当前位置:文档之家› 归纳模电实验方波发生器.doc

归纳模电实验方波发生器.doc

归纳模电实验方波发生器.doc
归纳模电实验方波发生器.doc

方波发生器

一、实验目的

(1)学习运算放大器在对信号处理、变换和产生等方面的应用,为综合应用奠定基础。

(2)学习用集成运算放大器组成波形发生器的工作原理。

二、实验原理

实际应用中通过电压比较可以产生方波,如图。负向输入端的电容充、放电时,其变化的电压与经过f R 反馈回来的电压进行比较,就得到了方波。二极管1D ,2D 与电阻p R ,3R 组成的电路用来控制电容的充、放电时间,从而控制方波的占空比。稳压二极管z V 的作用是限制和确定方波的幅度,因此要根据设计所要求的方波幅度来选择稳压二极管的稳定电压z V 。此外,方波幅度和宽度的对称性也与稳压二极管的对称性有关。为了得到对称的方波输出,通常应选用高精度的双向稳压二极管。2R 为稳压二极管的限流电阻,其阻值由所选的稳压二极管的稳定电流来决定。

设接通电源后输出电压z V v +=0,二极管1D 导通,2D 截止,0v 经p R 向C 充电,充电时间常数为C R p 。当电容两端电压c V 略大于同相输入端电压f V 时,输出电压0v 跳变为z V -,二极管1D 截止,2D 导通,电容经3R 向输出端放电,放电时间常数为C R 3。当c V 略小于f V 时,输出电压0v 又跳变为z V +。如此周而复始进行,随着电容的充电放电,输出电压0v 不断翻转,形成矩形波。

输出脉冲高电平z V v +=0的时间为 )21ln(11f

p R R C R T += 输出低电平z V v -=0的时间为 )21ln(132f R R C R T +

= 振荡频率为 ()???? ??++=+==f p R R C R R T T T f 132121ln 111

占空比为 3

1R R R T T D p p +== 可见,调节电位器p R ,改变电阻3R 的大小,即可调节输出脉冲的宽度。但由于受运算放大器上升速率的限制,不能得到太窄的矩形波。

三、实验内容及步骤

(1)仿真分析:

在Multisim 13电路窗口创建如图电路。单击仿真开关,进行仿真分析,此时示波器XSC1通道A 显示的曲线表示电容充、放电时负向输入端的波形情况;通道2显示的波形为方波。

(2)实验室操作:

1.按图连接好电路,检查无误后,接通V 12±直流电源。

2.用示波器观察0v ,c v 处的波形,记录波形并比较它们之间的相位关系。

3.用示波器测量0v ,c v 处波形的幅值和频率。

4.调节可变电阻p R ,用示波器观察输出电压0v 的变化情况。

5.当21T T =,(即占空比%50=D )时,测量电阻f R 的大小,将理论值和实测值进行比较。

四、实验器材

(1)双路直流稳压电源一台。

(2)示波器一台。

(3)万用表一块。

(4)集成运算放大器(741A μ)一片。

(5)二极管两个,稳压二极管两个。

(6)电容一个。

(7)电阻五个。

五、实验数据及结果分析

方波发生器仿真图如下:

【实测效果】

V o=1.597V Vc=4.780V f=77.08Hz

模拟电子电路课程设计正弦波三角波方波函数发生器样本

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题目: 正弦波-三角波-方波函数发生器 初始条件: 具备模拟电子电路的理论知识; 具备模拟电路基本电路的设计能力; 具备模拟电路的基本调试手段; 自选相关电子器件; 能够使用实验室仪器调试。 要求完成的主要任务: ( 包括课程设计工作量及其技术要求, 以及说明书撰写等具体要求) 1、频率范围三段: 10~100Hz, 100 Hz~1KHz, 1 KHz~10 KHz; 2、正弦波Uopp≈3V, 三角波Uopp≈5V, 方波Uopp≈14V; 3、幅度连续可调, 线性失真小; 4、安装调试并完成符合学校要求的设计说明书 时间安排: 一周, 其中3天硬件设计, 2天硬件调试 指导教师签名: 年月日 系主任( 或责任教师) 签名: 年月日

目录 1.综述...........................................................1 1.1信号发生器概论...................................................1 1.2 Multisim简介....................................................2 1.3集成运放lm324简介...............................................3 2.方案设计与论证...............................................4 2.1方案一...................................................4 2.2方案二..................................................4 2.3方案三..................................................5 3.单元电路设计..............................................6

电路实验二实验报告仪器仪表的使用

电路实验二实验报告 实验题目:仪器仪表的使用 实验内容: 1.熟悉示波器和函数信号发生器的使用; 2.测量示波器自带的校准信号; 3.用示波器测量函数信号发生器提供的正弦波、三角波和方波; 4.在面包板上搭接一个积分电路,用示波器观测其波形。 实验环境: 示波器DS1052E,函数发生器EE1641D,面包板SYB-130。 实验原理: 1.示波器是一种用途十分广泛的电子测量仪器。把肉眼看不见的电信号变换成看得见的 图象,便于研究各种电现象的变化过程。利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 2.函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚

至任意波形。有的函数发生器还具有调制的功能,可以进行调幅、调频、调相、脉宽调制和VCO控制。 3.面包板是专为电子电路的无焊接实验设计制造的。由于各种电子元器件可根据需要随 意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。 实验记录及结果分析: 1.示波器自带的校准信号: 2.函数发生器提供正弦波: 3.函数发生器提供的方波: 最大值:2.40V 最小值:-2.64V 峰峰值:5.04V 频率:2.016kHz 周期:496.0μs 占空比:48.0% 4.函数发生器提供的三角波: 最大值:2.40V 最小值:-2.64V 峰峰值:5.04V 频率:2.016kHz 周期:496.0μs 实验总结: 示波器能够产生波形,把肉眼看不见的电信号转为我们很容易看见的图形,而函数发生器则会产生不同类型的电信号,这样利用示波器和函数发生器就可以对函数发生器所发

基于LM324的方波、三角波、正弦波发生器(含原理图)..

课程设计(论文)说明书 题目:方波、三角波、正弦波发生器院(系): 专业: 学生姓名: 学号: 指导教师: 职称: 2012年12 月 5 日

摘要 本文通过介绍一种电路的连接,实现函数发生器的基本功能。将其接入电源,并通过在显示器上观察波形及数据,得到结果。 电压比较器实现方波的输出,又连接积分器得到三角波,并通过差分放大器电路得到正弦波,得到想要的信号。 NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能过快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim ,你可以立即创建具有完整组件库的电路图,并利用0工业标准SPICE模拟器模仿电路行为。本设计就是利用Multisim软件进行电路图的绘制并进行仿真。 关键词:电源、波形、比较器、积分器、Multisim Abstract This paper introduces a circuit connection, to achieve the basic functions of function generator. Their access to power, and through the display of waveform and data, and get the result. A voltage comparator to achieve a square wave output, in turn connected integrator triangle wave, and through the triangle wave - sine wave conversion circuit to see the sine wave, the desired signal. NI Multisim software combines intuitive capture and powerful simulation, an quickly, easily, efficiently for circuit design and verification. With NI Multisim, you can immediately create a complete component library circuitdiagram, and the use of 0 industry standard SPICE simulator to mimic circuit behavior. This design is the use of Multisim software in circuit diagram and carry out simulation Key words: power, waveform, comparator, an integrator, a converter circuit, Multisim

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

波形发生器实验

本科生实验报告 课程名称:模拟电子技术实验A 实验名称:波形发生器实验 学院: 专业班级: 学生姓名: 学号: 实验时间: 实验地点: 指导教师:

实验原理: 1. RC桥式正弦波振荡器(文氏电桥振荡器) 图5-12-1所示为RC桥式正弦波振荡器。其中,RC串、并联电路构成正反馈支路,同时兼作选频网络,R1、R2、Rp、二极管等元件构成负反馈和稳幅环节。调节电位器Rp,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。利用两个反向并联二极管VD1、VD2正向电阻的非线性特性来实现稳幅。VD1、VD2 采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。Rs的接人是为了削弱二极管非线性的影响,以改善波形失真。 电路的振荡频率 起振的幅值条件 其中,,ra为二极管正向导通电阻。 调整反馈电阻Rf(调Rp),使电路起振,且波形失真最小。如果不能起振,则说明负反馈太强,应适当加大Rf。如果波形失真严重,则应适当减小Rf。改变选频网络的参数C或R,即可调节振荡频率。

一般采用改变电容C作频率量程切换,而调节R作量程内的频率细调。 2.方波发生器 方波发生器是一种能够直接产生方波或矩形波的非正弦信号发生器。实验原理如图5-12-2所示。它是在滞回比较器的基础上,增加了一个RF、CF组成积分电路,把输出电压经RF。CF反馈到集成运放的反相输人端,运放的输出端引入限流电阻Rs和两个背靠背的稳压管用于双向限幅。 电路振荡频率为 其中 方波的输出幅值 3.三角波和方波发生器 如图5-12-3所示,电路由同相滞回比较器A1和反相积分器A2构成。比较器A1输出的方波经积分器A2积分可得到三角波Uo, Uo 经电阻R为比较器A1提供输入信号,形成正反馈,即构成三角波、方波发生器。图5-12-4所示为方波、三角波发生器输出波形图。由于采用运放组成的积分电路,因此可实现恒流充电,使三角波 线性大大改善。滞回比较器的國值电压,电路震荡频率 ,方波幅值,三角波幅值 调节Rp可以改变振荡频率,改变比值会可调节三角波的幅值。

方波三角波发生电路实验报告修订版

物理与机电工程学院(2015——2016 学年第二学期) 综合设计报告 方波-三角波产生电路 专业:电子信息科学与技术学号: 2014216010 姓名:侯涛 指导教师:石玉军

方波-三角波产生电路 摘要 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进 行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借,可以立即创建具有完整组件库的电路图。本设计就是利用软件进行电路图的绘制并进行仿真。 关键词 折线法,比较器,积分器,转换电路,低通滤波, 1、 引言 波形发生器就是信号源的一种,能够给被测电路提供所需要的波形,广泛地应用于各大院校和科研场所。随着科技的进步,社会的发展,单一的波形发生器已经不能满足人们的需求,而我们设计的正是多种波形发生器。本次设计用运放来组成积分电路,低通滤波电路来分别实现方波,三角波和正弦波的输出。它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源。 本文通过介绍一种电路的连接,实现函数发生器的基本功能。将其接入电源,具有实际的应用价值。并通过在示波器上观察波形及数据,得到结果。电压比较器实现方波的输出,又连接积分器得到三角波,并通过方波-三角波转换电路看到三角波,得到想要的信号。 2、设计内容和要求 设计要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 设计指标:输出频率分别为:2z 10H 、310Z H 和4 10Z H ;方波的输出电压峰 峰值 20P P V v -≥ 。 3、方案的论证和选择 3.1方案的提出 3.1.1方案一: 0.12Multisim 0.12Multisim 0.12Multisim 0.12Multisim RC

归纳模电实验方波发生器.doc

方波发生器 一、实验目的 (1)学习运算放大器在对信号处理、变换和产生等方面的应用,为综合应用奠定基础。 (2)学习用集成运算放大器组成波形发生器的工作原理。 二、实验原理 实际应用中通过电压比较可以产生方波,如图。负向输入端的电容充、放电时,其变化的电压与经过f R 反馈回来的电压进行比较,就得到了方波。二极管1D ,2D 与电阻p R ,3R 组成的电路用来控制电容的充、放电时间,从而控制方波的占空比。稳压二极管z V 的作用是限制和确定方波的幅度,因此要根据设计所要求的方波幅度来选择稳压二极管的稳定电压z V 。此外,方波幅度和宽度的对称性也与稳压二极管的对称性有关。为了得到对称的方波输出,通常应选用高精度的双向稳压二极管。2R 为稳压二极管的限流电阻,其阻值由所选的稳压二极管的稳定电流来决定。 设接通电源后输出电压z V v +=0,二极管1D 导通,2D 截止,0v 经p R 向C 充电,充电时间常数为C R p 。当电容两端电压c V 略大于同相输入端电压f V 时,输出电压0v 跳变为z V -,二极管1D 截止,2D 导通,电容经3R 向输出端放电,放电时间常数为C R 3。当c V 略小于f V 时,输出电压0v 又跳变为z V +。如此周而复始进行,随着电容的充电放电,输出电压0v 不断翻转,形成矩形波。 输出脉冲高电平z V v +=0的时间为 )21ln(11f p R R C R T += 输出低电平z V v -=0的时间为 )21ln(132f R R C R T + = 振荡频率为 ()???? ??++=+==f p R R C R R T T T f 132121ln 111

方波-三角波-正弦波-锯齿波发生器

方波-三角波-正弦波-锯齿波发生器

电子工程设计报告

目录 设计要求 1.前言 (1) 2方波、三角波、正弦波发生器方案 (2) 2.1原理框图 (2) 3.各组成部分的工作原理 (3) 3.1方波发生电路的工作原理 (3) 3.2方波--三角波转换电路的工作原理 (4) 3.3三角波--正弦波转换电路的工作原理 (6) 3.4方波—锯齿波转换电路的工作原理 (7) 3.5总电路图 (8)

方波—三角波—正弦波函数信号发生器 摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路 设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在0.02-20KHz范围内且连续可调; 1.前言 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实

方波—三角波—正弦波函数发生器模电实验报告

模电实验报告 一、实验任务: 设计一个方波—三角波—正弦波函数发生器 已知条件:双运放NE5532 一只(或uA741两只) 性能要求:频率范围:1—10Hz ,10—100Hz ;输出电压:方波Upp<=24V ,三角波Upp=6V , 正弦波Upp>1V 。 二、电路设计过程及结果: 2231231124O m RP CC U R R R U ===+ 取210K R =Ω,340K R =Ω,147K RP R =Ω。平衡电阻1231//()9RP R R R R K =+≈Ω。 由输出频率的表达式得: 3142 224RP RP R R R R R C f ++= 当110Hz f Hz ≤≤时,取210C uF =,4 5.1R K =Ω,2100RP R K =Ω。当 10100Hz f Hz ≤≤时,取21C uF =以实现频率波段的转换,其余不变。取平衡电阻510R K =Ω。 电路形式如下图,参数如下图所示

四、下面为仿真图形 五、实验数据 根据实验,实验波形与仿真波形相似,测得的方波Upp=2.16V,三角波 Upp=5.6V,正弦波Upp=1.48V。 六、心得 本次实验的各种参数均可参考书中所给的例子计算得出。从中也体现出了自己对相关理论只是并不是特别地熟悉,只能看着书根据公式计算,在这一点上还需要好好地去复习一下。 在实验过程中,接线时尤其需要仔细一点,通过几个人的合作,不断地检查完善多次后猜得出最终结果。也体现出了团队合作的重要性。 在示波器调试方面,也暴露出了许多不足,对示波器的使用并不是特别地熟练。 对于所测出的数据有一定的偏差,及时这样也应该实事求是地记录下数据。 无论是理论计算还是实际操作,都需要我今后多加练习学习。

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

模拟电子电路课程设计正弦波三角波方波函数发生器

模拟电子电路课程设计正弦波三角波方波函数 发生器 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

课程设计任务书学生姓名:专业班级: 指导教师:工作单位: 题目:正弦波-三角波-方波函数发生器 初始条件: 具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选相关电子器件;可以使用实验室仪器调试。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、频率范围三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz; 2、正弦波Uopp≈3V,三角波Uopp≈5V,方波Uopp≈14V; 3、幅度连续可调,线性失真小; 4、安装调试并完成符合学校要求的设计说明书 时间安排: 一周,其中3天硬件设计,2天硬件调试 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 1.综述...........................................................1

信号发生器概论...................................................1 Multisim简介....................................................2 集成运放lm324简介...............................................3 2.方案设计与论证...............................................4方案一...................................................4方案二..................................................4方案三..................................................5

信号发生器实验报告(波形发生器实验报告)

信号发生器 一、实验目的 1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。 2、掌握用运算放大器构成波形发生器的设计方法。 3、掌握波形发生器电路调试和制作方法 。 二、设计任务 设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。 三、具体要求 (1)可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。 (2)利用一个按钮,可以切换输出波形信号。。 (3)频率为1-2KHz 连续可调,波形幅度不作要求。 (4)可以自行设计并采用除集成运放外的其他设计方案 (5)正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。 四、设计思路 基本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比较器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。 五、具体电路设计方案 Ⅰ、RC 桥式正弦波振荡器 图1 图2 电路的振荡频率为:RC f π21 0= 将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。 如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。下图2为起振波形。

正弦信号发生器实验

目录 一、设计目的 二、设计内容 三、设计原理 四、总体方案设计 五、主要参数 六、源程序 七、实验结果及分析 八、设计总结

实验名称:正弦信号发生器 一.实验目的: (1) 了解DSP及DSP控制器的发展过程及其特点。 (2) 较熟练地在硬件上掌握DSP及DSP硬件器的结构、各部件基本工作原理。 (3) 熟悉CCS集成开发环境,并能较熟练的对CCS的开发系统进行使用。 (4) 熟悉用C语言、汇编语言编程DSP源程序 (5) 学习DSP程序的调试及编写,及运用观察变量的方法查看程序的运行情况。 (6) 掌握工程设计的流程及方法。 二.实验内容: 用PMS320C5402的汇编语言程序设计正弦信号发生器,大大方便了程序的编辑,调试和加快了程序的运行速度。 三.实验原理 正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。 通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。 查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。 泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。 本次主要用泰勒级数展开法来实现正弦波信号。 产生正弦波的算法 在高等数学中,正弦函数和余弦函数可以展开成泰勒级数,其表达式为:sin(x)=x-(x^3/3!)+(x^5/5!)-(x^7/7)+(x^9/9)-… cos(x)=1-(x^2/2!)+(x^4/4!)-(x^6/6!)+(x^8/8!)-… 若要计算一个角度x的正弦和余弦值,可取泰勒级数的前5项进行近似计算。 sin(x)=x-x^3/3!+x^5/5!-x^7/7!+x^9/9! =x(1-x^2/2*3(1-x^2/4*5(1-x^2/6*7(1-x^2/8*9)))) (式1) cos(x) =1-x^2/2!+x^4/4!-x^6/6!+x^8/8! =1-x^2/2(1-x^2/3*4(1-x^2/5*6(1-x^2/7*8))) (式2)由(式1)和(式2)可推导出递推公式,即 sin(nx)=2c os(x)sin[(n-1)x]-sin[(n-2)x] (式3) cos(nx)=2cos(x)sin[(n-1)x]-cos[(n-2)x] (式4)由递推公式可以看出,在计算正弦余弦值时,不仅需要已知的cos(x),而且还需要sin(n-1)x,sin(n-2)x和c os(n-2)x。 利用计算一个角度的正余弦值程序可实现正弦波。其实现步骤如下:第一步:利用计算正弦函数和余弦函数的子程序,计算0度~45度(间隔为0.5度)的正弦和余弦值; 第二步:利用sin(2x)=2sin(x)cos(x)公式,计算0度~90度的正弦值(间隔为1度);

模电课程设计--函数发生器(三角波-方波-正弦波)

模拟电子课程设计 报告 题目:________函数发生器设计_____ 学生姓名:_________王鹏______________ 学号:_________20120230720_______ 自然班:________T1223-7___________ 专业:______自动化(电动车辆工程)__指导老师:_______蒋伟荣______________ 2014 年6 月

一、课题意义 (1)通过模拟电子技术的课程设计,让我们对模拟电子电路有更加深入的认识和了解。 (2)以做课程设计来激发学生对模拟电子技术的兴趣,从而为后期的学习提供更大的动力。 (3)以课设的形式让学生对一学期所学习的模拟电子知识进行归纳总结,学以致用。 (4)通过设计函数发生器,我们对模拟电子技术中的积分电路、微分电路以及差分电路原理有更加详细的理解。 (5)通过课程设计培养学生的动手能力。 (6)强化学生的创新能力,以及在学习生活中学会独立的解决问题的能力。 二、函数发生器设计课题要求 (1)输出波行:正弦波、方波和三角波.. (2)输出频率:300HZ--10KHZ可调 (3)输出幅值:30mv-3v可调 三、课题方案设计和比较 在本次模拟电子课程设计方案设计选择中,我所选择的是方案是通过直流稳压电源(+5V,—5V或者+12V,—12V),通过一个LM324的运放元件的管脚1、2、3形成一个产生正弦波的发生器,而LM324元件的管脚5、6、7形成一个产生方波的发生器,LM324元件的管脚8、9、10形成一个产生三角波的发生器,最后三个函数发生器共用同一个直流稳压电源的接入管脚4、11,其共同连接起来形成一个能够产生正弦波——方波——三角波的函数发生器,函数发生器设计课设要求的电压输出可调幅值30mv-3v,可调频率范围为300HZ--10KHZ则是通过调节所设计的电路中的电位器来实现这一要求的,其实际原理也就是改变接入电路中电阻值的大小来改变输出电压的幅值和频率的。以下为此次模拟电子课程设计课题函数发生器的设计思路方案框图:

信号发生器实验报告

电子线路课程设计报告设计题目:简易数字合成信号发生器 专业: 指导教师: 小组成员:

数字合成信号发生器设计、调试报告 一:设计目标陈述 设计一个简易数字信号发生器,使其能够产生正弦信号、方波信号、三角波信号、锯齿波信号,要求有滤波有放大,可以按键选择波形的模式及周期及频率,波形可以在示波器上 显示,此外可以加入数码管显示。 二、完成情况简述 成功完成了电路的基本焊接,程序完整,能够实现要求功能。能够通过程序控制实现正弦波的输出,但是有一定噪声;由于时间问题,我们没有设计数码管,也不能通过按键调节频率。 三、系统总体描述及系统框图 总体描述:以51单片机开发板为基础,将输出的数字信号接入D\A转换器进行D\A转换,然后接入到滤波器进行滤波,最后通过运算放大器得到最后的波形输出。 四:各模块说明 1、单片机电路80C51 程序下载于开发板上的单片机内进行程序的执行,为D\A转换提供了八位数字信号,同时为滤波器提供高频方波。通过开发板上的232串口,可以进行软件控制信号波形及频率切换。通过开发板连接液晶显示屏,显示波形和频率。 2、D/A电路TLC7528 将波形样值的编码转换成模拟值,完成单极性的波形输出。TLC7528是双路8位数字模拟转换器,本设计采用的是电压输出模式,示波器上显示波形。直接将单片机的P0口输出传给TLC7528并用A路直接输出结果,没有寄存。 3、滤波电路MAX7400 通过接收到的单片机发送来的高频方波信号(其频率为所要实现波频率的一百倍)D转换器输出的波形,对转换器输出波形进行滤波并得到平滑的输出信号。 4、放大电路TL072

TL072用以对滤波器输出的波进行十倍放大,采用双电源,并将放大结果送到示波器进行波形显示。 五:调试流程 1、利用proteus做各个模块和程序的单独仿真,修改电路和程序。 2、用完整的程序对完整电路进行仿真,调整程序结构等。 3、焊接电路,利用硬件仿真器进行仿真,并用示波器进行波形显示,调整电路的一些细节错误。 六:遇到的问题及解决方法 遇到的软件方面的问题: 最开始,无法形成波形,然后用示波器查看滤波器的滤波,发现频率过低,于是检查程序发现,滤波器的频率设置方面的参数过大,延时程序的参数设置过大,频率输出过低,几次调整好参数后,在进行试验,波形终于产生了。 七:原理图和实物照片 波形照片:

波形发生电路实验报告

波形发生电路实验报告 班级 姓名 学号

一、实验目的 1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。 2. 学习电压比较器的组成及电压传输特性的测试方法。 3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。 二、实验内容 1. 正弦波发生电路 (1)实验参考电路见图1。 (2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试: ①R W为0Ω 时的u O的波形; ②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值; ③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值; ④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。 2. 方波- 三角波发生电路 (1)实验参考电路见图2。 (2)测试滞回比较电路的电压传输特性 将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。

(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。 3.矩形波- 锯齿波发生电路 修改电路图2,使之成为矩形波- 锯齿波发生电路。要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。 三、实验要求 1. 实验课上搭建硬件电路,记录各项测试数据。 2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。 四、预习计算 1.正弦波振荡电路 起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R W R2 +1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。 振荡频率由RC串并联选频网络决定,f0=1 2πR1C1 ≈106.1Hz 2.方波- 三角波发生电路 滞回比较器的阈值电压±U T=±R2 R1 U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。 方波(u O1)的幅值为U Z=5.8V,三角波(u O2)的幅值为U T=2.9V。 U T=?1 4 (?U Z) T ?U T U T=R2 1 U Z 解得:T=4R2R4C R1 =0.4ms,即u O1和u O2的周期为0.4ms。 3.矩形波- 锯齿波发生电路 只需让电容充放电回路的时间常数不一样即可。电路原理图如下:

模电课程设计报告-- 正弦波方波三角波发生器

模电课程设计报告-- 正弦波方波三角波发生器

宁波大红鹰学院 《模拟电子技术》 课程设计报告 课题名称:正弦波方波三角波发生器 分院:机械与电气工程学院 教研室:电气工程及其自动化 班级: 姓名: 学号:1121090249 指导教师: 二○一三年十二月

1.设计任务 “方波三角波正弦波发生器”项目任务 一、设计目的 1、熟悉电路的基本功能原理,学会用集成运算放大器组成方波、三角波及正弦波发生器; 2、学习方波、三角波、正弦波发生器的设计方法和设计流程; 3、掌握方波、三角波、正弦波发生器的调试与测量方法。 4、能正确焊装、检测、调试电路。 二、设计任务 1、课题名称:方波三角波正弦波发生器 2、元器件选择范围: (1)集成电路:LM358、NE555等; (2)稳压二极管:5.1V或6.2V; (3)电阻:E24系列,碳膜电阻,1/4W,精度5%,阻值范围10Ω-1MΩ。 (4)电容:E6(100pF—1000uF),电解电容耐压25V、35V、50V。 (5)电位器:10K、50K、100K、500K。 三、设计要求 1、电源电压:±12V; 2、输出信号波形为对称方波、三角波和正弦波; 3、输出信号频率(根据指标分配安排); 4、输出信号幅度(根据指标分配安排); 5、拓展要求:产生锯齿波。 2.硬件设计

这是设计仿真时所用的电路,能够基本符合设计的要求。基本构思思路是,一个由正弦波电路、方波电路、三角波电路和放大电路组成的电路。 由于实际焊接测试时方波严重失真,对电路有所整改,如图所示。 1.元器件列表 模拟所用元器件符号实际所用元器件符号LM358D U1A LM358D U1A LM358D U2A LM358D U2A LM358D U3A LM358D U3A LM358D U4A LM358D U4A

信号发生器实验报告(终)

南昌大学实验报告 学生姓名:王晟尧学号:6102215054专业班级:通信152班 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p=6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶 m 体管的截止电压值。 图4 三角波→正弦波变换电路

正弦波振荡器实验报告

正弦波振荡器实验报告 姓名: 学号: 班级: 实验目的 1. 掌握LC 三点式振荡电路的基本原理,掌握LC 电容反馈式三点振荡电路设计及电参数计算。

2. 掌握振荡回路Q 值对频率稳定度的影响。 3. 掌握振荡器反馈系数 不同时,静态工作电流IEQ 对振荡器起振及 振幅的影响。 二、实验电路图 三、实验内容及步骤 1. 利用EWB 软件绘制出如图 1.7 的西勒振荡器实验电路。 2. 按图设置各个元件参数,打开仿真开关,从示波器上观察振荡波形读出振荡频率,并做好记录 3. 改变电容 C 6的值,观察频率变化,并做好记录。填入表 1.3中。4.改变电容C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。填入表 1.3 中。 5.将C4 的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。填入表 1.4 中。 四、暑假记录与数据处理

1、电路的直流电路图和交流电路图分别如下: (1):直流通路图 2)交流通路图 2、改变电容 C 6的值时所测得的频率 f 的值如下: 3、 C40.033μF0.33μF0.01μF C6(pF)270470670270470670270470670

F(Hz)494853.5403746.8372023.832756.832688.232814.4486357.7420875.4373357.2 1)、当C4=0.033uF 时: C6=270pF 时, f= 1/T=1000000/2.0208=494853.5HZ C6=470pF 时,f=1/T=1000000/2.4768=403746.8HZ

方波发生器实验报告

方波发生器及其调制 一、实验内容 设计一方波信号发生器,采用ROM进行一个周期数据存储,并通过地址发生器产生方波信号。并通过控制端输入a对方波信号进行调幅和调频。ROM(4位地址16位数据) 二、实验原理 方波信号发生器是由地址发生器和方波数据存储器ROM两块构成,输入为时钟脉冲,输出为8位二进制。

1地址发生器的原理 地址发生器实质上就是计数器,ROM的地址是4位数据,相当于16位循环计数器。 2.只读存储器ROM的设计 (1)、VHDL编程的实现 ①基本原理:为每一个存储单元编写一个地址,只有地址指定的存储单元才能与公共的I/O 相连,然后进行存储数据的读写操作。 ②逻辑功能:地址信号的选择下,从指定存储单元中读取相应数据。 3.调幅与调频 通过输入信号a(3位数据),选择不同调制,如 a=000,2分频 a=001,4分频 a=010,8分频 a=011,16分频 a=100,2倍调幅 a=101,4倍调幅 a=110,8倍调幅 a=111,16倍调幅 分频原理:偶数分频,即分频系数N=2n(n=1,2,…),若输入的信号频率为f,那么分频器的输出信号的频率为f/2n(n=1,2,…)。 调幅原理:通过移位寄存器改变方波幅值(左移)。 三、设计方案 1. 基于VHDL编程的设计 在地址信号的选择下,从指定存储单元中读取相应数据,系统框图如下: FPGA 四、原理图 1、VHDL编程的实现

(1)、顶层原理图 (2)、地址发生器的VHDL语言的实现library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity addr_count is port ( clk1khz: in std_logic; qout: out integer range 0 to 15 ); end addr_count; architecture behave of addr_count is signal temp: integer range 0 to 15;

相关主题
文本预览
相关文档 最新文档