2+ I2+2 H Cl 离子方程式:2Fe3++2 H++2I- 2Fe 2++ I2+2 H+ 11、硫酸铁的酸性溶液中通入足量硫化氢:Fe2(SO4)3+ H2S==2 FeSO4+ S↓+ H2SO4离子方程式:2Fe3++ H2S== 2Fe 2++ S↓+2 H+ 12、少量SO2气体通入NaClO溶液中:2NaClO +2SO2+ 2H2O══Na2SO4+ 2HCl+H2SO4离子方程式:2ClO- +2SO2+ 2H2O══SO42-+ 2Cl-+2 H++SO42-13、氯气通入水中:Cl2+H2O HCl+HclO 离子方程式:Cl2+H2O H++Cl-+HClO 14、氟气通入水中:2F2+2H2O 4HF+O2↑ 离子方程式:2F2+2H2O 4HF+O2↑

阴极保护规范

美国腐蚀工程师协会美国腐蚀工程师协会标准RP0100-2000 国际腐蚀协会第21090 号条款 标准 推荐规范 预应力混凝土圆筒管线的阴极保护 本NACE国际标准代表了那些已经评阅过本文件及其范围和条款的个体会员的一致意见。本标准的接受范围决不排斥那些与本标准不一致的加工制造、市场营销、采购或产品应用、工艺或流程,不论其采用本标准与否。本标准没有任何内容可被解释为通过暗示或其它方式对于涉及由专利保护的方法、仪器或产品的加工制造、销售或使用进行授权,或对于任何侵犯专利特许权责任的行为进行赔偿和保护。本标准陈述的是最低要求,但决不可以解释为限制使用更好的工艺和材料。本标准也并非适用于与此类问题相关的所有情况。在某些特殊实例不可预见的情况下,本标准可能是无效的。国际NACE不对非本机构对本标准的解释说明及应用承担责任,仅对依据国际NACE管理程序和政策出版发行的国际NACE官方解释说明资料承担责任,且不包括个人诠释的出版发行物。 所有使用本标准的用户在应用本标准之前,必须对有关健康、安全、环境和规范性的文献进行认真阅读,从而确定本标准的可适用性。NACE国际标准没有必要对涉及到关于应用本标准中推荐或提及的材料、设备和(或)操作中潜在的健康问题、安全问题和环境危害进行详述。所以,使用NACE国际标准的用户,在应用本标准之前有责任采取适当的健康、安全和环境保护措施;在必要的情况下,可以向相关领域的权威专家进行咨询,以满足遵守已有的相关规范制度的要求。 注意事项:NACE国际标准属于定期更新性资料,有时会在没有事先通知的情况下可能对标准中的内容进行必要的修订或撤销。NACE国际标准通常要求,自本标准最初出版发行日期起不超过五年,要对标准的有关内容进行重新审定、修订或撤销;因此,用户应当及时获取本标准的最新版本资料。购买使用本标准的用户,可以通过与美国防腐工程师协会会员服务部联系来获取所有标准的最新信息和其它NACE国际出版发行资料。联系方式:美国腐蚀工程师协会国际会员服务部,邮政信箱218340,休斯顿, 德克萨斯州77218-8340(电话 +1〔281〕228-6200)。 批准2000-01-14 NACE 国际 邮政信箱218340 休斯顿, 德克萨斯州72218-8340 +1 281/228—6200 ISBN 1-57590-096-3 2000, 国际NACE

长输管道基础知识

输油管道工程设计规范》 ( GB50253-2003) 1.输油管道工程设计计算输油量时,年工作天数应按350 天计算。 2.应在紊流状态下进行多品种成品油的顺序输送。 3.当顺序输送高粘度成品油时宜使用隔离装置。 4.埋地输油管道与其他用途的管道同沟敷设,并采用联合阴极保护的管道之间的 距离,最小净距为0.5 米。 5.管道与光缆同沟敷设时,其最小净距不应小于0.3 米。 6.当输油管道需改变平面走向适应地形变化时,可采用弹性弯曲、冷弯管、热煨 弯头。在平面转角较小或地形起伏不大的情况下,首先应采用弹性弯曲。采用热煨弯管时,其曲率半径不宜小于 5 倍管子外径,且应满足清管器或检测器顺利同过的要求。 7.输油管的平面和竖向同时发生转角时,不宜采用弹性弯曲。 8.一般情况下管顶的覆土层厚度不应小于0.8 米。 9.管道敷设采用套管时,输油管与套管之间应采用绝缘支撑。套管端部应采用防 水、绝缘、耐用的材料密封。绝缘支撑间距根据管径大小而定,一般不宜小于 2 米。 10.输油管道沿线应安装截断阀,阀门间距不应超过32 千米。人烟稀少地区可加大间距。 11.当输油管道的设计温度同安装温度之差较大时,宜在管道出土端、弯头、管径 改变处及管道和清管器收发装置连接处,根据计算设置锚固设施,或采取其他稳管措施。 12.输油管道沿线应设置里程桩、转角桩、阴极保护测试桩和警示牌等永久性标志。 13.里程桩应设置在油流方向的左侧,沿管道从起点至终点,每隔1kw 设置1个, 不得间断。阴极保护测试桩可同里程桩结合设置。 14.在管道改变方向处应设置水平转角桩。转角桩应设置在管道中心线的转角处左侧

高中最全的离子反应方程式大全(按字母顺序总结)

高中最新最全的离子反应方程式大全 A开头Al 2Al + 6H+ == 2Al3+ + 3H2↑ 2Al + 2OH- + 2H2O == 2AlO2- + 3H2↑ Al3+ + 3H2O Al(OH)3 + 3H+Al3+ + 3OH- == Al(OH)3↓ Al3+ + 4OH- == AlO2- + 2H2O 3Al3+ + 10OH-== 2Al(OH)3↓ + AlO2- + 2H2O(当n(AlCl3)/n(NaOH)= 3 :10时) Al3+ + 3NH3.H2O == Al(OH)3↓+ 3NH4+2Al3+ + 3CO32- + 3H2O == 2Al(OH)3↓ + 3CO2↑ Al3+ + 3HCO3- == Al(OH)3↓ + 3CO2↑ Al3+ + 3HS- + 3H2O == Al(OH)3↓ + 3H2S↑ 2Al3+ + 3S2- + 6H2O == 2Al(OH)3↓ + 3H2S↑ Al3+ + 3AlO2- + 6H2O== 4Al(OH)3↓ 2Al3+ + 3SiO32-== Al2(SiO3)2↓ AlO 2- + 2H2O Al(OH)3 + OH-AlO2- + H+ + H2O == Al(OH)3↓ AlO2- + 4H+ == Al3+ + 2H2O 9AlO2- + 30H+== 2Al(OH)3↓ + 7Al3+ + 12H2O(当n(NaAlO2)/n(HCl)= 3 :10时) 3AlO2- + Fe3+ + 6H2O == Fe(OH)3↓+ 3Al(OH)3↓ AlO2- + NH4+ +H2O == Al(OH)3↓ + NH3↑ AlO2- + HCO3- + H2O == Al(OH)3↓+ CO32- 2AlO2- + CO2 + 3H2O ==2 Al(OH)3↓+ CO32-AlO2- + CO2 + 2H2O == Al(OH)3↓+ HCO3- Al2O3 + 6H+ == 2Al3+ + 3H2O Al2O3 + 2OH- == 2AlO2- + H2O Al(OH)3 + 3H+ == Al3+ + 2H2O Al(OH)3 + 2OH- == AlO2- + 2H2O Ag Ag+ + H2O AgOH + H+Ag+ + NH3.H2O == AgOH↓+ NH4+; Ag+ + 2NH3.H2O == [Ag(NH3)2]++ H2O Ag+ + Cl-== AgCl↓ Ag+ + Br-== AgBr↓ Ag+ + I-== AgI↓

02阴极保护技术规格书

华东管道设计研究院 设计证书编号设计证书编号::A132006476A132006476 阴极保护技阴极保护技术规格书术规格书 设计阶段设计阶段::基础基础设计设计设计 日期日期:: 2020111-1010--1010 第 1 页 共 6 页 A 版 目 录 1.范围 ................................................................................................................ 2 2.定义 ................................................................................................................ 2 3.工程概况 ........................................................................................................ 2 4.采用标准采用标准、、规范和技术规定 ........................................................................ 2 5.阴极保护技术要求 . (3) 5.1 恒电位仪 ..................................................................................................................... 3 5.2 高硅铸铁阳极 ............................................................................................................. 5 5.3 锌合金阳极 ................................................................................................................. 5 5.4 镁合金阳极 ................................................................................................................. 6 5.5 硫酸铜参比电极 (6) 6.质量保证 ........................................................................................................ 6 7.现场服务与培训 ............................................................................................ 6 8.供方提供图纸与数据 (6)

管道输送系统的阴极保护运行管理规定.

管道输送系统的阴极保护运行管理规范 第一章主要术语和定义 一、阳极回填料 电阻率很低的材料,可以保持湿度,紧贴在埋地阳极的四周,用于减小阳极与电解质之间的有效电阻,并防止阳极极化。 二、跨接 金属导体,通常是铜,连接同一构筑物或不同构筑物上的两点,通常用于保证两点之间的电连续性。 三、阴极保护系统 由直流电源和阳极构成的系统,用于为金属构筑物提供保护电流。四、直流去耦装置 一种保护装置,当超过预先设定的阈值电压时,它就导通电流。例如:极化电池、火花隙、二极管总成。 五、排流点 与受保护构筑物连接的负电缆连接位置,通过此排流点,保护电流可以流回其电源。 六、牺牲阳极 靠原电池作用为阴极保护提供电流的电极。 七、地床

埋地的或浸没在水里的牺牲阳极或强制电流辅助阳极系统。 八、强制电流辅助阳极 靠强制电流方法为阴极保护提供电流的电极。 九、强制电流保护系统 靠强制电流方法提供阴极保护的系统。 十、瞬时通电电位 在开启施加阴极保护的所有电源后立刻测量出的构筑物对电解质电位。 十一、密集测量技术 同时测量管地电位与相关的垂直方向的电位梯度的技术。注:用密集测量技术可以辨别防腐覆盖层缺陷并能够计算出缺陷处的无IR降电位。 十二、IR降 按照欧姆定律在参比电极与金属管之间实际测出的在金属通道的两点之间或在土壤这样的电解质里横向梯度中由于任何电流形成的电压。 十三、极化电位 没有因为保护电流或任何其他电流而发生由IR降引起的电压误差的情况下实际测出的构筑物对电解质电位。

十四、绝缘接头 插在两段管道之间防止它们之间有电连续性的电绝缘部件。例如:整体绝缘接头、绝缘法兰、绝缘联管节。 十五、通电电位 阴极保护系统正在持续运行时测量的构筑物对地电位。 十六、断电电位 在断开施加阴极保护电流的所有电源后立刻测量出的构筑物对电解质电位。注:通常在阴极保护系统关断后立刻测量此电位,此时施加的电流停止流向裸钢构筑物,但在极化作用减小之前。 十七、保护电位 金属腐蚀速率小得无关紧要时构筑物对电解质电位。(注:使腐蚀速率小于0.01 mm/年的金属对电解质电位就是保护电位,这一腐蚀速率足够低了,因此在设计寿命期间,腐蚀处于可以接受的限度内。假如在管道上存在交流干扰,即使达到保护电位,仍然能够发生交流腐蚀) 十八、参比电极 开路电位恒定不变的电极,用于测量构筑物对电解质电位。 十九、杂散电流 通道里不属于所关注的保护电流的电流。 第二章阴保工作主要资料

管道阴极保护基本知识

管道阴极保护基本知识 管道阴极保护基本知识 内容提要: ?阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区

得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金 属整体处于电子过剩的状态,使金属表面各点达到同一负电 位,金属原子不容易失去电子而变成离子溶入溶液。有两种 办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴 极保护。 1牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合 金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的 方法 在被保护金属与牺牲阳极所形成的大地电池中,被保护 金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电 位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺 牲”阳极,从而实现了对阴极的被保护金属体的防护,如图 1 — 3。 牺牲阳极材料有高钝镁,其电位为 -1.75V ;高钝锌,其电 位为- 1.1V ;工业纯铝,其电位为-0.8V (相对于饱和硫酸铜参 比电极)。 2、强制电流法(外加电流法) 牺艸PH 极 煩包料

初中常见离子符号、化学式和化学方程式

初中常见离子符号、化学式和化学方程式(初二部分) 常见的离子符号 常见的金属离子: 1、带一个单位正电荷的 锂离子:Li+钾离子:K+钠离子:Na+银离子:Ag+ 亚铜离子:Cu+ 2、带两个单位正电荷的 钙离子:Ca2+镁离子:Mg2+钡离子:Ba2+ 锌离子:Zn2+亚铁离子:Fe2+铜离子:Cu2+ 3、带三个单位正电荷的 铁离子:Fe3+ 铝离子:Al3+ 常见的非金属离子: 1、带一个单位负电荷的 氟离子:F—氯离子:Cl—溴离子:Br—碘离子:I— 2、带两个单位负电荷的 硫离子:S2—氧离子O2— 3、带一个单位正电荷的 氢离子:H+ 常见的原子团:(也叫酸根离子,NH4+除外) 硝酸根离子:NO3—氢氧根离子:OH—氯酸根离子ClO3— 磷酸根离子:PO43—碳酸氢根离子:HCO3—高锰酸根离子:MnO4— 碳酸根离子:CO32—硫酸根离子:SO42—亚硫酸根离子:SO32— 锰酸根离子:MnO42— 铵根离子:NH4+ 说明: 带正电荷的叫阳离子(如金属离子)带负电荷的叫阴离子(如常见的非金属离子和常见的原子团。H+和NH4+除外。) 1、离子不可单独存在,有阴离子存在必然有阳离子,由阴阳离子构成的物质是离子化合物。 2、离子所带的电荷数与其在化合物中元素表现的化合价数值和正负均一致。例如,硫离子S2—中S的化合价为—2 3、离子团所带的电荷数与其整体表现化合价数值和正负一致,其整体化合价是 +的整体化合价是+1,这其组成元素所表现化合价的代数和。例如,铵根离子NH 4 是由于其中N显—3价,H显+1价决定的。 常用化合价口诀: 一价氢氯(-1)钾钠银,二价氧(-2)钙钡镁锌,三铝四硅五氮磷,二三铁二四碳,二(-2)四六硫都齐全,单质为零铜正二,金正非负和为零。 负一硝酸氢氧根,负二硫酸碳酸根,负三只有磷酸根,正一价的是铵根。

阴极保护技术规范书

华能日照电厂二期扩建工程 (2×670MW)超临界燃煤发电机组阴极保护招标文件 第三卷技术规范书 华能国际山东分公司 二○○七年六月

目录 第一章总则 (1) 第二章运行环境条件 (1) 第三章规范和标准 (2) 第四章技术要求 (2) 第五章阴极保护系统的安装 (4) 第六章测试 (4) 第七章工作分工 (5) 第八章供货范围 (5) 第九章技术文件 (6) 第十章工作安排 (7) 第十一章差异 (7)

第一章总则 1.1 本规范书适用于华能日照电厂二期扩建工程的接地网阴极保护系统的设计、设备供货、安装、调试、运行维护和其它项目提出了技术的及其它的要求。 1.2 本规范书的内容没有包括所有的技术要求,也没列出那些已在有关标准及规范中充分说明了的要求,供方应保证提供符合本规范书和国标要求的优质产品。 1.3 工程概况 华能日照电厂二期扩建工程本期建设2*670MW燃煤机组,分为主厂房区(汽机房、主变压器区域、锅炉房、脱硫区域)及厂区(炉后电除尘区域、其他辅助车间、电厂升压站等),本期工程地下接地网,均采用镀锌钢材料,与老厂接地网不连接。 由于日照电厂地处海边,岩石较多,土壤电阻率较高,在接地网布置时220kV升压站、主厂房和部分辅助厂房处沿接地网敷设降阻剂,还有部分扩建辅助厂房在老厂范围内,供方的阴极保护方案对此应予以充分重视。 1.4供方的工作及供货范围 供方应设计并提供本期工程地下接地网的阴极保护系统,包括保护方案的提出、系统设计、设备材料的提供、保护系统的安装、测试,提供必要的技术文件,如维护说明等。 本期工程的厂区地下循环水管及老厂的地下接地网的阴极保护系统,不在本次招标范围内。 第二章运行环境条件 2.1 周围空气温度 多年平均气温: 2.8℃; 极端最高温度:41.4℃; 极端最低温度:-14.5℃; 2.2 累年平均日照时数2596.4小时。 2.3 气压 累年平均气压1015.1hPa

相关主题
文本预览
相关文档 最新文档