当前位置:文档之家› 污水源热泵影响因素

污水源热泵影响因素

污水源热泵影响因素
污水源热泵影响因素

1.影响热泵系统运行的因素

水量、水温、水质和供水稳定性是影响污水源热泵系统运行性能的重要因素。

1. 1污水流量对热泵系统的影响

在热泵机组运行时,若污水流量过低,不利于机组的安全运行;污水流量过高时循

环水泵的功率就会增大,耗电量增加。

假设其它条件不变分析水流量对热泵机组性能的影响。在制冷工况下,当增大水的流量时,换热器的出口水温就会降低,换热系数增大,从而制冷量增加。然而,当水的流量增加到一定值时,换热系数不再增加,制冷量达到一定值不再变化,如图1.1。同样的,在冬季工况下增大水的流量时,水侧换热系数增大,蒸发温度升高,从而制热量也会增加,如图1.2

水量也会对热泵COP产生一定的影响。如图1.3所示,在夏季制冷运行时,增加冷凝器的水流量会导致冷凝压力的降低,使得压缩机的输入功率降低,从而COP值增大。然而,当水的流量增加到一定值时,COP值的增加速率趋于稳定。同样地,图1.4中的冬季制热运行时,增加蒸发器中水量使得热泵COP值增大。因为在蒸发压力增加的同时,压缩机内蒸汽的比体积增加虽然会导致工质的质量流量增加,但压缩比减小又使得单位质量压缩功下降,两者作用相互抵消,使得压缩机输入功率增加的幅度较制热量增加的幅度小,所以COP值增加。

图1.1 夏季工况下水流量和进水温度对制冷量的影响

图1.2 冬季工况下水流量和进水温度对制热量影响

1. 2污水温度对热泵系统的影响

在夏季制冷工况下,污水源热泵机组使用污水作为冷源,水的温度越低越好;在冬

季工况下污水作为热源时,温度则是越高越好。而且蒸发温度要适度,不能过高,否则

会导致压缩机的排气温度过高,可能导致润滑油发生炭化。因此,污水温度在200 C左

右时机组的制热和制冷将处于最佳工况点。

水温对热泵COP值是有一定影响的。夏季制冷时,如果升高冷凝器入口处的水温,则会导致冷凝压力的增加,此时制冷量会降低,同时压缩机的功率会增大,COP值反而

下降,如图1.3所示。冬季以制热工况运行时,如果升高蒸发器入口处的水温,则会导

致蒸发压力的增加,制热量增大,此时压缩机功率的增加速度较为缓慢,热泵COP值

增大。然而,当水温增加到一定值时,热泵的COP值不再发生改变,如图1.4

图1.3 夏季工况下水流量和进水温度对制冷COP值影响

图1.3 冬季工况下水流量和进水温度对制冷COP值影响

1.3污水水质对热泵系统的影响

在热泵机组的运行中,水源的水质影响着其寿命和效率。选择水源时对水质有着一定的基木要求,即:澄清、化学性质稳定、不发生腐蚀现象、不易结垢、无微生物滋生

等。对水源热泵机组来说,水中有害的成分常常有:钙、铁、镁、锰、二氧化碳、氯离 子、溶解性的氧以及酸碱度等。

(1)结垢。结垢一般发生在换热面上。水中Cat+, M 梦+存在的形式通常为正盐和碱 式盐,很容易析出沉淀聚集在换热面上形成水垢,很大程度上影响换热的效果,进而影 响机组效率。水中以胶体形式存在的Fee+容易在换热面上聚集沉淀,加剧水垢的生成。 Fe2+在遇到氧气的情况下还会发生氧化反应,被氧化后生成的Fe3+在一定的碱性条件下 会生成为氢氧化铁絮状物,进而阻塞换热器的管道,使热泵机组无法正常地运行。

(2)腐蚀。溶解于水中的氧对不同金属的腐蚀性有所不同。对钢铁来说,氧溶解于 水中的含量大会加快腐蚀的速率。一般情况下,铜在淡水中的腐蚀性较小,但当氧和二 氧化碳在水中的溶解含量较高时,其腐蚀速率将加快。在缺氧的条件下,在水中处于游 离状态的二氧化碳也会会导致铜和钢发生腐蚀现象。水中的氯离子也会加剧热泵系统中 换热器管内的局部腐蚀。

(3)混浊度与含砂量。污水的混浊度高会在系统中形成沉积,阻塞、管道,影响机 组的正常运行。

(4)油污。城市生活污水中常常会有残余的油类物质,它会影响到热泵设备的换热 效果,并很有可能使机组的使用寿命减少。

1. 4水质稳定性对热泵系统的影响

水质的不稳定将加剧对换热器的腐蚀程度。我们不仅可以通过各种试验来对水质稳 定性进行检测,也可以通过计算水质的分析指标来进行判断。溶解于水中的碳酸钙的饱 和pH 常常用pHs 表示,通过计算可以求得

)()3.9(A H T s s N N N N pH +-++= 式中,s N —总的溶解固体常数;

T N 温度常数;

H N —钙的硬度常数;

A N —总的碱度常数。

水质的稳定指数可以简写为RSI, 02pH pH RSI S -=

式中,pHs —在系统运行状况下污水的实际pH 值;

0pH —水中的碳酸钙饱和pH 值.。

稳定指数标准如下表1.1

2热泵性能评价

目前有很多种评价热泵性能的指标,常用的热泵系统热力指标[[53]有:性能系数COP . 一次能源利用系数E 。通常利用清洁能源时进行的节能与环保评价指标是以一次能源消 耗利用系数E 来表征的。

2. 1热泵性能系数

热泵想要将低品位能源的品质提高,就必须要消耗一定量的高品质能源。因而,热 泵对能量的消耗是一个很重要的技术性经济指标。我们常用热泵的性能系数来比较热泵 的能量效率。循环热流量Q 和所消耗的驱动功率W 之比,称为性能系数COP 。热泵制 热时的性能系数称为制热系数COPH ,热泵制冷时的性能系数称为制冷系数COP R 。

2.1.1与空气源热泵相比

空气源热泵历史悠久,系统也很简单,但是它与污水源热泵相比,不适宜用于寒冷 地区,则是因为作为冷热源的空气比热容小,随环境温度影响较大。空气源热泵的制热 量随室外环境温度的下降而减少,而制冷量也会随夏季室外温度的升高而减少,因此夏 季高温和寒冬时热泵的效率会大大降低,COP 一般为2.2-3.0,要比污水源热泵的COP 低。通常污水源热泵性能系数可高达5.0-6.0,在产生相同热量或冷量的条件下所消耗的 能量与比空气源热泵相比要节省45%左右。另一方面,空气源热泵在冬季供暖时,蒸发 器上会出现结霜现象,因此需要进行定期除霜,也会产生额外的能量消耗。

2. 1. 2与地下水源热泵相比

地下水源热泵利用从水井中抽取的地下水资源,地下水温度恒定,水质较好,但是 地下水源热泵有着一定的选址条件。要求选取的地区要有丰富的地下水资源和可靠的回 表1.1 稳定指数判定标准

表2.1 污水源热泵与其他空调系统比较

灌能力。目前我国对地下水回灌技术的研究并不太成熟,因此要花大量的精力和物力去 解决水质污染、废水回灌以及地面沉降等可能出现的问题。而污水源热泵不需要考虑这 些问题,污水作为冷热源,不会造成污染问题,更为城市污水提供了再利用的途径。 近年来,混合式热泵有了一定的发展。齐鲁石化水厂采用了污水源与地下水源复合 热泵空调系统[}ss},冬季直接利用厂内污水作为热源进行供热,夏季时热泵机组通过向地 下水源放热进而达到为办公楼供冷的目的。热泵机组的实际制热系数可达4.8。因此, 恰当利用混合式热泵可提高机组的性能系数。

2.1.3与土壤源热泵相比

土壤源热泵利用的是地面Sm 以下的上壤中蕴含的能量,绿色环保,占地面积小。 但是上壤的导热系数较小,换热量小,因此换热的盘管占地面积较大,无论是水平或垂 直敷设埋管,投资较大,还要注意腐蚀问题。从节能效益上看,污水源热泵的节能系数 与上壤源热泵的相差不大。选择土壤源热泵时需要慎重考察当地的地质条件和土壤性 育旨。

2. 2一次能源利用系数

COP 值可以反映热泵输出热量与功耗的比值,但是热和功之间存在能、质上的差别, 因此,热泵系统常用一次能源利用系数来评价热泵的效率[[s6]。一次能源利用系数一般E 来表示,它表示系统循环供应的能量和所消耗的一次能源能量之比。能源利用系数E 具 有与锅炉效率等同的含义,此时将热泵与锅炉等设备相比,则具有很好的可比性。 任何形式热泵的一次能源利用系数E 可表示为:

耗量热泵系统的一次能源消热泵系统的总输热量

=E

以供暖季节为例,不同形式的供暖设备的一次能源利用系数不同。

(1)燃煤、燃气锅炉:

B E η=

式中,B η—锅炉的热效率,燃煤锅炉的效率取70%,燃气锅炉效率取85%。

(2)电锅炉:

T =ηη×B E

式中,B η—电锅炉的热效率,取98%; T η—输送电效率,取90% 。

COP 取4.32。

通过以上公式可以得到常用供热方式的一次能源利用系数,如表2.2所示。其对比 情况可用直观的柱状图表示如图

2.1

从上述图表中可以看出,燃气热泵的一次能源利用系数最高,二电锅炉最低。污水源热泵系统也是电能驱动的,虽然一次能原利用系数没有燃气热泵的高,但比传统的锅炉房供暖设备要高。热泵的一次能源利用系数都大于1。因此污水源热泵能源使用价值很高,具有很大节能潜力。

表2.2 常用供热方式的一次能源利用系数比较

图2.1 常用供热方式的一次能源利用系数柱状图

对污水源热泵方案建议

酒店洗浴会所生活热水余热回收+井水源热源系统建议书 2016-04 **有限公司

目录 第一章水源热泵系统的特点及介绍 (2) 一、水源热泵系统的特点 (2) 二、水源热泵系统介绍 (3) 1、井水源系统 (4) 2、生活热水废水系统 (4) 第二章项目介绍及系统设计描述 (5) 一、项目概况 (5) 二、设计依据 (5) 三、冷热源估算 (6) 1、泳池废水用量 (6) 2、地下井水量 (6) 四、冷热源提供热量计算 (6) 1、冬季工况 (6) 1)生活热水废水用量 (6) 2)淋浴头及地下井水量 (7) 3)结论 (7) 2、夏季工况 (7) 1)生活热水废水用量 (7) 2)淋浴头及地下井水量 (8) 3)结论 (8) 五、冷热源系统流程图 (8) 六、机房面积估算 (8) 第三章水源热泵系统与其他系统的比较 (9) 第四章水源热泵机组介绍 (11) 第五章初投资分析 (15)

第一章水源热泵系统的特点及介绍 一、水源热泵系统的特点 由于水源热泵技术利用地表水作为各机组的冷热源,所以其具有以下优点: 1、属于可再生能源 利用技术水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供热系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 2、高效节能 水源热泵机组可利用的水体温度冬季为10-35℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。据美国环保署EPA估计,设计安装良好的水源热泵,平均来说可以节约用户30~40%的供热的运行费用。 3、运行稳定可靠 水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 4、环境效益显著 水源热泵是利用了地表水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟、排污等污染;供冷时省去了冷却水塔,避免了冷却塔的噪音、霉菌污染及水耗。所以说,

水源热泵工作原理及特点.

热泵是一种将低温热源的热能转移到高温热源的装置。通常用于热泵装置的低温热源改是我们周围的介质——空气、河水、海水,或者是从工业生产设备中排出助工质,这些工质常与周围介质具有相接近的温度。热泵装置的工作原理与压缩式制冷机是一致的;在小型空调器中,为了充分发挥它的效能,在夏季空调降温或在冬季取暖,都是使用同一套设备来完成的。在冬季取暖时,将空温器中的蒸发器与冷凝器通过一个换向阀来调换工作,见图2一17。 热泵工作原理图 [1] 由图2—17中可看出,在夏季空调降温时,按制冷工况运行,由压缩机排出的高压蒸汽,经换向阀(又称四通阀进入冷凝器,制冷剂蒸汽被冷凝成液体,经节流装置进入蒸发器,并在蒸发器中吸热,将室内空气冷却,蒸发后的制冷剂蒸汽,经换向阀后被压缩机吸入,这样周而复始,实现制冷循环。在冬季取暖时,先将换向阀转向热泵工作位置,于是由压缩机排出的高压制冷剂蒸汽,经换向阀后流入室内蒸发器(作冷凝器用,制冷剂蒸汽冷凝时放出的潜热,将室内空气加热,达到室内取暖目的,冷凝后的液态制冷剂,从反向流过节流装置进入冷凝器(作蒸发器用,吸收外界热量而蒸发,蒸发后的蒸汽经过换向阀后被压缩机吸入,完成制热循环。这样,将外界空气(或循环水中的热量“泵”入温度较高的室内,故称为“热泵”。上海冰箱厂生产的CKT 一3A 型窗式空调器,就是一种热泵式空调器。在图2—17的热泵循环中,从低温热源(室外空气或循环水,其温度均高于蒸发温度to 中取得Q 。kcal/h的热量,消耗了机械功ALkcal/h,而向高温热源(室内取暖系统供应了Qlkcal/h的热量,这些热量之间的关系是符合热力学第一定律的,即Q1=Q0十AL kcal/h

水源热泵与地源热泵优缺点的比较

水源热泵与地源热泵优缺点的比较 一、水源热泵深井技术介绍 1、水源热泵原理 地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。 为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。 1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:

分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。 开式系统也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。. 水源热泵原理图:

深井回灌开式环路

地下水平式封闭环路 2.水源热泵优点 2.1高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。4~6,实际运行为7理论计算可达到. 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温

污水源热泵系统介绍.

污水源热泵系统介绍 供热空调的能源消耗占社会总能耗的比例大达30%,而环境污染的20%也是由供热空调燃煤引起的。因此,采用热泵技术,开发低位的、可再生的清洁能源用于建筑物的供热空调意义重大,是建筑节能减排的有效途径之一。这些能源包括:大气、土壤、地下水、地表水、工业余热及城市污水等等。其中污水在数量(水量)、质量(水温)及分布规律上(地理位置)具有明显优势。预计2010年我国污水排放量达720亿t/a,水温全年在10-25℃之间,按开发50%的水量计算,可供热空调的面积至少在5亿㎡以上。另外,原生污水均匀地分布在城市地下空间,为因地制宜地有效利用及建设分散式的热泵供热空调系统创造了有利条件。而地表水源在南方水源丰富的地区以及沿海城市更具有广阔的应用前景。 1 热泵原理 各类低位的清洁能源利用是通过热泵技术实现的。热泵空调技术是根据逆卡诺循环原理,将低温热源或低位能源(如城市污水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的,是以存在合适的低位能源为必要条件的。 3-膨胀阀 图1 热泵工作原理示意图

图1示意了一种水源热泵向建筑物供热的工作原理。所谓水源热泵,就是指以环 境中的水(污水、地表水、地下水等)作为热源。热泵工质(例如氟利昂)在压缩机1的驱动下,在压缩机1、冷凝器2、膨胀装置3、蒸发器4几个主要部件中循环运动。工质的热力性质决定了蒸发器中的工质温度可以保持在例如2℃(称为蒸发温度)左右,而冷凝器中则为60℃(称为冷凝温度)左右。这里的水源虽然在冬季可能仅为11℃,但却可以作为热泵系统的热源,因为当将它引入温度为2℃的蒸发器时,它必然要把自身中的热能(称为内能)交给机组,变为例如6℃排放出去。获取了水源热能的工质被压缩机压缩到例如60℃,在冷凝器中加热来自建筑物的系统循环水,由该水将热量带到建筑物的散热设备中。 总的来看,热泵能够从常温或低温(11℃)的环境中提取热量,以较高的温度(50℃)向建筑物供热。过程中机组每消耗1份高位能源(例如电能),能够从环境中提取3份以上的温差热量,建筑物实际可以得到的热量则为4份以上。 然而热泵技术应用的关键问题已不是热泵机组的效率有多高,而是需要有合适的低位能源或低温热源,以及整个系统的全面高效低能耗运行,以保证节能性。 2 污水源热泵 污水热泵是以污水(包括地表水)作为低温热源,利用热泵技术回收或提取污水中的低温热能,其中污水包括市政管网中未处理的原生污水、污水处理厂已处理污水,地表水包括江河湖水、海水及污水处理后的再生水。 由于污水及地表水的水质条件较差,利用过程中又是开式循环,悬浮物和杂质成迅速的累积过程,因此提取热量时需要解决防堵、防垢及低能耗运行等一系列可能影响到系统的运行效果、运行维护、投资、运行费的相关问题。 2.1 污水特性 2.1.1 污水源流量特性—量大且稳定

水源热泵维护与保养.

水源热泵空调机组 维 护 与 保 养 新中物业管理(中国)有限公司兰州分公司工程部 (

目录 第一部分操作程序 (3) 一转换状态设置 (3) 二开机前检查 (3) 三停机顺序 (4) 第二部分安全使用注意事项 (4) 第三部分维护保养 (7) 一机组保养工作内容 (7) 二机组主要部件保养 (9) 三机组的常见故障及排除方法 (12) 四风机盘管机组的维护 (12) 五风机盘管机组的常见故障及排除方法 (14)

第一部分操作程序 一转换状态设置 水路切换式 1、夏天制冷状态操作顺序: ●先将水管路阀门转换至制冷位置。 ●在确保电源接通下,通过按“模式”键,将电脑设定为制冷状 态。 ●开机检查(见开机前检查项)合格后,按“”键,则开机。 2、冬天制热状态操作顺序: ●将水管路阀门转换至制热位置。 ●在确保电源接通下,通过按“模式”键,电脑设定为制热状态, 开机检查(见二)合格后,按“”键,则开机。 无论在开机或关机状态下,重复按模式键,可以在制冷/制 热/循环转换。 二开机前检查: ●检查水系统过滤器或除砂器:应无脏堵,保证水流畅通。 ●检查机组电控箱:电源连接线应无松动现象,要连接牢固;箱 内应干燥、无杂物和灰尘。 ●检查电源电压:要符合机组的规定要求。 ●当机组水泵和空调主机连锁控制时,执行开机操作,按“”

键后,确保空调水泵和冷却水泵已开启,检查水流量:应符合开机要求。 ●当机组水泵和空调主机不连锁控制时,需要用户先确保空调水 泵和冷却水泵先开启,2-3分钟后再执行开机操作。 ●检查进出水水管路上压力表:表压要正常。 ●机房内环境温度控制在5-35℃之间。 三停机顺序: ●当机组水泵和空调主机连锁控制时,直接按“”键后,机组 将自动执行停机操作。 ●当机组水泵和空调主机不连锁控制时,需要先按“”键后, 等压缩机停机3-5分钟后再停水泵 第二部分安全使用注意事项 1、发现下列现象时,应立即停机,将电源切断,检查修复。 A 各项保护开关无法切断电源时。 B 压缩机有不正常撞击声。 C 马达电流超过正常负荷百分之二十时。 D 高压表及低压表指数超过高低压自动开关所设定的压 力而不自动停机。

什么是水源热泵中央空调 水源热泵机组原理及优缺点

什么是水源热泵中央空调水源热泵机组原理及优缺点 水源热泵中央空调是一项节能环保新技术,与地源热泵从大地中提取冷热量相比,水源热泵机组是利用地表水作为冷热源,然后进行能量转换的供暖空调系统。简单来说,水源热泵和地源热泵都是冷暖空调,不存在传统空调冬季化霜等难点问题,只不过水源热泵是通过地下水达到冷却制冷剂的效果,不占建筑面积。下面,我一起来看看水源热泵中央空调的定义、水源热泵机组原理及优缺点。 什么是水源热泵中央空调 水源热泵中央空调是一种利用地下浅层地热资源(如地下水、河流和湖泊中吸收地太阳能和地热能等)的既可供热又可制冷的高效节能空调系统。水源热泵机组以水为载体,在冬季采集来自湖水、河水、地下水的低品位热能,取得能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调供冷的目的。 水源热泵机组原理

夏季制冷时,水源热泵中央空调井水为机组的排热源。制冷剂在蒸发器内吸热蒸发,制取7℃冷水,送入房间使用,由于水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高;制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,由井水带走热量并排至井中。 冬季制热时,水源热泵中央空调井水为机组的吸热源。制冷剂在蒸发器内吸取井水的热量蒸发,井水回灌井内,由于水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。制冷剂再经压缩机压缩成高温高压的过热蒸汽,进入冷凝器,加热循环水,制取45℃到50℃(最高可达65℃)的热水。 水源热泵机组原理的优缺点 水源热泵中央空调具有可再生能源利用技术、高效节能、制冷采暖生活热水三位一体、节省建筑空间、环境效益显著等多种优点,其缺点是对地下水质量要求比较高,需要良好的地下水源条件,用户在装水源热泵之前,需要先向各地水资委申请,申请通过之后才能装,

污水源热泵系统工作原理及特点优势.

污水源热泵系统工作原理及特点优势 污水源热泵系统利用污水(生活废水、工业温水、工业设备冷却水、生产工艺排放的废温水),借助制冷循环系统,通过消耗少量的电能,在冬天将水资源中的低品质能量“汲取”出来,经管网供给室内空调、采暖系统、生活热水系统;夏天,将室内的热量带走,并释放到水中,以达到夏季空调的效果。污水源热泵系统的特点与优势:我国北方地区,冬季采暖主要是依靠煤、石油、天然气等石化燃料的燃烧来获得。采暖与环保成为一对难以解决的矛盾。城市污水是北方寒冷地区不可多得的热泵冷热源。它的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得污水源热泵系统比传统空调系统运行效率要高,节能和节省运行费用效果显著。原生污水源热泵系统以原生污水为热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能,将所取得的能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。它有以下特点: 1。环保效益显著原生污水源热泵系统是利用了原生污水作为冷热源,进行能量转换的供暖空调系统,污水经过换热设备后留下冷量或热量返回污水干渠,污水与其他设备或系统不接触,污水密闭循环,不污染环境与其他设备或水系统。供热时省去了燃煤、燃气、燃油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。我国年污水排放量达464亿m,可节省用煤量0.33亿吨,以全国年总能耗30亿吨标煤计算,达到了1。1%,若按暖通空调的一次能源消耗量10 亿吨标煤计算,达3.3%。同时每年可减少排放量达72万吨。 2。高效节能冬季,污水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 3。污水源参数 (1)污水水质问题城市污水包括工业废水,工业冷却水,及生活污水,而城市二级污水是经过一级物化处理和二级生化处理,去除了污水中大量的杂质,降低了污水的腐蚀度,更有利于污水中热能提取。 (2)污水水温保障城市污冬暖夏凉,常年温度稳定,污水水温在冬季比环境温度高15--20度,夏季温度比环境温度低10--15度。因此热泵具有良好的热源,污水源热泵系统利用温差在5度,因此污水源热泵空调系统完全可以在高效率运行。 (3)污水量的保证城市污水水量的变化主要是生活污水的变化,而生活污水的出水量基本保持不变。(4)污水换热器: 污水中含有大量油性污物,流经换热管时会产生挂膜现象,关闭黏结粘泥,从而增大换热热阻,影响换热效率,因此在设计污水换热时使污水走管程,同时设置自动反清洗装置,在换热器运行期间定时进行反冲洗,保证换热效率,提高热能利用 率。 4。综合分析 (1)污水源热泵系统运行稳定水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动,是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵系统运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问 题。 (2)一机多用此热泵系统可供暖、空调,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。城市污水源热泵系统利用城市污水,冬季取热供暖,夏季排热制冷,全年取热供应生活热水,夏季空调

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

污水源热泵系统与集中供热系统对比

污水源热泵系统与集中供热系统对比 原生污水源热泵原理: 在高位能的拖动下,将热量从低位热源流向高位热源的技术。它可以把不直接利用的低品位热能(如空气、土壤、水、太阳能、工业废热等)转化为可利用的高位能,从而达到节约部分高位能(煤、石油、天然气、电能等)的目的。 在制冷状态下,污水源热泵原理是通过压缩机对冷媒做工,使其进行汽——液转化的循环。通过蒸发器内冷媒的蒸发将由风机盘管循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷凝器内冷媒的冷凝,由水路循环将冷媒所携带的热量吸收,最终由水路循环转移至城市原生污水里。在室内热量不断转移至地下的过程中,通过风机盘管,以13℃一下的冷风的形式为房间供冷。 在制热状态下,污水源热泵原理是通过压缩机对冷媒做功,并通过换向阀将冷媒流动方向换向。由地下的水路循环吸收地下水或土壤里的热量,通过冷凝器内的冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过蒸发器内冷媒的冷凝,由风机盘管循环将冷媒所携带的热量吸收。在城市原生污水中的热量不断转移至室内的过程中,以35℃以上热风的形式向内供暖。 污水源热泵原理优势特点: 1)利用可再生能源,环保效益好 污水源热泵原理利用了城市原生污水中丰富的热量资源作为冷热源,进行能量转换的供暖制冷空调系统。城市原生污水是一个巨大的能量采集器,巨大的城市废热从市政污水管路中排出,这种储存于城市原生污水中的能源数以清洁的,可再生能源。 2)高效节能,运行费用低 污水源热泵原理是采用温度恒定的城市原生污水作为能源,能效比COP在4.5~5.0之间,比空气源热泵高出40%左右,污水源热泵机组运行费用比常规中央空调低30%~40%左右。 3)运行安全稳定,可靠性高 无燃烧设备,无爆炸隐患,使用安全。如使用燃油、燃气锅炉供暖,其燃烧产物对居住环境污染极重,影响人们的生命健康。污水源热泵机组利用常年温度稳定的城市原生污水,夏季不会向大气中排除废热,加剧城市的“热岛效应”;冬季不受外界气候影响,运行稳定可靠,不存在空气源热泵除霜和供热不足的问题。4)空调主机以及多用,便于布置,使用范围广泛 空调主机体积小,污水源热泵机组安装在储藏室等辅助空间,既可制冷,又可制热,也不需要高的入户电容量。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可替换原来的锅炉加空调的2套装置或系统;可应用于宾馆、

污水源热泵影响因素

1.影响热泵系统运行的因素 水量、水温、水质和供水稳定性是影响污水源热泵系统运行性能的重要因素。 1. 1污水流量对热泵系统的影响 在热泵机组运行时,若污水流量过低,不利于机组的安全运行;污水流量过高时循 环水泵的功率就会增大,耗电量增加。 假设其它条件不变分析水流量对热泵机组性能的影响。在制冷工况下,当增大水的流量时,换热器的出口水温就会降低,换热系数增大,从而制冷量增加。然而,当水的流量增加到一定值时,换热系数不再增加,制冷量达到一定值不再变化,如图1.1。同样的,在冬季工况下增大水的流量时,水侧换热系数增大,蒸发温度升高,从而制热量也会增加,如图1.2 水量也会对热泵COP产生一定的影响。如图1.3所示,在夏季制冷运行时,增加冷凝器的水流量会导致冷凝压力的降低,使得压缩机的输入功率降低,从而COP值增大。然而,当水的流量增加到一定值时,COP值的增加速率趋于稳定。同样地,图1.4中的冬季制热运行时,增加蒸发器中水量使得热泵COP值增大。因为在蒸发压力增加的同时,压缩机内蒸汽的比体积增加虽然会导致工质的质量流量增加,但压缩比减小又使得单位质量压缩功下降,两者作用相互抵消,使得压缩机输入功率增加的幅度较制热量增加的幅度小,所以COP值增加。 图1.1 夏季工况下水流量和进水温度对制冷量的影响

图1.2 冬季工况下水流量和进水温度对制热量影响 1. 2污水温度对热泵系统的影响 在夏季制冷工况下,污水源热泵机组使用污水作为冷源,水的温度越低越好;在冬 季工况下污水作为热源时,温度则是越高越好。而且蒸发温度要适度,不能过高,否则 会导致压缩机的排气温度过高,可能导致润滑油发生炭化。因此,污水温度在200 C左 右时机组的制热和制冷将处于最佳工况点。 水温对热泵COP值是有一定影响的。夏季制冷时,如果升高冷凝器入口处的水温,则会导致冷凝压力的增加,此时制冷量会降低,同时压缩机的功率会增大,COP值反而 下降,如图1.3所示。冬季以制热工况运行时,如果升高蒸发器入口处的水温,则会导 致蒸发压力的增加,制热量增大,此时压缩机功率的增加速度较为缓慢,热泵COP值 增大。然而,当水温增加到一定值时,热泵的COP值不再发生改变,如图1.4

水源热泵维护与保养

. ... .. 水源热泵空调机组 维 护 与 保 养 新中物业管理(中国) 分公司工程部 (

目录 第一部分操作程序 (3) 一转换状态设置 (3) 二开机前检查 (3) 三停机顺序 (4) 第二部分安全使用注意事项 (4) 第三部分维护保养 (7) 一机组保养工作容 (7) 二机组主要部件保养 (9) 三机组的常见故障及排除方法 (12) 四风机盘管机组的维护 (12) 五风机盘管机组的常见故障及排除方法 (14)

第一部分操作程序 一转换状态设置 水路切换式 1、夏天制冷状态操作顺序: ●先将水管路阀门转换至制冷位置。 ●在确保电源接通下,通过按“模式”键,将电脑设定为制冷状 态。 ●开机检查(见开机前检查项)合格后,按“”键,则开机。 2、冬天制热状态操作顺序: ●将水管路阀门转换至制热位置。 ●在确保电源接通下,通过按“模式”键,电脑设定为制热状态, 开机检查(见二)合格后,按“”键,则开机。 无论在开机或关机状态下,重复按模式键,可以在制冷/制 热/循环转换。 二开机前检查: ●检查水系统过滤器或除砂器:应无脏堵,保证水流畅通。 ●检查机组电控箱:电源连接线应无松动现象,要连接牢固;箱 应干燥、无杂物和灰尘。 ●检查电源电压:要符合机组的规定要求。 ●当机组水泵和空调主机连锁控制时,执行开机操作,按“”

键后,确保空调水泵和冷却水泵已开启,检查水流量:应符合开机要求。 ●当机组水泵和空调主机不连锁控制时,需要用户先确保空调水 泵和冷却水泵先开启,2-3分钟后再执行开机操作。 ●检查进出水水管路上压力表:表压要正常。 ●机房环境温度控制在5-35℃之间。 三停机顺序: ●当机组水泵和空调主机连锁控制时,直接按“”键后,机组 将自动执行停机操作。 ●当机组水泵和空调主机不连锁控制时,需要先按“”键后, 等压缩机停机3-5分钟后再停水泵 第二部分安全使用注意事项 1、发现下列现象时,应立即停机,将电源切断,检查修复。 A 各项保护开关无法切断电源时。 B 压缩机有不正常撞击声。 C 马达电流超过正常负荷百分之二十时。 D 高压表及低压表指数超过高低压自动开关所设定的压 力而不自动停机。

地源热泵优缺点及基本原理和参数

地源热泵的12大优势 由于地源热泵系统采取了特殊的换热方式,使它具有普通中央空调和锅炉不可比拟的优点: 一、高效节能 与锅炉(电、燃料)供热系统相比,土--气/水型地源热泵系统的转换效率最高可达4.7 。而锅炉供热只能将90%以上的电能或70~90%的燃料内能转换为热量供用户使用,因此它要比电锅炉加热节省2/3以上的电能,比燃料锅炉节省1/2以上的能量,运行费用为各种采暖设备的30-70%。由于土壤的温度全年稳定在10℃—20℃之间,其制冷、制热系数可达3.5—4.7,与传统的空气源热泵(家用窗式和分体式空调、中央式风冷热泵)相比,要高出40%以上,其运行费用仅为普通中央空调的50—60%。夏季高温差的散热和冬季低温差的取热,使得土--气型地源热泵系统换热效率很高。因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,从而达到节能的目的,其耗电量仅为普通中央空调与锅炉系统的40%—60%。 二、绿色环保 土--气/水型地源热泵系统在冬季供暖时,不需要锅炉,无废气、废渣、废水的排放,可大幅度地降低温室气体的排放,能够保护环境,是一种理想的绿色技术。 三、分户计费 实现机组独立计费,分户计表,方便业主对整个系统的管理。 四、使用寿命长

家用空调设计寿命8年,燃气锅炉为10年;土--气型地源热泵机组为50年,水循环和风管系统60年以上,地耦管路系统为70年,它比所有各种空调系统和采暖设备的寿命都要长。 五、节省建筑空间控制设备简单 土--气/水型地源热泵系统采用将地源热泵机组分散安装于各处所(居室、会所、办公室等)的方式,中央控制仅需选择水路控制,除去了一般中央空调集中控制所有参量的复杂环节,从而降低控制成本。在各分散安装单元(居室、会所、办公室)可根据用户要求设不同的体积很小的终端控制器,实现从最简单(起停、供暖、制冷三档)到复杂的可编程智能控制方式。 六、系统可靠性强 每台机组可独立供冷或供热,个别机组故障不影响整个系统的运行。机组的运行工况稳定,几乎不受环境温度变化的影响,即使在寒冷的冬季制热量也不会衰减,更无结霜除霜之虑。 七、同时供暖制冷 土--气/水型地源热泵系统可做到同时有的房间或区域制冷,有的房间或区域供暖,这对大型商业建筑尤其重要。采用传统中央空调系统只有使用造价极其昂贵的四管空调系统才能做到,而土--气型地源热泵不需增加任何设备便可做到。 八、维护费用低廉 土—气/水型地源热泵系统不带有室外安装的设备,不设冷却塔、屋顶风机,没有室外设备安装维护费用。压缩机工作稳定,不会出现传

污水源热泵文献综述

城市污水源热泵的探析 摘 要:随着全球气候变化、不可再生能源的日益枯竭问题的日益凸显,节能与环保重要性更加突出。城市污水作为一种清洁能源,对其所携带的废热的利用的研究受到国内外专家的关注。污水源热泵技术作为一种新型能源技术,可充分利用污水中得废热,实现污水的资源化。本文简要介绍了我国污水资源的现状,污水源热泵的工作原理、分类,污水源热泵系统在国内外研究现状,分析了污水热泵节能环保方面的优势,以及污水源热泵当前遇到的难题及解决方法。 关键词:节能环保; 污水源热泵; 废热利用; 经济 0、前言 随着经济的迅速发展、人口的增加、常规能源的大量消耗,能源供需形式日趋紧张。能源资源短缺对世界经济发展的约束性日益突出。据世界能源年鉴数据统计,截止到2010年,中国石油可采储量为148亿吨,占世界总量的1.1%,世界排名第14;天然气可采储量为2.8万亿立方米,占世界总量的1.5%,世界排名第14;煤炭储量为1145万吨,占世界总量的66.8%,世界排名第3。可见中国能源储量在总量十分丰富。但是人均水平却只相当于世界人均水平的 6.4%、5.6%、66.8%,人均资源储量非常,远远低于世界水平。 20世纪50年代以来,中国的能源工业开始发展,特别是改革开放以后,能源的开采和供给能力不断的增强,促进经济的快速发展;20世纪90年代末,能源对外开放和投入的增加缓解了能源对经济发展的制约。1993年,中国成为石油净进口国,1996年中国成为原油净进口国;21世纪以来,能源供需形势又日趋紧张,中国经济面临着能源的严重挑战 [1]。中国能源的开采和供需面临着资源约束,特别石油是对外依存度的提高[2]。 能源的短缺严重制约着中国经济的发展,开发洁净能源和可再生能源越来越受到国内外专家学者的关注。高污染、高耗能、低效益的发展模式不仅极大的浪费了一次性资源,对环境的污染也非常严重,因而改善能源结构、提高能源利用率尤为重要。对开发地热能、太阳能等新能源、煤炭净化、余热回收等研究的推广称为如今的热点。 一.余热利用 余热利用是指回收生产工艺过程中排出的具有高于环境温度的气态(如高温废气)、液态(如冷却水、生活废水)、固态(如各种高温钢材)物质所载有的热能,并加以重复利用的过程。余热是能源利用过程中没有被利用的、废弃的能源,它包括高温废气余热、冷却介质余热、废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余热等七种。 我国余热普遍存在,特别冶金、化工、纺织等行业的生产过程中、城市排放生活污水中存着这丰富的余热资源。这些余热余压以及其它没有得到利用的余能不仅造成能源的浪费,而且还污染了环境。 1.1工业余热 统计数据表明,我国工业余热资源的回收率仅为33.5% [3]。回收利用潜力巨大。城市消耗了全球近60% 的水资源,它排放的污水中的余热巨大,回收价值高。 工业余热按照能量形态分为三大类,即载热性余热、可燃性余热和有压性余热。 (1)载热性余热 载热性余热指的是工业生产过程中排出的废气和物料、产物等所带走得高温热以及化学反应热等。例如:燃气轮机、内燃机等动力机械的排气,钢厂产品所携带的热,钢厂厂冷却水、凝结水所携带的显热,炉窑产生的高温烟气、高温炉渣、高温产品等。 (2)可燃性余热

地源热泵技术原理及其优缺点

地源热泵技术介绍 一、什么是热泵 热泵是一种能从自然界的空气、水或土壤中获取低品位热,经过电力做功,输出可用的高品位热能的设备,可以把消耗的高品位电能转换为3倍甚至3倍以上的热能,是一种高效供能技术。热泵技术在空调领域的应用可分为空气源热泵、水源热泵以及地源热泵三类。由于热泵是提取自然界中能量,效率高,没有任何污染物排放,是当今最清洁、经济的能源方式。在资源越来越匮乏的今天,作为人类利用低温热能的最先进方式,热泵技术已经在全世界范围内受到广泛关注和重视。 二、什么是地源热泵 地源热泵(也称地热泵)是利用地下常温土壤和地下水相对稳定的特性,通过深埋于建筑物周围的管路系统或地下水,采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移与建筑物完成热交换的一种技术。 三、地源热泵的结构 地源热泵空调系统主要分为三个部分:室外地能换热系统、水源热泵机组系统和室内采暖空调末端系统。其中水源热泵机组主要有两种形式:水-水型机组或水-空气型机组。三个系统之间靠水或空气换热介质进行热量的传递,水源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 四、地源热泵的基础原理 地源热泵原理是:冬季,热泵机组从地源(浅层水体或岩土体)中吸收热量,向建筑物供暖;夏季,热泵机组从室内吸收热量并转移释放到地源中,实现建筑物空调制冷。根据地热交换系统形式的不同,地源热泵系统分为地下水地源热泵系统和地表水地源热泵系统和地埋管地源热泵系统。 1、地源热泵制热原理 地源热泵系统在制冷状态下,地源热泵机组内的压缩机对冷媒做功,使其进

行汽-液转化的循环。通过冷媒/空气热交换器内冷媒的蒸发将室内空气循环所携带的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/水热交换器内冷媒的冷凝,由循环水路将冷媒中所携带的热量吸收,最终通过室外地能换热系统转移至地下水或土壤里。在室内热量通过室内采暖空调末端系统、水源热泵机组系统和室外地能换热系统不断转移至地下的过程中,通过冷媒-空气热交换器(风机盘管),以13℃以下的冷风的形式为房供冷。 2、地源热泵制冷原理 地源热泵系统在制热状态下,地源热泵机组内的压缩机对冷媒做功,并通过四通阀将冷媒流动方向换向。由室外地能换热系统吸收地下水或土壤里的热量,通过水源热泵机组系统内冷媒的蒸发,将水路循环中的热量吸收至冷媒中,在冷媒循环的同时再通过冷媒/空气热交换器内冷媒的冷凝,由空气循环将冷媒所携带的热量吸收。在地下的热量不断转移至室内的过程中,以室内采暖空调末端系统向室内供暖。

污水源热泵系统工程技术要求规范

实用文档 污水源热泵系统工程技术规 (草拟稿) Technical code for sewage source air-conditioning system 起草单位:广西瑞宝利热能科技 起草人:昊

目录 1 总则 (2) 2 术语 (3) 3 工程勘察 (4) 4 污水换热系统设计 (6) 5 室系统 (12) 6、整体运转、调试与验收 (13) 7、附录A 换热盘管外径及壁厚 (15)

1 总则 1.0.1 为使污水源热泵系统工程设计、施工及验收,做到技术先进、经济合理、安全适用,保证工程质量,制定本规。 1.0.2 本规适用于以污水源为低温热源,以污水为传热介质,采用蒸汽压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。 1.0.3 污水源热泵系统工程设计、施工及验收除应符合本规外,尚应符合国家现行有关标准的规定。

2 术语 2.0.1 污水源热泵系统sewage source heat pump system 以污水源为低温热源,由污水换热系统、污水源热泵机组、建筑物系统组成的供热空调系统。 2.0.2 污水源sewage source 含有固体悬浮物的城市污水、江河湖水、海水等,统称污水源。 2.0.3 污水源热泵机组sewage source heat pump unit 以污水或与污水进行热能交换的中介水为低温热源的热泵。 2.0.4 污水换热系统sewage heat transfer system 与污水进行热交换的污水热能交换系统。分为开式污水换热系统和闭式污水换热系统。 2.0.5 开式污水换热系统open-loop sewage heat transfer system 污水在循环泵的驱动下,经处理后直接流经污水源热泵机组或通过中间换热器进行热交换的系统。 2.0.6 闭式污水换热系统closed-loop sewage heat transfer system 将封闭的换热盘管按照特定的排列方法放入具有一定深度的污水体中,传热介质通过换热管管壁与污水进行热交换的系统。 2.0.7 传热介质heat-transfer fluid 污水源热泵系统中,通过换热管与污水进行热交换的一种液体。一般为水或添加防冻剂的水溶液。 2.0.8 城市原生污水city original sewage 污水渠中未经任何处理的城市污水称为城市原生污水。 2.0.9 污水换热器sewage heat exchanger 在含污水源热泵系统中,从污水中吸取热量或释放热量的换热设备。 2.0.10 中介水intermediate water 污水换热器中与污水换热的清洁水,视需求其中可加防冻液。 2.0.11 污水防阻机defend against hinder machine 含污水源热泵系统中分离污水中的悬浮物,防止悬浮物阻塞管路与设备的一种专利产品。

浅析国内污水源热泵

浅析国内污水源热泵 城市污水是由工业废水和生活污水组成,水量巨大,是一种蕴含丰富低位热能的可再生热能资源,污水源热泵空调系统则是以城市污水作为建筑的冷热源,解决建筑物冬季采暖、夏季空调和全年热水供应的重要技术,也是城市污水资源化开发利用的思路和有效途径。同时减少了城市废热和CO2、SO2、NOX、粉尘等污染物的排放。 专家介绍,污水源热泵系统是我国当前各类热泵技术中发展和应用前景最被看好的一种。目前,该技术较为成熟,国内外工程实例很多,20世纪80年代初在瑞典、挪威等北欧国家就已经开始对污水源热泵技术的应用,而现在我国污水源热泵也得到一定程度的应用。数据统计显示,应用污水源热泵系统比电锅炉加热节省2/3以上的电能,比传统的燃煤锅炉节省l/2以上的煤炭资源。由于污水源热泵的热源温度全年较为稳定,其制冷、制热系数比传统的空气源热泵高出40%左右,其运行费用仅为普通中央空调的50-60%。 虽然污水源热泵系统的应用前景被看好,但是还有几个问题急需要解决。污水源热泵系统污水的取水和换热是污水源热泵技术中的关键问题。在污水取水技术上,我国已经形成具有自主知识产权的多种污水取水技术,成功的解决了城市原生污水和污水厂二级处理污水取水问题。在污水换热技术上,我国则刚刚起步,许多问题等待解决。 首先,从污水源热泵技术的换热器结构设计的角度,由于城市污水的非牛顿特性和复杂性,其年度特性的测定非常困难,污泥污垢导热性能也难以测试,因此增加了污水换热器的设计难度,在设计污水换热器时目前只能进行估算,黏度取清水的10倍以上。其次,从国内外现有强化换热技术看,污水侧换热管内置毛刷和弹簧的清污方法尽管提高了污水换热效率,但也增加了内置物被污泥粘住、发生换热管路堵塞的问题;循环流化床除污和强化换热技术也存在长期运行后清污小球是否被污泥粘住、不能继续工作的问题。而对于城市污水在管外强化换热的问题,目前国内外基本是处于空白状态。另外,从污水源热泵技术发展过程中人们的工作重点看,人们普遍重视该技术工程应用类问题的研究和开发,而污水污水换热过程中污水流动特性、污泥污垢生长和去除、污水换热和强化换热等关键基础性问题的研究处于刚刚起步阶段,而该类问题的研究和解决必将是解决工程应用问题的前提和基础。 专家认为,污水换热器污水侧除污与强化换热是目前污水源热泵技术在解决稳定取水问题后,又一个迫切需要解决的关键问题,它直接关系到污水源源热泵技术系统在全年运行能耗的高低,关系到该项技术的实际节能效果,关系到污水换热设备结构大小和设备投资,关系到污水源热泵技术进一步推广应用。

水源热泵分析

水源热泵供暖系统供水温度的确定 因为水源热泵供暖系统能够将通常情况下不能被直接利用的低位热能从水源中取出,提升后并加以利用,具有良好的节能环保特性。现针对利用水源热泵系统进行供暖时,其供水温度的选择问题进行分析。 1、供水温度对水源热泵机组运行的影响 在冬季供暖工况下,如果水源热泵低温热源侧的进出口水温不变,则水源热泵的供水温度越高,其制热性能系数(cop值)就越低,提供相同的热量所需的运行费用就越高。COP=38.126△t-0.633,△t=(th.i+th.o)/2-(tc.i+tc.o)/2 2、合理的供水温度选择 通过上面的计算可知,利用水源热泵机组进行冬季供暖时,供水温度越低,机组的cop值就越大,经济性越好,但供水温度也不能太低,否则将导致末端散热设备过大或无法满足散热设备对供水温度的内在要求。显然合理的供水温度应该是既能满足用户的用热需求,同时又有最佳的经济性。 3、如果水源热泵机组供水温度过高,水流量不变的情况下,蒸发压力即吸气压力会增加,同样的对应的制热量也会增加,消耗功率也会增加。,主要原因是因为对机组而言,过高的蒸发器水体温度,会导致蒸发压力过高,而对特定的冷煤系统在应用过程中,冷凝压力是一个定值,这个时候压差比就比较小,压差比小就意味着压缩机而言回油会受到很大的影响,无法保证热泵系统的正常工作,温度过高也会烧坏压缩机。

解决设想方案 日本在1980年代开展了超级热泵计划,开发出4类热泵,其中有利用45度余热水,制热出水温度85的中高温热泵,以及利用80度余热水,产出150度蒸汽的高温热泵。 欧洲有采用改进离心压缩机性能技术路线的高温热泵,采用R134a制冷剂,三级离心压缩模式,制热出水温度可以达到85度。 一般需要解决以下几个关键技术问题。 1.压缩机的选择:热泵设备常用的压缩机类型主要是螺杆压缩机、全封闭涡旋压缩机与半封闭活塞压缩机等,经过对不同类型压缩机工作特性进行比较研究,高温热泵设备一般选用全封闭涡旋压缩机。 2.工质的选择:为保证高温热泵设备在稳定的可允许的工作压力下运用,采用特殊的制冷剂为工质,换热效率高并对环境无污染,对臭氧层无破坏作用。 3.氟路系统控制的优化:保证整体机组的长时间高温稳定运行和使用寿命,并根据环境温度和蒸发温度,自动调节高温空气热泵设备运行工作状态和调件。

热泵

热泵技术及其发展现状 摘要:本文从热泵的定义入手,介绍了它的原理,、节能和环境效益,比较它与制冷机的区别,给出了热泵的热力学循环原理图,并介绍了热泵的分类方法以及一些常用热泵的原理图。最后介绍了我国的热泵发展情况,提出了未来的计划和要达到的目标。 关键词:热泵;节能;环境;分类;现状 1热泵的节能与环境效益 1.1热泵定义 热泵是一种以消耗部分能量作为补偿条件使热量从低温物体转移到高温物体的能量利用装置。热泵能把空气、土壤、水中所含的不能直接利用的热能、太阳能、工业废热等转换为可以利用的热能。在暖通空调工程中可以用热泵作为空调系统的热源来提供100℃以下的低温用能。 根据热力学第二定律,热量是不会自动从低温区向高温区传递的,必须向热泵输入一部分驱动能量才能实现这种热量的传递。热泵虽然需要消耗一定量的驱动能,但根据热力学第一定律,所供给用户的热量却是消耗的驱动能与吸收的低位热能的总和。用户通过热泵获得的热量永远大于所消耗的驱动能,所以说热泵是一种节能装置。热泵的制热量与热泵的驱动能量之比称为热泵的制热系数,常用来分析热泵的经济性。 热泵与制冷机从热力学原理上说是相同的,都是按热机的逆循环工作的。两者所不同的是使用的目的不同。制冷机利用吸取热量而使对象变冷,达到制冷的目的;而热泵则是利用排放热量向对象供热,达到供热目的。另外,两者的工作温度温度范围也不同,如图1-1所示。 制冷机在环境温度和被冷却物温度之间工作,从作为低温热源的被冷却物质中吸热,向 作为高温热源的环境介质排热,以维持被冷却物温度低于环境温度。热泵在被加热物体温度和环境温度之间工作,从作为低温热源的环境介质中吸热,向作为高温热源的被加热物 体供热,以维持被加热物体温度高于环境温度。 1.2热泵的节能效益 被加热物体温度 环境温度 被冷却物体温度

相关主题
文本预览
相关文档 最新文档