当前位置:文档之家› 基于PLC的矿井通风机变频控制系统设计毕业设计论文

基于PLC的矿井通风机变频控制系统设计毕业设计论文

基于PLC的矿井通风机变频控制系统设计毕业设计论文
基于PLC的矿井通风机变频控制系统设计毕业设计论文

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

学位论文独创性声明

本人郑重声明:所呈交的学位论文系本人在导师指导下独立完成的研究成果。尽我所知,除了文中特别加以标记和致谢的部分外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含本人为获得任何教育机构的学位或学历而使用过的材料。与我一同工作的同事对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。

本人如违反上述声明,愿意承担由此引发的一切责任和后果。

研究生签名:日期:年月日

学位论文使用授权声明

本人在导师指导下所完成的学位论文,学校有权保存其电子和纸制文档,可以借阅或上网公布本学位论文的全部或部分内容,可以向有关部门或机构送交并授权其保存、借阅或上网公布本学位论文的全部或部分内容。对于保密论文,按保密的有关规定和程序处理。

本学位论文属于:

1. 保密 ,在年解密后适用于本声明;

2.不保密 。

研究生签名:导师签名:日期:年月日

毕业论文基本要求

1.毕业论文的撰写应结合专业学习,选取具有创新价值和实践意义的论题。

2.论文篇幅一般为8000字以上,最多不超过15000字。

3.论文应观点明确,中心突出,论据充分,数据可靠,层次分明,逻辑清楚,文字流畅,结构严谨。

4.论文字体规范按《广东金融学院本科生毕业论文写作规范》和“论文样板”执行。

5.论文应书写工整,标点正确,用微机打印后,装订成册。

教研室(或答辩小组)及教学系意见

目录

1 绪论 (1)

1.1矿井通风系统简介 (1)

1.2国内外研究状况 (2)

1.3课题的主要研究内容 (3)

2 通风系统及主扇风机控制方案 (5)

2.1通风系统的设计方案 (6)

2.2矿井主扇风机的控制方案 (7)

2.2.1 矿井主扇风机概述 (7)

2.2.2 矿井主扇风机的供电系统 (8)

3 系统硬件构成及各部分功能 (9)

3.1PLC可编程控制器部分 (9)

3.1.1 PLC概述 (9)

3.1.2 PLC的应用 (10)

3.1.3 典型的PLC产品 (11)

3.1.4 PLC外部 I/O 连接 (11)

3.1.5 I/O接线图 (13)

3.2变频器 (14)

3.3变频器的选型和容量的确定 (15)

3.4离心风机 (16)

3.5模数转换模块 (17)

4 通风系统硬件的设计 (18)

4.1硬件电路 (18)

4.2系统控制电路设计 (19)

5 软件设计 (20)

5.1通风系统的主要参数监控 (20)

5.2瓦斯浓度控制 (21)

5.2压力的监测 (22)

5.3温度的监测 (24)

5.4流量的监测 (25)

5.5电气参数的测量与监测 (26)

5.6振动的监测 (26)

5.7信号采集设备 (27)

6 矿井通风机远程监控系统设计 (27)

6.1矿井通风机自动监控系统的功能 (27)

6.2通风机自动监控系统的技术指标 (28)

6.3通风机自动监控系统的整体结构 (28)

6.4通风机自动监控系统运行方式 (29)

7 矿井通风机自动监控系统硬件设计 (30)

7.1 系统的组成和特点 (30)

7.2风机参数的监测 (31)

7.3风机监控系统所需监控的输入输出量 (32)

总结 (33)

致谢 (35)

参考文献 (36)

附录A (37)

1 绪论

1.1矿井通风系统简介

矿井通风系统是矿井通风方式、通风方法和通风网络的总称,基本任务是:供给井下足够的新鲜空气,满足人员对氧气的需要,冲淡井下有毒有害气体和粉尘,保证安全生产,调节井下气候,创造良好的工作环境,所以本设计主要是对通风系统内的风压风量及瓦斯浓度的控制。矿井通风系统由影响矿井安全生产的主要因素所决定。根据相关因素把矿井通风系统划分为不同类型。根据瓦斯、煤层自燃和高温等影响矿井生产安全的主要因素对矿井通风系统的要求,为了便于管理、设计和检查,把矿井通风系统分为一般型、降温型、防火型、排放瓦斯型、防火及降温型、排放瓦斯及降温型、排放瓦斯及防火型、排放瓦斯与防火及降温型几种,依次为1-8八个等级。矿井通风方式有串联通风和并连通风两种。

按进回风巷在井田位置不同,通风系统分为中央式、对角式、分区式和混合式矿井通风系统。

矿井通风系统是由通风机和通风网络两部分组成。风流由入风井口进入矿井后,经过井下各用风场所,然后进入回风井,由回风井排出矿井,风流所经过的整个路线称为矿井通风系统。

矿井通风方法以风流获得的动力来源不同,可分为自然通风和机械通风两种。(1)自然通风:利用自然气压产生的通风动力,致使空气在井下巷道流动的通风方法叫做自然通风。自然风压一般都比较小,且不稳定,所以《煤矿安全规程》规定:每一矿井都必须采用机械通风。(2)机械通风:利用扇风机运转产生的通风动力,致使空气在井下巷道流动的通风方法叫做机械通风。采用机械通风的矿井,自然风压也是始终存在的,而且也并在各个时期内影响着矿井的通风工作,在通风管理工作中应给予充分重视。矿井通风系统的基本要求是:

1.每个矿井,至少要有两个通到地面的安全出口。

2.进风井口要有利于防洪,不受粉尘,有害气体污染。

3.北方矿井、井口需装供暖装备。

4.总回风巷不得作为主要人行道。

5.工业广场不得受扇风机噪音干扰。

6.装有皮带机的井筒不得兼作回风井。

7.装有箕斗的井筒不应作为主要进风井。

8.可以独立通风的矿井,采区应尽量独立通风,不宜合并一个通风系统。保证系统能够独立地进行工作,这样当一个矿井出现故障时,另一个矿井的通风工作不受影响。使生产不受大面积的受阻。

9.通风系统要为防治瓦斯、火、尘、水及高温创造条件。

10.通风系统要有利用深水平或后期通风系统的发展变化。

1.2国内外研究状况

矿井通风系统分析技术现状煤矿通风系统是保障安全生产的基础同时又受制于煤层地质条件及由此形成的矿山井巷系统的特点。近年来煤矿扩能及生产的集约化成为了普遍的趋势矿井装备水平迅速提高系统有了明显的简化。但是现在仍有大量开采多年的老矿系统极为复杂大量新井产能的高度集中造成了系统新的隐患矿井在日常生产中所遵从的分区通风格局抗灾能力不足在强烈的扰动面前有可能形成严重的风流紊乱因而需要有预先的判断和分析矿井主扇和通风构筑物作为矿井通风系统的重要构成部分其参数选取、布局、可靠性等均对系统的合理运行起着重要的作用。因此矿井通风系统的合理性、可靠性和抗灾能力分析对于防止通风瓦斯及煤层自燃等意外的出现对于矿井预防处理通风瓦斯意外及灾变的能力对于提高矿井安全管理水平均有着重要的作用。

我国煤矿的重、特大瓦斯事故所造成的井下人员大量伤亡均源于通风系统抗灾能力不足致使正常生产时的分区通风在瓦斯爆炸条件下受到破坏爆炸气体进入了爆源以外的广泛区域使其他通风分区乃至全矿井下的人员中毒死亡。研究瓦斯爆炸对分区通风的破坏机理对瓦斯爆炸条件下通风系统的抗灾能力予以定量评价和分级研究灾变条件下维持分区通风的条件和相应措施对于提高通风网络的抗灾能力有着现实的意义。煤矿安全规程对煤矿通风有严格的要求和限制特别在高突矿井明确禁止使用串联通风。因此以各采掘工作面为核心的分区通风成为了煤矿通风的基本规定和实践。在矿井灾变条件下维持正常分区通风的能力是评价矿井通风系统抗灾能力的基本考虑因素。除巷道布置这一重要但难以调整的因素之外分区通风及风量分配调节主要依靠于风门、风窗等通风设施的应用其类型、数量、分布上的合理性是影响通风系统合理性的基本因素扇风机及通风构筑物受矿井生产活动及灾变影响而失去原定功能时矿井通风维持在合理水平上的能力则是通风系统可靠性的重要标志。矿井通风是一个古老的技术领域但对灾变条件下维持分区通风的相关技术、特别对于瓦斯爆炸与通风系统的相互作用缺乏必要的理论与实验研究。我国瓦斯爆炸频发许多爆炸力学工作者对气相爆轰进行过深入研究瓦斯爆炸方面的文献十分丰富但现有的成果与煤矿井下的实际尚有较大差距如井下特有的结构设施、巷道特征等等研究煤矿井下结构设施与瓦斯爆轰波及冲击波相互作用的成果较少井下通风设施抗爆强度的理论研究基本是空白现有的文献多限于事故现象的简单描述。深入系统地研究煤矿井下瓦斯燃爆的物理机制及其灾害效应对于正确评价分析煤矿预防瓦斯爆炸安全等级、科学地改进井下通风设施和巷道布置具有极其重要的学术价值和实际意义。在此基础上模拟了氢氧燃烧驱动的破膜过程以及破膜前后压缩波、稀疏波对火焰阵面的影响。同时也研究了瓦斯爆炸过程中压力波、火焰与障碍物的相互作用。近几年国内学者开展了瓦斯煤尘爆炸机理、传播规律及防治对策的研究工作同时也揭示了瓦斯

爆炸火焰的结构特征及其影响因素揭示了瓦斯爆炸过程中爆炸波的特征参数变化规律及其影响因素开展了壁面热效应对瓦斯爆炸传播规律影响作用的实验研究建立了管内瓦斯爆炸能量平衡方程。通过理论分析、数值模拟和实验研究煤矿井下巷道条件对瓦斯爆炸及其冲击波衰减的影响规律研究各种通风设施结构与爆轰波、冲击波的相互作用研究各种通风设施结构在冲击波载荷下的破坏过程和极限强度将能够对矿井分区通风的抗灾能力对矿井通风系统的合理性、可靠性及抗灾能力予以定量的评价和分级这些都是当前该研究领域的前沿课题。

1.3 课题的主要研究内容

煤矿矿井通风系统是煤矿矿井安全生产的重要组成部分,煤矿矿井通风系统能否正常工作与矿井内工作环境条件、生产效率、安全生产密切相关。随着我国政府对各行各业安全生产监管力度的不断加强,尤其对煤矿安全生产的要求越来越高,对煤矿矿井通风系统进行技术改造,提高其运行稳定性、可靠性、节能降耗等势在必行。

目前煤矿矿井通风系统的控制系统,大多仍采用继电、接触器控制系统,但这种控制系统存在着体积大、机械触点多、接线复杂、可靠性低、排除故障困难等很多的缺陷;如果工作通风机不采用变频控制,那么矿井通风量的调节方法,只能依靠两个垂直风门提起的高度,和调节风机扇叶的数量和角度。那么主通风机就会一直高速运行,备用通风机停止,不能轮休工作,易使工作通风机产生故障,降低使用寿命,也会造成很大的能源浪费。

针对这一系列问题,随着电子技术和微电子技术的迅速发展,PLC和变频器正成为通用、廉价和性能可靠的控制和驱动设备,得到广泛的应用。本系统将 PLC 与变频器有机地结合起来,采用以矿井气压压力为主控参数,实现对电动机工作过程和运转速度的有效控制,使矿井中用的离心通风机通风高效、安全,达到了明显的节能效果。由PLC控制的变频调速离心风机的通风系统,具有较高的可靠性和较好的节能效果,易于组建成整体的自控系统,很方便地实现各种控制切换和远程监控。PLC控制系统还具有对驱动风机的电机过热保护、故障报警、机械故障报警和瓦斯浓度断电等功能特点,为煤矿矿井通风系统的节能技术改造提供一条新途径。

因此本论文以矿井对旋轴流风机为研究对象,以西门子S7-200 可编程逻辑控制器作为监控核心,运用温度,压力,振动等传感器和电量采集单元对风机运行状态以及各种电量参数进行检测。同时,利用PLC和上位机之间的通信实现通风机运行的在线监控。本论文还讨论了利用变频器控制通风机的变频运行,实现风机的高效节能运行。具体地说,本论文的主要研究内容如下:1实现信号采集与实时监测,包括风机的运行状态、故障状态、负压、流量、轴承振动、轴承温度、定子温度、电压、电流、功率、效率等。

2控制系统能实现风机手动和自动变频运行的切换,使风机处于工频或变频

运行状态。在变频运行时,该系统能根据压力传感器的模拟量输入,经PLC内部运算,计算出系统满足安全生产所需的风量大小对应的变频器输入电压值,经扩展模块模拟量输出控制变频器自动调整风机的转速。

3本系统能实现多种报警功能,如风机定子,轴承温度超限,电动机振动异常报警,以及变频器出现故障及时报警,及时处理的功能。

4 用工程制图软件绘制系统主电路图和PLC及扩展模块接线图。

5 用STEP7-Micro/WIN编程软件编出PLC梯形图。

6 用PROFIBUS-DP现场总线和工业以太网完成对PLC通信网络的组建。

7模拟风机运行情况,用组态王软件绘制煤矿主通风机在线监测系统主界面和PLC控制变频器调速系统主界面。并生成性能参数实时曲线和历史趋势曲线,监测数据归档、数据报表查询及打印,以及瓦斯浓度、风量、风压等监控量的趋势曲线、超限报警和数据报表功能。

2 通风系统及主扇风机控制方案

本论文设计的矿井主扇风机的控制主要是对风压、风量及瓦斯浓度的的调节和控制两部分。

风机风量的调节中引入变频器对风机风速的调节,据所需风量和风压大小通过变频器来调节风机的转速在节能和提高风机效率方面具有无与伦比的优点。本控制系统具有离心通风机组的启动、互锁和过热保护等功能。与常规继电器实施的通风系统相比,PLC系统具有故障率低、可靠性高、接线简单、维护方便等诸多优点,PLC的控制功能使通风系统的自动化程度大大提高,减轻了岗位人员的劳动强度。PLC和变频器与空气压力变送器配合使用,使系统控制的安全性、可靠性大大提高,也使通风机运行的故障率大大降低,不仅节约了电能,而且还提高了设备的运转率。为满足矿井通风系统自动控制的要求,系统的具体设计要求如下:

(1)本系统提供手动/自动两种工作模式,具有状态显示以及故障报警等功能。

(2)模拟量压力输入经PID运算,输出模拟量控制变频器。

(3)在自动方式下,当井下压力低于设定压力下限时,两组风机将同时投入工作运行,同时并发出指示和报警信号。

(4)模拟量瓦斯输入,当矿井瓦斯浓度大于设定报警上限时,发出指示和报警。当瓦斯浓度大于设定断电上限时,PLC将切断工作面和风机组电源,防止瓦斯爆炸。

(5)运用温度传感器测定风机组定子温度或轴承温度,当定子温度或轴承温度超过设定报警上线时,发出指示和报警信号。当定子温度或轴承温度超过设定风机组转换温度界线时,PLC将切断指示和报警信号并自动切断当前运行风机组,在自动方式下并能自动接入另一台风机组运行,若在手动方式下,工作人员手动切换。

(6)为防止离心风机的疲劳运行,在任何状态下,风机在累计运行设定时间后都会自动切换至另一台风机组运行。下图是通风系统原理框图。

图2.1 通风系统原理框图

2.1通风系统的设计方案

本通风控制系统主要由 2 台离心风机组成,每台离心风机有两台电机,每台电机驱动一组扇片,两组扇片是对旋的,一组用于吸风,一组为增加风速,对井下进行供风。根据井下用风量的不同,采用不同型号的风机。本设计以风机 2 ×45 kW 为例,选用一台S7—200 PLC、空气压力传感器和变频器等组成一个完整的闭环控制系统。其中还包括接触器、中间继电器、热继电器、矿用防爆型磁力启动器、断路器等系统保护电器,实现对电机和 PLC的有效保护,以及对电机的切换控制。下图为通风系统的方案图。

图2.2 通风控制系统方案图

本PLC控制系统具有对通风机的电动机启动与运行,进行监控、联锁和过热保护等功能。PLC与空气压力变送器配合使用,使系统控制的安全性、可靠性大大提高,也使通风机运行的故障率大大降低,提高了设备的运转率。

为满足煤矿矿井通风系统自动控制的要求,设计如下的控制方案:本系统提供手动 /自动两种工作模式,具有现场控制方式、状态显示以及故障报警等功能。

在手动方式下,通风机通过开关进行控制,不受矿井内气压的影响。为防止通风机疲劳运行,在任何状态下风机在累计运行设定时间后要切换至另一台风机运行。A组离心通风机与B组离心通风机可由二位开关转换。循环次数及定时时间可根据需要随机设定。报警信号均为声光形式,声报警 (电笛 )可用按钮解除 ,报警指示在故障排除后自动消失。

在自动方式下,利用远传空气压力传感器检测矿井内的气压信号,用变送器将现场信号变换成统一的标准信号 (如 4~20 mA 直流电流信号、0 ~5 V直流电压信号等 ),送入 A /D 转换模块进行模数转换,然后送入 PLC,PLC将检测到的气压值与设定的气压值进行比较和处理,输出信号控制通风机工作。当矿井内的气压在一个大气压或在设定的某个大气压力数值以上,工作离心通风机与备用离心通风机循环工作;当出现突发事故,矿井内的气压低于设定的某个大气压力数值,工作离心通风机与备用离心通风机不再循环工作,并自动切换为同时工作,加大对矿井内的通风量,直至矿井内的气压升至设定的大气压力数值以上,工作通风机与备用离心通风机恢复循环工作。

在有瓦斯的矿井供风系统中,矿井内的瓦斯浓度传感器检测瓦斯浓度,用变送器将现场信号变换成统一的标准信号,送入 A /D 转换模块进行模数转换,然后送入 PLC,同样 PLC将检测到的数值与设定的数值进行比较,当瓦斯浓度大于设定数值后,PLC输出信号控制通风机停止工作,并输出信号自动切断井下的电源,满足风电联锁要求,以免电子火花点着瓦斯,防止瓦斯爆炸事故发生。2.2 矿井主扇风机的控制方案

2.2.1 矿井主扇风机概述

地面主扇风机其整体性好,并且采用内置防爆电机拖动,不受外界干扰。风机的主要特点是:

1、本设计采用电机与叶轮直联的方法,简化了传动结构,改变了当前煤矿抽出式轴流风机全部采用皮带轮传动或长轴传动的复杂结构,使维修和操作方便。

2、本设计配套电机为YB系列的YBFe派生系列,隔爆型三相异步电机。电机置于全封闭型,并具有一定耐压强度的密闭散热罩中并于外界非瓦斯气相通。使电机始终处于无瓦斯空气之中运行,起到了双重隔爆效果。

3、风机与扩散器之间设置后导叶,以提高静压效率,使得节能效果显著。

与目前使用的局扇群相比,可节电六倍,与离心式风机相比可节电40%。

4、该机可以反转反风,不必另设反风道,具有节约基建投资和反风速度快的优点。

5、叶轮的叶片安装角度可以调整,其范围为:30度、33度、36度、39度、42度五个角度级。在使用同一规格风机中,可根据生产扩大的要求来调整叶片安装角度。

6、该机配置了防止摩擦火花装置,确保了整机安全防爆性能。

7、该机采用特殊设计,性能曲线无驼峰,在任何网络阻力情况下,均能稳定运行。

2.2.2 矿井主扇风机的供电系统

风机的供电系统采用了室外箱式一体化结构。按功能划分为高压配电室,低压配电室,变压器室。

风机系统的主要设备:

(1)高压电机:高压电机:每台风机安装有两台6kv高压异步电动机,电机容量为315kW。电机安装了三相定子和前后轴承温度传感器。

(2)变压器:为了保证附属设备的可靠工作,安装了两台50kva,为低压柜供电。变压器安装了温度监控器,监控3相温度,当温度超限能自动启停风机降温。

(3)进线柜:包括两台进线柜,为风机系统的两台进线开关。

(4)联络柜:实现风机供电系统的母线联络。

(5)换向柜:两台换向柜,由接触器组成。主要实现两台风机电机的正反转。

(6)箱变房:采用一体化设计,外观整洁大方,按功能划分为高压配电室,低压配电室,变压器室,PLC控制室。

3 系统硬件构成及各部分功能

3.1 PLC可编程控制器部分

3.1.1 PLC概述

PLC即可编程控制器(Programmable logic Controller,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(International Electrical Committee)颁布的PLC标准草案中对PLC做了如下定义:PLC英文全称Programmable Logic Controller,中文全称为可编程逻辑控制器,定义是:一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程,PLC是可编程逻辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC。

PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

(1)CPU的构成

CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC 的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程。

CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。

CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,I/O 数量及软件容量等,因此限制着控制规模。

(2)I/O模块

PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。

常用的I/O分类如下:

开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。

模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

除了上述通用I/O外,还有特殊I/O模块,如热电阻、热电偶、脉冲等模块。

按I/O点数确定模块规格及数量,I/O模块可多可少。但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。

(3)电源模块:PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC 或110VAC),直流电源(常用的为24VDC)。

3.1.2 PLC的应用

(1)在制造工业(以改变几何形状和机械性能为特征)和过程工业(以物理变化和化学变化将原料转化成产品为特征)中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。传统上,这些功能是通过气动或电气控制系统来实现的。1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字公司研制出了基于集成电路和电子技术的控制装置,使得电气控制功能实现的程序化,这就是第一代可编程序控制器,英文名字叫Programmable Controller (PC)。

(2)随着电子技术和计算机技术的发生,PC的功能越来越强大,其概念和

内涵也不断扩展。

(3)上世纪80年代,个人计算机发展起来,也简称为PC,为了方便,也为了反映或可编程控制器的功能特点,美国A-B公司将可编程序控制器定名为可编程序逻辑控制器Programmable Logic Controller(PLC),并将“PLC”作为其产品的注册商标。现在,仍常常将PLC简称PC。

(4)上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为30~40%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。

(5)近年,工业计算机技术(IPC)和现场总线技术(FCS)发展迅速,挤占了一部分PLC市场,PLC增长速度出现渐缓的趋势,但其在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。

(6)目前,世界上有200多厂家生产300多品种PLC产品,主要应用在汽车(23%)、粮食加工(16.4%)、化学/制药(14.6%)、金属/矿山(11.5%)、纸浆/造纸(11.3%)等行业。

3.1.3 典型的PLC产品

(1)国外

施耐德公司, Quantum、Premium、Momentum等;

罗克韦尔(A-B公司),SLC、MicroLogix、Control Logix等;

西门子公司, SIMATIC S7-400/300/200系列;

GE公司日本欧姆龙、三菱、富士、松下等。

(2)国内

PLC生产厂约30家,但没有形成颇具规模的生产能力和名牌产品,还有一部分是以仿制、来件组装或“贴牌”方式生产。

考虑到性能和稳定性,硬件采用西门子公司的S7-300系列PLC,同时采用光电隔离、接地、变压器隔离等硬件抗干扰措施和数字滤波等软件抗干扰措施,系统可靠性高,稳定性好。

3.1.4 PLC外部 I/O 连接

根据系统的要求,选取 S72200 PLC CPU224作为控制核心,CPU224的I/O 点数是14 /10;扩展了1个EM 231模拟量输入模块,它是A /D转换模块,具有4个模拟量输入,12位A /D,其采样速度25μs,空气压力传感器、瓦斯浓度传感器采集的信号经过变送器调理和放大处理后,成为0 ~5 V的标准信号,再经过EM231模块自动完成A /D转换;同时扩展了1个EM222数字量输出模块,它有8个数字量的输出点,作用是提供附加的输出点,这样完全可以满足系统的要求。煤矿矿井通风控制系统的设计主要涉及10个数字量输入和2个模拟量输入,15个数字量输出。设置6个操作键、4个开关量传感器和2个模拟量。

传感器作输入信号,如表1所示。这6个操作键分别是自动方式开关、手动方式开关、停机按钮、消音按钮及2个在手动控制下控制通风机运行的按钮开关,4 个开关量传感器为拖动通风机的吸风电机和增风速电机发生堵转故障时热继电器的控制开关,其中扩充了1个EM231的模拟量输入模块,主要是用于转换气压信号和瓦斯浓度信号的。

表3.1 PLC I/O接口分配表

离心通风机使用说明书

离心通风机 使 用 说 明 书

Jiangsu Sanji Environmental Protect Engineering Equipments CO.,LTD 江苏三机环保设备工程有限公司 一、用途 4-72型离心通风机作为一般工厂及大建筑物的室内通风换气,即可用作输入气体,也可用作输出气体。空气和其它不自燃、对人体无害的、对钢铁材料无腐蚀性的气体。气体内不许有粘性物质,所含的尘土及硬质颗粒不大于150mg/m3。气体的温度:不超过80℃。 4-72型离心通风机在我国是使用最早的风机,然而也是使用最普通的风机,从高层建筑到地下铁道,从锅炉鼓风到厂房换气,4-72型风机随处可见。 二、型式 从电机一侧正视,叶轮顺时针旋转者称右旋风机,以“右”表示;叶轮逆进针旋转者称左旋风机,以“左”表示。 风机的出口位置,以机壳的出风口角度表示。4-72型风机№2.8~6出厂时均做成一种型式,使用单位根据要求再安装成所需要的位置,订货时不需注明。其中№2.8出风口位置调整范围是0°~255°,间隔是45°;№16、20出风口位置制成固定的三种0°、90°、180°,不能调整,订货时需注明。 风机的传动方式有A、B、C、D四种:4-72型风机中,№2.8~6采用A式传动,№8~12采用C、D式传动,№16~20采用B式传动。 三、结构 4-72型风机中№2.8~6主要由叶轮、机壳、进风口、电机等部分组成。№8~20除具有上述部分外,还有传动部分。 (1)叶轮:由10个后倾机翼型叶片、曲线型前盘和平板后盘组成,用钢板制造,并经动、静平衡校正,空气性能良好,效率高,运转平稳。 (2)机壳:做成二种不同型式。其中№2.8~12机壳作成整体,不能拆开,№16~20的机壳制成三开式,除沿中分水平面分为两半外,上半部再沿中心线垂直分为两半,用螺栓连接。 (3)进风口:制成整体,装于风机一侧,与轴向平行的截面为曲线开关作用是能使气流顺畅时入叶轮,且损失较小。 (4)传动:由主轴、轴承箱、流动轴承、皮带轮或联轴器组成。 四、性能与选择 本样本只给出№10样机的无因次性能和曲线,由性能和曲线计算№10以上风机的有因次性能参数。 1、4-72型离心通风机特点和用途

2015离心式通风机设计和选型手册

离心式通风机设计 通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。 离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度 ,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口 宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。 对于通风机设计的要求是: (1)满足所需流量和压力的工况点应在最高效率点附近; (2)最高效率要高,效率曲线平坦; (3)压力曲线的稳定工作区间要宽; (4)结构简单,工艺性能好; (5)足够的强度,刚度,工作安全可靠; (6)噪音低; (7)调节性能好; (8)尺寸尽量小,重量经; (9)维护方便。 对于无因次数的选择应注意以下几点: (1)为保证最高的效率,应选择一个适当的值来设计。 (2)选择最大的值和低的圆周速度,以保证最低的噪音。 (3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。 §1 叶轮尺寸的决定 图3-1叶轮的主要参数:图3-1为叶轮的主要参数: :叶轮外径 :叶轮进口直径; :叶片进口直径; :出口宽度; :进口宽度; :叶片出口安装角;

:叶片进口安装角; Z:叶片数; :叶片前盘倾斜角; 一.最佳进口宽度 在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有: 由此得出: (3-1a) 考虑到轮毂直径引起面积减少,则有: (3-1b) 其中 在加速20%时,即, (3-1c)

2015离心式通风机设计和选型手册

通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。 离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度 ,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口 宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。 对于通风机设计的要求是: (1)满足所需流量和压力的工况点应在最高效率点附近; (2)最高效率要高,效率曲线平坦; (3)压力曲线的稳定工作区间要宽; (4)结构简单,工艺性能好; (5)足够的强度,刚度,工作安全可靠; (6)噪音低; (7)调节性能好; (8)尺寸尽量小,重量经; (9)维护方便。 对于无因次数的选择应注意以下几点: (1)为保证最高的效率,应选择一个适当的值来设计。 (2)选择最大的值和低的圆周速度,以保证最低的噪音。 (3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。 §1 叶轮尺寸的决定 图3-1叶轮的主要参数:图3-1为叶轮的主要参数: :叶轮外径 :叶轮进口直径; :叶片进口直径; :出口宽度; :进口宽度; :叶片出口安装角;

:叶片进口安装角; Z:叶片数; :叶片前盘倾斜角; 一.最佳进口宽度 在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有: 由此得出: (3-1a) 考虑到轮毂直径引起面积减少,则有: (3-1b) 其中 在加速20%时,即, (3-1c)

离心风机气动设计方法的发展及其应用

离心风机气动设计方法的发展及其应用 从1975年开始,我们一直致力于风机气动设计方法研究及高性能风机产品开发,本文结合我们工作实践讨论离心风机气动设计方法的发展及其应用。 1 离心风机气动设计的工程方法(1990年前)——不能预估工况性能 国际公认的离心和轴流风机气动设计工程方法的权威著作是德国著名风机专家B.Eck的专著《风机》(1973年英文版)[1],关于离心风机气动设计的主要思想为基于一维、二维不可压理想均匀流假定及进口速度三角形无预旋假定,通过离心风机内部流动及其损失机理分析,结合70年代以前的气动设计经验和性能试验数据,提出了一套完整的离心风机气动设计工程方法,奠定了离心风机气动设计的基础。其核心内容是确定叶轮参数两个公式,一是连续方程,可确定叶轮进口直径d1,见公式(1),另一个是叶轮机械做功的欧拉方程(又称全压公式,对于不可压流体,也就是动量方程的积分),可确定叶片的几何出口角β2j,见公式(2)。 式中,Q-,H-分别为流量系数和全压系数,ε,β1j,ψ,μ和i分别为叶轮进口加速系数、几何进口角、进口充满系数、有限叶片修正系数和进口冲角,ηi为叶轮流动效率,d2,b2和β2j分别为叶轮出口直径、宽度和几何出口角。Eck还对两个重要的设计参数,即叶轮进口加速系数(定义为进风口出口和叶轮进口截面的面积比值)和几何进口角提出具体建议,前者应大于1,具体推荐取值为1.2,使进入叶轮的流动是较强的加速流,可减少分离,后者,建议采用i+35.4°,这是根据在同样流量下,进口速度最小,因而可使

叶轮内的流动损失最小推导得到的优化值。Eck还提出叶片型线应使叶片通道内的流速具有相同的减速,这样在流道中就没有大的减速出现,可减少分离,这种型线称为等减速流型(dw/dt=wdw/ds=const),我们在学习Eck方法的基础上,引用了透平机械和航空工程中的一些设计思想,结合9-19风机开发,经过多次设计—样机—性能试验,突破了风机行业和Eck的一些设计思想和经验系数的取值,1977年研制成功的9-19№.6风机样机全压效率,η=86%,A声压级L PA=94.5dB,比A声压级L PA=17.1dB,比当时市场流行的高压风机系列产品8-18№.6风机效率提高21%,A声压级下降5.5dB,比A声压级下降6.5dB,且具有效率高、噪声低、性能曲线平坦及高效区宽广的优点,结构简单,工艺可行。在9-19风机开发的基础上,又开发了其姐妹系列9-26风机,由于其优良性能,很快被机械工业部指定为全国推广的优秀高压离心风机产品系列,替代当时流行的8-18和9-27 系列风机,直到现在9-19和9-26风机还是风机市场高压风机主力产品。1980年提出了9-19风机的气动力设计方法[2],对Eck方法提出以下主要改进:1)采用叶轮进口加速系数小于1,具体建议为0.7~0.8,这样可以大大减少叶轮进口流速,不仅可以减少叶轮损失,也有利于减少噪声,因为噪声和流速的6次方成正比,理由是这种扩压流动,虽然会有一些分离流,但考虑到高速旋转叶轮产生的离心力,会将流入叶轮的少量分离流甩开;2)对前向风机采用很小的叶轮出口宽度和叶轮直径比值,约为0.09,以减少叶片的出口角(见公式(2)),并由连续方程可知,它能提高w2/w1值,因而减少叶片通道的扩压度,可减少分离,提高效率;3)提出等当量扩张角流型(w-1.5 dw/ds=const)代替Eck的等减速流型,认为这样更为合理,理由是前者将整个叶片通道设计为一个等当量扩张角的圆锥通道,这样的扩张才更为均匀,而且容易控制,只要这个锥角设计在一个合理值以内即可;4)离心风机噪声主要是叶片通过频率(BPF)的离散噪声和湍流和旋涡引起的宽带噪声,其中蜗舌间隙δ(蜗舌与叶轮间的最小距离和叶轮直径的比值)是影响BPF噪声的主要

离心通风机选型及设计

离心通风机选型及设计 1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 通风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心通风机基本相同。1862年,英国的圭贝尔发明离心通风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心通风机,结构已比较完善了。 1892年法国研制成横流通风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心通风机,并为各国所广泛采用;19世纪,轴流通风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。 1935年,德国首先采用轴流等压通风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流通风机;旋轴流通风机、子午加速轴流通风机、斜流通风机和横流通风机也都获得了发展。 按气体流动的方向,通风机可分为离心式、轴流式、斜流式和横流式等类型。 离心通风机工作时,动力机(主要是电动机)驱动叶轮在蜗形机壳内旋转,空气经吸气口从叶轮中心处吸入。由于叶片对气体的动力作用,气体压力和速度得以提高,并在离心力作用下沿着叶道甩向机壳,从排气口排出。因气体在叶轮内的流动主要是在径向平面内,故又称径流通风机。 离心通风机主要由叶轮和机壳组成,小型通风机的叶轮直接装在电动机上中、大型通风机通过联轴器或皮带轮与电动机联接。离心通风机一般为单侧进气,用单级叶轮;流量大的可双侧进气,用两个背靠背的叶轮,又称为双吸式离心通风机。 叶轮是通风机的主要部件,它的几何形状、尺寸、叶片数目和制造精度对性能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100毫米左右,大型的可达20米以上。

离心鼓风机操作说明书

使用说明书 鼓风机系5级、单吸入双支承结构。定子为垂直剖分式,铸铁制造,由进气机壳、出气机壳、中间机壳组成,进气口、出气口均水平以便于安装及管路的铺设;中间机壳上设有将叶轮产生的空气动压力转变为静压力和将空气导入下一级入口的扩压器和回流道。中间机壳上装有迷宫环,以防止和减小气体泄漏。 主轴采用优质碳结构钢制成,并经热处理和精加工而成,其上装有叶轮、平衡盘,半联轴器等。 叶轮系铝合金铸件,除流道外全部加工而成。经静平衡校验后,按顺序装于轴上,再进行动平衡校验,平衡等级为G2.5级,以防止设备在运转中出现有害的振动,损坏转子。 主轴两端装有滚动轴承(SKF6316),润滑脂为ZL-2锂基润滑脂。 本机由电动机通过弹性联轴器驱动,从电动机一端看,转子顺时针方向旋转。 鼓风机与电动机一起安装在机座上。 3 性能

风机出厂前均按标准进行空气动力试验,将试验数据输入微机后,绘出风压、风量、效率性能曲线。 风量:风量大致在85m3/min和145m3/min之间变化。风量由大到小变化时,升压则由小到大变化,当风量在85m3/min以下时,鼓风机发生喘振,产生不正常的振动与冲击,在这种情况下工作是不允许的,因此在此范围内应加以控制,并应尽快地打开输出阀门来避免长期在此状态下运转。鼓风机的最佳工作范围在105m3/min至135m3/min,此时可以取得较高的效率。 2 升压:升压值范围在89000pa至70200pa之间,与风量相对应升压85000pa至75000pa 之间取得较高的效率。 温度:使用气体温度为常温空气。因为输入气体的的温度会给鼓风机的性能带来影响,吸入气体温度比设计条件高时得不到预定的输出压力,相反吸入温度下降时,因输出压力过大,轴功率也会增大。压力:吸入压力比设计压力增大,轴功率也会增加。吸入压力下降时,也得不到规定的输出压力。 4 安装 鼓风机的安装是一项十分重要的工作,施工过程中应充分注意。 4.1风机的安装是分层进行的,首先安装下层的机座,待机座调平后再安装机体和电机,以避免因机座的安装误差使机体产生变形。

离心风机说明书

目录 1.风机的用途及适用范围.............................................................................. 错误!未定义书签。 2. 风机的结构形式............................................. 错误!未定义书签。 3. 风机的安装、调整和试运转(分别为D式、F式)............... 错误!未定义书签。 4. 风机的运行................................................. 错误!未定义书签。 5. 风机的维护................................................. 错误!未定义书签。 6. 风机成套供货范围(一台)................................... 错误!未定义书签。 7. 订货需知(需提供下列资料)................................. 错误!未定义书签。 8. 备件订货说明............................................... 错误!未定义书签。 表一:经常或定期检查项目 ................................ 错误!未定义书签。 表二:运行时每3—6个月检查的项目 ....................... 错误!未定义书签。 表三:风机的主要故障及排除方法 .......................... 错误!未定义书签。 表四:轴承振动允许值 .................................... 错误!未定义书签。 附图I ................................................... 错误!未定义书签。 附图II .................................................. 错误!未定义书签。 附图III ................................................. 错误!未定义书签。 附图IV .................................................. 错误!未定义书签。 附图V ................................................... 错误!未定义书签。 附图VI .................................................. 错误!未定义书签。 本技术文件受法律保护,未经本公司同意,不得使用、复制、扩散或以其它方式提供给第三方。

离心通风机的设计

离心通风机的设计 已知条件:风机全压P tf =2554 Pa,风机流量q v =5700 m 3/h, 风机进口压力P in =101324.72Pa 风机进口温度t m =25°C 空气气体常数R=287J/ ㎏×k 风机转速n=2900r/min 1.空气密度ρ ()()33in 1847.16.3027328732.133*760273m kg m kg t R P in =??????+=+=ρ 2.风机的比转速 432.154.5???? ??=iF in v s q n n ρρ 4325541847.12.13600 5700290054.5??? ?????=s n =55.73 3.选择叶片出口角A 2β A 2β=?35 由于比转速较小,选择后弯圆弧叶片。 4.估算全压系数t ψ []210439.1107966.23835.02523??-?+=--s A t n βψ []273.5510439.135107966.23835.0253???-??+=-- =0.873

5.估算叶轮外缘圆周速度2u s m s m p u t tF 772.70873.0187.1212554212=??==ρψ 6. 估算叶轮外缘出口直径2D m m n u D 462.029001416.3772.70606022=?? ? ????==π 选择2D =0.46m ,相应地s m 85.692=u 7. 计算风机的t ψ、?、s D 、σ 884.085.691847.1212554u 21p 2 22tF t =??==ρψ 136.085.6946.045700/3600u D 4q 22 22v =??==ππ ? 611.20.136884.0993.0993 .0412141t s =?==?ψD 405.0884.0136.04321 43t 21===ψ?σ 8.确定叶轮进口直径0D ????? ? ??+=2 004d c q D v π 选择悬臂式叶轮,d=0,参考表3-11a 选0c =30s m ;

4-68型离心式通风机使用说明书(大)

离心式通风机使用说明书 一、概述 4-68型离心通风机(以下简称风机)可作一般通风换气用,其机号为NO.2.8、3.15、3.55、4、4.5、5、6.3、8、9、10、11.2、12.5、14、16、20等型号。 二、风机使用条件 1、应用场所:作为一般工厂及室内通风换气。 2、输送气体:空气和其它不自燃的,对人体无害的,对钢铁材料无腐蚀性的气体。 3、气体状况:气体内严禁含有粘性物质,含尘和其它固体杂质不大于110mg/m3。 4、使用环境:海拔高度不超过1000m,环境温度不超过80℃。 三、结构形式 1、风机分顺时针旋转和逆时针旋转两种形式,从电动机一端正视,叶轮按顺时针方向旋转的称为右旋风机,以“右”表示,按逆时针方向旋转的称为左旋风机,以“左”表示。 2、风机的转动方式为A、B、C、D四种。 A式:表示无轴承箱装置,叶轮与电动机直联传动。 B式:表示悬臂支承装置,皮带传动,皮带轮在两轴承中间。 C式:表示悬臂支承装置,皮带传动,皮带轮在轴承外侧。 D式:表示悬臂支承装置,用联轴器联接传动。 3、风机机壳用钢板焊接而成。 4、叶轮为后倾圆弧叶片,经过动、静平衡校正,空气性能好,噪声低,运转平稳。 5、集流器压制成形,装于风机侧面,能使气体顺利地进入叶轮,且损失较小。 四、安装和调试 1、安装前:应对风机各部件进行全面的检查,叶轮的旋转方向与机壳上标明的旋转方向一致,各部联接紧密,叶轮、主轴、轴承等主要部件无损伤,传动组灵活等等,如果发现问题应立即予以修理和调整。 2、安装时:注意检查机壳内不应有遗留的工具及其它杂物,在一些接合面上为了防止生锈,减少拆卸困难,应涂上一些润滑脂或机械油,进风出风管道联接应调整到自然吻合,不得强行联接,更不许将管道重量加在风机各部件上,并保证风机水平位置。 3、安装要求: 3.1按图纸所示的位置与尺寸进行安装,为确保高效率,特别要保证进风口与叶轮的轴向、径向间隙。 3.2安装后,试拨动传动组,检查是否有过紧或与固定部分碰撞现象,发现不妥之处必须调整好。 3.3主轴带轮与电机带轮相对应的槽不得错位,套上皮带后,应装安全罩(用户自制)以利安全。 4、风机的试运转: 4.1全部安装完毕,总检合格后,才能进行试运转。为了防止电动机因过载被烧毁,风机启动时必须在无载荷(关闭进气管道中的闸门)的情况下进行,如情况良好,逐渐将阀门开启达到规定的工况为止,在运转过程中严格控制电流,不得超过电机额定电流值。 4.2风机在运转过程中经常检查轴承温度是否正常,轴承温升不得大于40℃表温不得大于70℃。如发觉风机有剧烈的振动、撞击、轴承温度迅速上升等反常现象时必须紧急停车。 五、风机的维护 为了避免维护不当而引起人为故障及事故,为了充分延长风机的使用寿命,必须加强风机的维护。 1、风机维护注意事项:

离心风机安装使用说明书

离心风机安装使用说明书 一.安装注意事项: 1.安装扩散筒 离心风机出风口没有接管道直接露于大气中,通常在风机出风口安装(如左图)的扩散筒,这样可以避免压力损失,气流扰动,扩散筒的 锥度?15高度等于1?1.5倍风机出口宽度 2.安装排气弯管 Don't(不合理) Do(合理) 离心风机出风口安装弯管时,弯管的弯向要于风机页的旋转方向一致,而且管道的折弯处建议安装圆弧形分离板(如左图),这样可以改善气流的工作状况,从而减小系统的压力损失. 3.安装方形进气室 Don't(不合理) Do(合理)

离心风机安装方形进气室时,进气室折弯处要安装圆弧形分离板, 进风口处安装导流板,而且风室要尽量大,进气室W/R<1.0(如左图),这样可以避免气流在风室中形成涡流,降低压力损失,减小系统的噪音. 4.安装圆形进气室 Don't(不合理 Do(合理) 离心风机进风口安装圆形管道时,管道应直接,平滑地于风机联结(如左图),这样可以避免由弯形管道所引起的流通面积减小,而产生的紊流区和压力损失,降低系统噪音. 5.进出风口有障碍物 Don't(不合理) Do(合理) 离心风机进出风口有障碍物(如左图),将回阻扰气流流向风机,导

致气流扰动,从而使系统阻力增加,流量减少,噪音增大,所以进出 风口与障碍物之间至少保证1.5倍管道直径的距离. 6管道进出口防护 为了防止外界杂物吸入管道,导致管道堵塞,使得整个管道系统不能正常运行,在管道进出口要求安装安全防护网. 二.使用注意事项: 1.风机在第一次使用之前必须详细检查产品铭牌表示的电压和频率是否符合当地的要求,严格按照电机额定电压运行. 2.风机运行前,必须先检查风机页与机壳之间有无碰撞摩擦,电机是否有接地,,绝缘是否良好. 3.风机运行前,必须先检查页轮旋转方向是否正确,无误方可运转,在试运转中有异常声响和振动现象,应立即停机,切断电源进行 排除,正常后才可使用. 4.风机进风口垂直向下或向上进气时,电动机应更换压力轴承方可使用. 5.风机输送介子的温度不应超过80 6.风机不应在水易喷洒和直接淋雨之处使用. 7.风机不能在化学气体易腐蚀,易燃,易爆环境中使用. 8.紧固风机的地基或支撑一定要牢固. 9.风机管网连接要稳固,且不许将管道重量加在风机各部件上. 10.管道中安装有调节门时,关机前要关掉风机进风调节门,出风调节门稍开,风机运转正常后逐渐打开调节门. 三.维修与保养: 1.只有风机设备完全正常的情况下方可运转.

离心通风机设计

离心通风机选型及设计 1.引言?????????????????????.(1?) ???? 2.离心式通风机的结构及原理????????????...?..(?3)?离心式风机的基本组成??????????????????(3) 离心式风机的原理 ????????????????????(3) 离心式风机的主要结构参数 ????????????????(4) 3 离心风机的选型的一般步骤?????????????????(5) 4.离心式通风机的设计????????????????????(5) 通风机设计的要求????????????????????(5) 设计步骤 ????????????????????????(6) 4.2.1叶轮尺寸的决定????????????????????(6) 4.2.2离心通风机的进气装置?????????????????(13) 4.2.3蜗壳设计???????????????????????(14) 4.2.4参数计算???????????????????????(20) 离心风机设计时几个重要方案的选择?????????(24) 5.结论???????????????????????????(25) 附录????????????????????????????(25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方 向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100 毫米左右,大型的可达20 米以上。 小型低压轴流通风机由叶轮、机壳和集流器等部件组成,通常安装在建筑物的墙壁 或天花板上;大型高压轴流通风机由集流器、叶轮、流线体、机壳、扩散筒和传动部件组成。叶片均匀布置在轮毂上,数目一般为2~24。叶片越多,风压越高;叶片安装角一般为10°~45°,安装角越大,风量和风压越大。轴流式通风机的主要零件大都用钢板焊接或铆接而成。 斜流通风机又称混流通风机,在这类通风机中,气体以与轴线成某一角度的方向进 入叶轮,在叶道中获得能量,并沿倾斜方向流出。通风机的叶轮和机壳的形状为圆锥形。这种通风机兼有离心式和轴流式的特点,流量范围和效率均介于两者之间。 横流通风机是具有前向多翼叶轮的小型高压离心通风机。气体从转子外缘的一侧进入叶轮,然后穿过叶轮内部从另一侧排出,气体在叶轮内两次受到叶片的力的作用。在相同性能的条件下,它的尺寸小、转速低。 与其他类型低速通风机相比,横流通风机具有较高的效率。它的轴向宽度可任意选择,而不影响气体的流动状态,气体在整个转子宽度上仍保持流动均匀。它的出口截面窄而长,适宜于安装在各种扁平形的设备中用来冷却或通风。 通风机的性能参数主要有流量、压力、功率,效率和转速。另外,噪声和振动的大小也是通风机的主要技术指标。流量也称风量,以单位时间内流经通风机的气体体积表示;压力也称风压,是指气体在通风机内压力升高值,有静压、动压和全压之分;功率是指通风机的输入功率,即轴功率。通风机有效功率与轴功率之比称为效率。通风机全压效率可达90%。 通风机未来的发展将进一步提高通风机的气动效率、装置效率和使用效率,以降低 电能消耗;用动叶可调的轴流通风机代替大型离心通风机;降低通风机噪声;提高排烟、排

A、D式离心风机使用说明书

A、D式传动方式离心风机 使用说明书 目录 一、概述………………………………………………………. 二、产品主要结构简介………………………………………. 三、电控柜简介………………………………………………. 四、机组的安装………………………………………………. 五、润滑油系统的冲洗及加注润滑油………………………. 六、操作与使用………………………………………………. 七、风机的维护………………………………………………. 序言 为使用户能正确使用和维护产品,提高风机的运行效率,延长使用寿命,以及防止意外事故发生,请用户在安装使用风机前,务必对该使用说明书所叙述的内容进行仔细阅读,并加以理解,以免发生差错。本使用说明书请用户妥善保存,以便随时查阅。 一、概述 本说明书主要适用于A、D型传动结构的单吸入(或双吸入)离心式风机,关于A、D型传动的具体意义,详见如下: 1、风机型号的后缀 风机型号的后缀(风机的型号的末尾英文字母)代表风机的不同传动方式,常见的如下: A式传动—风机叶轮与电机直联。无轴承风机。 C式传动—风机的两个轴承位于风机的同一侧,风机与电机之间用皮带轮方式联接。 D式传动—风机的两个轴承位于风机的同一侧,风机与电机之间用联轴器联接。 F式传动—风机的两个轴承分别位于风机的两侧,风机与电机之间用联轴器联

2、风机的型号的前缀 根据风机的使用环境不同,风机的用途不同,对风机的型号的前缀(风机的型号的第一个字母)不同。常见的如下: G—鼓风机 Y—引风机 R—热风机 W—高温风机 M—煤粉风机 F—防腐风机 MC—煤磨除尘风机 SL—循环耐磨风机 等等。 二、产品主要结构简介 风机机组除风机本体外,根据用户需要,可配备各种外配套,主要有液力耦合器(或液体电阻调速器)、电机(或变频电机)、慢转装置、差动导叶调节装置(也称调节门)风机进、出口膨胀节、润滑油站、电动执行器、消声器、电控柜(或机旁仪表柜)、高压(或低压柜)…等。对外配置的配置,不同的用户有不同的要求,具体的供货范围根据合同。用户根据自己合同所订配套,对本说明书针对性的进行选择阅读及应用。 1、A式风机结构及特点简介 风机由叶轮、机壳、进风口、电机支架等部分组成。 1.1叶轮为钢板焊接而成,叶片一般为10-14片,焊接于前盘与后盘中间。叶轮经过静、动平衡校正,保证运转平衡,噪声低,有较高的强度,使用寿命较长。 1.2机壳:用钢板焊接成蜗形壳,整体结构。 1.3进风口:收敛式进风口制成整体结构,用螺栓固定在机壳入口侧。 2、D式风机结构及特点简介 风机主要由叶轮、机壳、进风口、调节门、及传动组部分组成: 2.1叶轮:叶片焊接于锥弧形前盘与平板后盘中间。风机效率高、强度高、噪声低。叶轮经静动平衡校正和超速运转实验,故运转平稳可靠。 2.2机壳:用普通钢板焊接成蜗形体 2.3进风口:收敛、流线型的进风口制成整体结构,用螺栓固定于风机入口一侧。 2.4调节门:用来调节流量的装置,轴向安装于进风口之前。调节范围由0°(全开)到90°(全闭)。调节门的搬把位置:从进风口方向看在右侧,对右旋风机,搬把由下往上推是由全闭到全开方向,对左旋风机,搬把由上往下拉是由全闭到全开方向。 2.5传动部分:由主轴、轴承箱、支架、滚动轴承、联轴器组成 传动:传动部分的主轴由优质钢制成,本风机均采用滚动轴承。轴承箱上装有温度计和油位指示器(仅引风机)润滑油采用30号机械油,加油量按油位标志要求。引风机备有水冷装置,因此,须加装输水管,耗水量随气温不同而异,一般按0.5~1m3/h考虑。 三、电控柜简介

离心通风机设计毕业论文

本科毕业设计(论文) 题目SFF型离心通风机设计 学院机械工程学院 年级专业 班级学号 学生 校导师职称 校外导师职称 论文提交日期

本科毕业设计(论文)诚信承诺书 本人重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本人签名:日期: 本科毕业设计(论文)使用授权说明 本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的容相一致。 的毕业设计(论文)在解密后遵守此规定。 本人签名:日期: 导师签名:日期:

SFF型离心通风机设计论文 摘要 伴随着社会快速发展的需要,风机在国民经济中的应用越来越广泛,因此风机的设计和制造不仅对风机领域的发展和技术的提高有着深远影响,而且风机设计中节能减排减震等的思想方案可以推广至各个生产领域。 根据通风机气体流动方向的不同,通风机可以分为离心式、轴流式、斜流式和横流式等类型。其中按应用围广泛程度来说,离心通风机因在矿井、锅炉、纺织、建筑物通风等众多场合均有涉及,所以应用远超其他类型通风机。本文献综述了在纺织机械中以三角胶带为传动方式的SFF型离心通风机的设计,该设计主要涵盖了离心通风机的工作原理、适用场合、发展现状、机械部分的组成等,以及分析了圆弧形前弯叶片的设计和小正方形法蜗壳型线的绘制等。考虑到通风机速度不高且伴有冲击,轴承座采用脂润滑结构,且整体设计中采取了加装整体减震支架的措施。 关键字:离心通风机三角胶带前弯叶片

离心通风机操作规程(通用版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 离心通风机操作规程(通用版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

离心通风机操作规程(通用版) 一、使用前的准备 1、设备使用前应认真阅读设备供应商提供的产品说明书、使用说明书、操作手册等资料,掌握设备的基本结构、工作原理及基本操作方法。 2、在通风前必须要开启仓房门窗,防止通风开始后仓内外空气压力差对建筑物造成损坏,同时也给通风时内外空气交换提供通道。 3、检查风道口是否有积水和杂物,如有,应及时清理。 4、检查电源接头是否牢固,电机是否完好,有无漏电现象等。 5、检查电机、传动带、接电等部位防护措施是否到位。 6、检查通风管是否存在折痕、裂缝、孔洞等产生漏气的缺陷,如有,应及时更换通风管。 7、检查轴承和叶轮是否灵活,要不要加油和润滑。

8、检查三角带的松紧程度,避免过松打滑,过紧负荷重。 9、检查离心通风机(以下简称“鼓风机”)的接地线是否可靠,电动机和控制线路是否正确,防止通风机反转 10、空车开启风机,运转是否平稳,叶轮是否平衡。 二、操作程序 1、正常启动运行程序 将鼓风机移动到工作地点→用专用木块固定行走轮→接通电源→空载启动→正常运行。 2、多台鼓风机同时使用时,应逐台单独启动,待运转正常后再启动另一台风机,严禁几台风机同时启动。 3、停机程序 (1)正常停机程序:关闭电源→待叶轮停转→拔出插头→用薄膜覆盖→长期不用推入库房保养。 (2)故障停机程序:关闭电源开关→叶轮停转→检查轴承座或叶轮平衡情况→三角带松紧程度→或更换备用风机→待修。 三、注意事项

离心风机的选型与设计

摘要 离心式通风机的设计包括气动设计计算,结构设计和强度计算等内容。离心式通风机 的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。 而理论设讲方法用于设计新系列的通风机。本文在了解离心通风机的基本组成,工作原理以 及设计的一般方法的基础上,设计了一种离心通风机。 关键字:离心式通风机工作原理设计方法 ABSTRACT The design of Centrifugal fan includes the calculation of aerodynamic and the structure etc. The aerodynamic design of Centrifugal fan has two kinds of methods: one is the likeness designs, the other is theoretical designs. Based on above, this article designed a Centrifugal fan based on above. Key words: Centrifugal fan; working principle; design method

1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

通风机产品使用说明书

通风机产品 使用说明书OPERATING MANUAL FANS

目录 一、用途 (3) 二、结构型式 (3) 三、主要零部件及装配关系 (5) 四、风机的安装调试和操作 (5) 五、风机的维护和保养 (8) 六、风机运转中主要故障及消除 (10) TABLE OF CONTENTS I APPLICATION (11) II CONSTRUCTION (11) III MAJOR PARTS AND ASSEMBLY (13) IV INSTALLATION AND OPERATION (14) V MAINTENANCE (19) VI MAJOR FAIL URES IN OPERATION AND SOLUTIONS20

一、用途 通风机广泛应用于工厂、矿山、电站(厂)、石油、化工、冶金、轻纺、建材等各个行业的通风换气、排烟除尘、物料输送、锅炉送、引风等。输送的介质主要为空气、烟气等,介质中所含的尘土或硬质颗粒不大于150mg/ m3。所输送介质的温度,送风机一般要求不超过80℃,引风机一般要求不超过250℃。通常在引风机入口加装除尘效率较高的除尘装置,减少进入风机介质的含尘量,延长风机的使用寿命。 二、结构型式 通风机的结构形式一般分为两大类:一类为离心式,另一类为轴流式。离心式为轴向进风,径向出风。轴流式为轴向进风,轴向出风。从电动机一侧正视,叶轮顺时针旋转称为右旋风机,以“右”或者以“顺”表示。叶轮逆时针旋转称为左旋风机,以“左”或者以“逆”表示。风机的传动方式有A、B、C、D、E、F六种,根据使用现场和机号大小而选用。 离心式风机 (1)离心风机不但有“左”“右”之分,还有机壳的出口角度之分,一般机壳出风口有0°、45°、90°、135°、180°、225°、270°七种角度。 (2)叶轮:叶轮是通风机的关键部件,它是由一定数量的叶片、前盘、后盘、轴盘组成、叶片有机翼型、单板型。前盘可制成弧

离心通风机设计毕业论文

离心通风机设计毕业论 文 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

本科毕业设计(论文) 题目SFF型离心通风机设计 学院机械工程学院 年级专业 班级学号 学生姓名 校内导师职称 校外导师职称 论文提交日期

本科毕业设计(论文)诚信承诺书 本人郑重声明:所呈交的本科毕业设计(论文),是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本人签名:日期: 本科毕业设计(论文)使用授权说明 本人完全了解常熟理工学院有关收集、保留和使用毕业设计(论文)的规定,即:本科生在校期间进行毕业设计(论文)工作的知识产权单位属常熟理工学院。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许毕业设计(论文)被查阅和借阅;学校可以将毕业设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文),并且本人电子文档和纸质论文的内容相一致。 保密的毕业设计(论文)在解密后遵守此规定。 本人签名:日期: 导师签名:日期:

SFF型离心通风机设计论文 摘要 伴随着社会快速发展的需要,风机在国民经济中的应用越来越广泛,因此风机的设计和制造不仅对风机领域的发展和技术的提高有着深远影响,而且风机设计中节能减排减震等的思想方案可以推广至各个生产领域。 根据通风机气体流动方向的不同,通风机可以分为式、轴流式、斜流式和横流式等类型。其中按应用范围广泛程度来说,离心通风机因在矿井、锅炉、纺织、建筑物通风等众多场合均有涉及,所以应用远超其他类型通风机。本文献综述了在纺织机械中以三角胶带为传动方式的SFF型离心通风机的设计,该设计主要涵盖了离心通风机的工作原理、适用场合、发展现状、机械部分的组成等,以及分析了圆弧形前弯叶片的设计和小正方形法蜗壳型线的绘制等。考虑到通风机速度不高且伴有冲击,轴承座采用脂润滑结构,且整体设计中采取了加装整体减震支架的措施。 关键字:离心通风机三角胶带前弯叶片 The design of SFF type centrifugal fan Abstract Along with the rapid development of society, the fan is used more and more widely in the national economy. Therefore the design and manufacture of fan not only have a far-reaching influence in the development of fan and the improvement of technology , but also the scheme that energy saving and carbon emission reduction ,

相关主题
文本预览
相关文档 最新文档