当前位置:文档之家› 第8节课 霍尔元件.反馈测量

第8节课 霍尔元件.反馈测量

实验8 霍尔效应法测量磁场A4

实验八 霍尔效应法测量磁场 【实验目的】 1.了解霍尔器件的工作特性。 2.掌握霍尔器件测量磁场的工作原理。 3.用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1.霍尔器件测量磁场的原理 图1 霍尔效应原理 如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =?作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE =,与m e F ev B =?反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 I

如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足: H H H IB U R K IB d =? =?, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。 由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,与B 有一一对应关系。 2.误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2,将线路完全接通后,可以调节滑动触头2,使数字电压表所测 电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实验前要首先进行霍尔输出电压的调零,以消除霍尔器件的“不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。 3.载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则 (1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: 00B NI μ= 图2

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

霍尔元件测量磁场

4.1.1. 霍尔元件测量磁场 置于磁场中的载流导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场。这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点。利用它可以测量磁场;可以研究半导体中载流子的类别和特性等;也可以利用它制作传感器,用于磁读出头、隔离器,转速仪等。量子霍耳效应更是当代凝聚态物理领域最重要的发现之一,它在建立国际计量的自然基准方面也起了重要的作用。 【实验目的】 1.了解霍耳效应法测量磁场的原理和方法。 2.测定所用霍耳片的霍耳灵敏度。 3.用霍耳效应法测量通电螺线管轴线上的磁场。 4.用霍耳效应法测量通电线圈和亥姆霍兹线圈轴线上的磁场,验证磁场叠加原理,验证亥姆霍兹线圈中央存在均匀磁场。 【实验原理】 1.霍耳效应及其测磁原理 把一块半导体薄片(锗片或硅片等)放在磁感应强度大小为B 的磁场中(B 的方向沿z 轴方向),如图4.5.1所示。从薄片的四个 侧面A 、A ’、D 、D ’上分别引出两对 电极,沿纵向(即x 轴正向)通以电流 I H ,则在薄片的两个横向面D 、D ’之间 就会产生电势差,这种现象称为“霍耳 效应”,产生的电势差称为霍耳电势差。 根据霍耳效应制成的磁电变换元件称为 霍耳元件。霍耳效应是由洛伦兹力引起 的,当放在垂直于磁场方向的半导体薄片 通以电流后,薄片内定向移动的载流子 受到洛伦兹力F B : B v F B ?=q (4.5.1) 式中,q 、v 分别是载流子的电荷和移动速度。载流子受力偏转的结果使电荷在D 、D ’两端 面积聚而形成电场(图4.5.1中设载流子是负电荷,故F B 沿y 轴负方向),这个电场又给载流子一个与F B 反设方向的电场力F E 。设E 表示电场强度,U DD ’表示D 、D ’间的电势差,b 表示薄片宽度,则 b U q qE F DD E ' == (4.5.2) 达到稳定状态时,电场力和洛伦兹力平衡,有 E B F F = 即 b U q qvB DD ' = 图4.5.1 霍尔效应原理图

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

实验五用霍尔元件测量磁场

实验五用霍耳元件测量磁场 一、实验目的 1.了解霍耳效应的产生机理。 2.掌握用霍耳元件测量磁场的基本方法。 二、实验仪器 霍尔效应实验仪。 三、实验原理 1、什么叫做霍耳效应? 若将通有电流的导体置于磁场B之中,磁场B(沿z轴)垂直于电流I H(沿x轴)的方 向,如图1 U H,这个现象称 为霍耳效应。 图1 霍耳效应原理 这一效应对金属来说并不显著,但对半导体非常显著。霍耳效应可以测定载流子浓度及载流子迁移率等重要参数,以及判断材料的导电类型,是研究半导体材料的重要手段。还可以用霍耳效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制、放大。用霍耳效应制作的传感器广泛用于磁场、位置、位移、转速的测量。(1)用什么原理来解释霍耳效应产生的机理? 霍耳电势差是这样产生的:当电流I H通过霍耳元件(假设为P型)时,空穴有一定的漂移速度v,垂直磁场对运动电荷产生一个洛沦兹力 ) (B v F? =q B(1)式中q为电子电荷。洛沦兹力使电荷产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E,直到电场对载流子的作用力F E=q E与磁场作用的洛沦兹力相抵消为止,即 E B v q q= ?) ((2)这时电荷在样品中流动时将不再偏转,霍耳电势差就是由这个电场建立起来的。

如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍耳电势差有不同的符号,据此可以判断霍耳元件的导电类型。 (2)如何用霍耳效应侧磁场? 设P 型样品的载流子浓度为p ,宽度为b ,厚度为d 。通过样品电流I H =pqvbd ,则空穴的速度v =I H /pqvbd ,代入(2)式有 pqbd B I E H = ?=B v (3) 上式两边各乘以b ,便得到 d B I R pqd B I Eb U H H H H == = (4) pq R H 1= 称为霍耳系数。在应用中一般写成 U H =K H I H B . (5) 比例系数K H =R H /d =1/pqd 称为霍耳元件灵敏度,单位为mV/(mA ·T)。一般要求K H 愈大愈好。K H 与载流子浓度p 成反比。半导体内载流子浓度远比金属载流子浓度小,所以都用半导体材料作为霍耳元件。K H 与片厚d 成反比,所以霍耳元件都做的很薄,一般只有0.2mm 厚。 由(5)式可以看出,知道了霍耳片的灵敏度K H ,只要分别测出霍耳电流I H 及霍耳电势差U H 就可算出磁场B 的大小。这就是霍耳效应测磁场的原理。 2、如何消除霍耳元件副效应的影响? 在实际测量过程中,还会伴随一些热磁副效应,它使所测得的电压不只是U H ,还会附加另外一些电压,给测量带来误差。 这些热磁效应有埃廷斯豪森效应,是由于在霍耳片两端有温度差,从而产生温差电动势U E ,它与霍耳电流I H 、磁场B 方向有关;能斯特效应,是由于当热流通过霍耳片(如1,2端)在其两侧(3,4端)会有电动势U N 产生,只与磁场B 和热流有关;里吉-勒迪克效应,是当热流通过霍耳片时两侧会有温度差产生,从而又产生温差电动势U R ,它同样与磁场B 及热流有关。 除了这些热磁副效应外还有不等位电势差U 0,它是由于两侧(3,4端)的电极不在同一等势面上引起的,当霍耳电流通过1,2端时,即使不加磁场,3和4端也会有电势差U 0产生,其方向随电流I H 方向而改变。 因此,为了消除副效应的影响,在操作时我们要分别改变I H 的方向和B 的方向,记下四组电势差数据,作运算并取平均值: 由于U E 方向始终与U H 相同,所以换向法不能消除它,但一般U E <

霍尔元件测磁场实验报告

霍尔元件测磁场实验报告 The Standardization Office was revised on the afternoon of December 13, 2020

用霍尔元件测磁场 前言: 霍耳效应是德国物理学家霍耳( 1855—1938)于1879年在他的导师罗兰指导下发现的。由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。 利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。了解这一富有实用性的实验,对今后的工作将大有益处。 教学目的: 1.了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。 2.掌握用霍尔元件测量磁场的原理和方法。 3.学习用霍尔器件测绘长直螺线管的轴向磁场分布。 教学重难点: 1. 霍尔效应 2. 霍尔片载流子类型判定。 实验原理 如右图所示,把一长方形半导体薄片放入磁场中, 其平面与磁场垂直,薄片的四个侧面分别引出两对电极(M、N和P、S),径电极M、,则在P、S极所在侧面产生电势差,这一现象称为霍尔效应。这电N通以直流电流I H 势差叫做霍尔电势差,这样的小薄片就是霍尔片。

《霍尔元件通用技术条件》编制说明

《霍尔元件通用技术条件》编制说明 (征求意见稿) 一、工作简况 1、任务来源 本项目是工业和信息化部行业标准制修订计划(工信厅科[2017] 70号),计划编号:2017-0581T-JB,项目名称“霍尔元件通用技术条件”进行修订,标准起草牵头单位:沈阳仪表科学研究院有限公司,计划应完成时间2019年。 2、主要工作过程 起草(草案、调研)阶段: 沈阳仪表科学研究院有限公司接受本标准的修订任务后,于2018年1月组织成立了标准编制工作组,制定了标准修订计划,修订工作组对霍尔元件的定义、基本参数、要求、试验方法、检验规则、标志、包装及贮存等进行了总结和归纳。 在参照了国外相关标准和1999年发布的《霍尔元件通用技术条件》的基础上,根据各参编单位提出的意见,工作组经全方位的讨论、研究、修改及补充,确立了本《工作组讨论稿》的结构框架及基本内容。 2018年8月2日和8月9日在沈阳仪表科学研究院有限公司分别召开两次编制工作组会议。会上对标准工作组讨论稿进行了逐字逐句的讨论,工作组根据各位成员的意见,对标准进行修改,形成本征求意见稿及编制说明。 征求意见阶段: 审查阶段: 报批阶段: 3、主要参加单位和工作组成员及其所做的工作等 本标准由沈阳仪表科学研究院有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心、中国仪器仪表协会传感器分会、海宁嘉晨汽车电子技术有限公司、杭州电子科技大学等单位共同起草。 工作组主要成员:徐丹辉、李洪儒、张阳、于振毅、王松亭、郑楠、钱正洪、白茹。 工作安排:徐丹辉任修订工作组组长,全面负责标准修订工作,李洪儒、钱正洪负责对各阶段标准的审核。李洪儒、张阳负责与参编单位沟通、协调工作组内的意见。王松亭、郑楠、白茹负责标准资料收集、确定标准相关技术参数等工作。于振毅负责对资料进行总结和归纳、对各方面意见及建议的归纳分析,并提出内部修改意见。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

霍尔效应测磁场实验报告

v1.0可编辑可修改 (3) 实验报告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、 实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、 实验学时: 四、 实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为 B 的磁场中,并让薄片平面与磁场 方向(如Y 方向)垂直。如在薄片的横向( X 方向)加一电流强度为|H 的电流,那么在与 磁场方向和电流方向垂直的 Z 方向将产生一电动势 U H 。 如图1所示,这种现象称为霍耳效应, U H 称为霍耳电压。霍耳发现,霍耳电压 U H 与 电流强度I H 和磁感应强度 B 成正比,与磁场方向薄片的厚度 d 反比,即 U H R-^^B ( 1 ) d 式中,比例系数R 称为霍耳系数,对同一材料 R 为一常数。因成品霍耳元件 (根据霍耳效应 制成的器件)的d 也是一常数,故 R/d 常用另一常数 K 来表示,有 U H KI H B 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位 电流I H 和霍耳电压U H ,就可根据式 U H KI H 电流作用下霍耳电压的大小。如果霍耳元件的灵敏度 K 知道(一般由实验室给出),再测出

算出磁感应强度Bo (5) v

(5) v (二)霍耳效应的解释 现研究一个长度为I 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿 X 方向 通以电流I H 后,载流子(对 N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方 向运动,在磁感应强度为 B 的磁场中,电子将受到洛仑兹力的作用,其大小为 f B evB 方向沿Z 方向。在f B 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场 E H (见图2), 它会对载流子产生一静电力 f E ,其大小为 f E eE H 方向与洛仑兹力 f B 相反,即它是阻止电荷继续堆积的。当 f B 和f E 达到静态平衡后,有 f B f E ,即evB eE H eU H /b ,于是电荷堆积的两端面(Z 方向)的电势差为 U H vbB 通过的电流I H 可表示为 I H nevbd 式中n 是电子浓度,得 n ebd 将式(5)代人式(4)可得 (4) 图1霍耳效应示意图 图2霍耳效应解释

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

霍尔元件测磁场与实验报告

用霍尔元件测磁场 前言: 霍耳效应是德国物理学家霍耳(A.H.Hall 1855—1938)于1879年在他的导师罗兰指导下发现的。由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。 利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。了解这一富有实用性的实验,对今后的工作将大有益处。 教学目的: 1.了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。 2.掌握用霍尔元件测量磁场的原理和方法。 3.学习用霍尔器件测绘长直螺线管的轴向磁场分布。 教学重难点: 1. 霍尔效应 2. 霍尔片载流子类型判定。 实验原理 如右图所示,把一长方形半导体薄片放入磁场中, 其平面与磁场垂直,薄片的四个侧面分别引出两对电极(M、N和P、S),径电极M、N通以直流电流I H,则在P、S极所在侧面产生电势差,这一现象称为霍尔效应。这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

假设霍尔片是由n 型半导体材料制成的,其载流子为电子,在电极M 、N 上通过的电流由M 极进入,N 极出来(如图),则片中载流子(电子)的运动方向与电流I S 的方向相反为v,运动的载流子在磁场B 中要受到洛仑兹力f B 的作用,f B =e v ×B ,电子在f B 的作用下,在由N →M 运动的过程中,同时要向S 极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(P 极所在侧面)带正电,在上下两侧面之间就形成电势差V H ,即霍尔电势差。薄片中电子在受到f B 作用的同时,要受到霍尔电压产生的霍尔电场E H 的作用。f H 的方向与f B 的方向正好相反,E H =V H /b , b 是上下侧面之间的距离即薄片的宽度,当f H +f B =0时,电子受力为零达到稳定状态,则有 –e E H +(–e v ×B)=0 E H = - v ×B 因 v 垂直B ,故 E H =v B (v 是载流子的平均速度) 霍尔电压为 V H = b E H = b v B 。 设薄片中电子浓度为n ,则 I S =nedb v , v =I S /nedb 。 V H = I S B/ned =K H I S B 式中比例系数K H = 1/ned ,称为霍尔元件的灵敏度。 将V H =K H I S B 改写得 B = V H / K H I S 如果我们知道了霍尔电流I H ,霍尔电压V H 的大小和霍尔元件的灵敏度K H ,我们就可以算出磁感应强度B 。 实际测量时所测得的电压不只是V H ,还包括其他因素带来的附加电压。根据其产生的原因及特点,测量时可用改变I S 和B 的方向的方法,抵消某些因素的影响。例如测量时首先任取某一方向的I S 和B 为正,当改变它们的方向时为负,保持I S 、B 的数值不变,取(I S+,B +)、(I S-、B +)、(I S+、B -)、(I S-,B -)四种条件进行测量,测量结果分别为: V 1= V H +V 0+V E +V N +V RL V 2=-V H -V 0-V E +V N +V RL V 3=-V H +V 0-V E -V N -V RL V 4=V H -V 0+V E -V N -V RL 从上述结果中消去V 0,V N 和V RL ,得到 V H = 4 1 (V 1-V 2-V 3+V 4)-V E

霍尔效应及磁场的测定

霍尔效应及磁场的测定 近年来,在科研和生产实践中,霍尔传感器被广泛应用于磁场的测量,它的测量灵敏度高,体积小,易于在磁场中移动和定位。本实验利用霍尔传感器测量通电螺线管内直流电流与霍尔传感器输出电压之间的关系,证明霍尔电势差与螺线管内的磁感应强度成正比,从而掌握霍尔效应的物理规律;用通电螺线管中心点磁场强度的理论计算值作为标准值来校准霍尔元件的灵敏度;用霍尔元件测螺线管内部的磁场沿轴线的分布。 【实验目的与要求】 1.了解霍尔传感器的工作原理,学习测定霍尔传感器灵敏度的方法; 2.掌握用霍尔传感器测量螺线管内磁感应强度沿轴线方向的分布。 【实验原理】 一、霍尔效应 图8-1 霍尔效应原理图 把矩形的金属或半导体薄片放在磁感应强度为B 的磁场中,薄片平面垂直于磁场方向。如图8-1所示,在横向方向通以电流I ,那么就会在纵向方向的两端面间出现电位差,这种现象称为霍尔效应,两端的电压差称为霍尔电压,其正负性取决于载流子的类型。(图8-1载流子为带负电的电子,是N 型半导体或金属),这一金属或半导体薄片称为霍尔元件。假设霍尔元件由N 型半导体制成,当霍尔元件上通有电流时,自由电子运动的方向与电流I 的流向相反的。由于洛伦兹力B v e F m ?-=的作用,电子向一侧偏转,在半导体薄片的横 向两端面间形成电场,称为霍尔电场H E ,对应的电势差称为霍尔电压U H 。电子在霍尔电场H E 中所受的电场力为H H E e F -=,当电场力与磁场力达到平衡时,有 ()()0=?-+-B v e E e H B v E H ?-=

若只考虑大小,不考虑方向有 E H =vB 因此霍尔电压 U H =wE H =wvB (1) 根据经典电子理论,霍尔元件上的电流I 与载流子运动的速度v 之间的关系为 I=nevwd (2) 式中n 为单位体积中的自由电子数,w 为霍尔元件纵向宽度,d 为霍尔元件的厚度。由式(1)和式(2)可得 IB K IB d R end IB U H H H =?? ? ??== (3) 即 I K U B H H = (4) 式中en R H 1=是由半导体本身电子迁移率决定的物理常数,称为霍尔系数,而K H 称为霍尔 元件的灵敏度。在半导体中,电荷密度比金属中低得很多,因而半导体的灵敏度比金属导体大得多,所以半导体中,电荷密度比金属中低得多,因而半导体的灵敏度比金属导体大得多,所以半导体能产生很强的霍尔效应。对于一定的霍尔元件,K H 是一常数,可用实验方法测定。 图8-2 SS95A 型集成霍尔传感器结构图 虽然从理论上讲霍尔元件在无磁场作用(B =0)时,U H =0,但是实际情况用数字电压表测量并不为零,这是由于半导体材料结晶不均匀、各电极不对称等引起附加电势差,该电势差U HO 称为剩余电压。随着科技的发展,新的集成化(IC)器件不断被研制成功,本实验采用SS95A 型集成霍尔传感器(结构示意图如图8-2所示)是一种高灵敏度传感器,它由霍尔元件、放大器和薄膜电阻剩余电压补偿器组成。其特点是输出信号大,并且已消除剩余电压的影响。SS95A 型集成霍尔传感器有三根引线,分别是:“V +”、“V -”、“V out ”。其中“V +”和“V -”构成“电流输入端”,“V out ”和“V -”构成“电压输出端”。由于SS95A 型集成霍尔传感器它的工作电流已设定,被称为标准工作电流,使用传感器时,必须使工作电流处于该标准状态。在实验时,只要在磁感应强度为零(B =0)条件下,“V out ”和“V -”之间的电压为2.500V ,则传感器就处于标准工作状态之下。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要 方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】

1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 图1. 霍尔效应原理示意图,a )为N f e f m v -e E H A / A B C I S V mA B ? a +e E H f e f m v I S B ? b l d b

利用霍尔效应测磁场实验的误差分析解读

2012大学生物理实验研究论文 利用霍尔效应测磁场实验的误差分析 张晓春(02A11622) (东南大学机械工程学院,江苏南京, 211189) 摘要:通过对利用霍尔效应测磁场实验的原理、过程、及实验数据的处理进行分析,得出本实验误差的主要来源,并对减小误差提出切实可行的方法及注意事项,其中重点介绍利用对称测量法处理数据以减小误差的方法。关键词:霍尔效应误差分析对称测量法 Experimental Error Analysis of Hall Effect Measurements in Magnetic Field Zhang Xiao Chun(02A11622) (School of Mechanical Engineering of Southeast University,Nanjing,Jiangsu,211189) Abstract: Through analyzing the principle process and experimental data processing of using Hall effect to measure magnetic field, draw the main source of experimental error, and put forward practical methods and precautions to reduce the error, which focuses on Symmetrical measurement to process data to reduce experimental error. Key words: Hall Effect Experimental error analysis Symmetrical measurement 自1879年霍尔效应被发现以来,它在测量方向 得到了广泛的应用,其中测螺线管轴线上的磁场是十 分重要的一个方面。但是在测量中,总会产生各种各 样的副效应,这些副效应带来了一定的测量误差,有 些副效应的影响可与实测值在同一数量级,甚至更大。 因此在实验中如何消除这些副效应成为很重要的问题。 本文分析了霍尔效应测磁场的误差来源,并提出了减 小误差应采取的措施及一些注意事项。 作者简介:张晓春(1992-),山东诸城人,本科在读 邮箱:zhangxiaochun12@https://www.doczj.com/doc/1d18660877.html, 1、霍尔效应测磁场的实验原理霍尔效应中霍尔电压UH与所加磁场和霍尔元件的工作电流I的关系为: UH=KHIB (1) 用已对KH定标的霍尔元件支撑探头,分别测出I和UH,即可得:

实验8-霍尔元件测磁场

实验8霍尔元件测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。金属材料的霍尔效应太弱而未得到实际应用。随着半导体材料和制造工艺的发展,人们利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到使用和发展,广泛用于非电量检测、电动控制、电磁测量和计算装置方面。 近年来霍尔效应实验不断有新的发现,在低温和强磁场条件下的量子霍尔效应是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并已取得了重要应用。 【实验目的】 (1)了解霍尔效应原理。 (2)学习利用霍尔效应测量霍尔元件有关参数。 (3)学习用“对称交换测量法”消除附加效应的影响。 (4)学习用霍尔元件测磁场的基本方法。 【实验仪器】 霍尔效应实验仪,霍尔效应测试仪 【原理】 1.霍尔效应 1879年,当时为美国普多金斯大学研究生院二年级学生的霍尔,在研究载流导体在磁场中受力性质时发现:当一电流垂 直于外磁场方向通过导体时,在垂直于电流和 磁场的方向导体的两侧会产生一电位差,如图

4-8-1所示。将这种实验现象称做霍尔效应,所产生的电位差称霍尔电压,产生 霍尔效应的载流导体、半导体、离子晶体称霍尔元件。 霍尔电压的成因可用电子论解释:导体中若沿X 方向通以电流,电流密度为J ,则有沿负X 方向运动的电子,设速度为v ,此电子将受Z 方向的磁场B 的洛伦兹力B f 的作用,从而在导体A 侧积累了电子,这样就形成了沿负Y 方向的电场H E ,即形成了霍尔电压H U 。 2.测磁场原理 如果导体中电流I 是稳定而均匀的,则电流密度J 的大小为 I J Ld = 式中,L 为矩形导体的宽;d 为其厚度;Ld 为导体垂直于电流方向的截面积。 如果在导体所在的范围内,磁场B 也是均匀的,则霍尔电场也是均匀的,大小为 H H U E L = (4-8-1) 霍尔电场的建立使电子受到一电场力E f ,方向与洛伦兹力相反,并随着电荷积累的增加,霍尔电场的电场力也增大。当达到一定程度时,电场力E f 与洛伦兹力B f 大小相等,电荷积累达到动态平衡,形成稳定的霍尔电压,同时电流I 恢复到原来的稳定值,达到动态平衡时有 H evB eE = (4-8-2) 将式(4-8-1)代入得 H U vBL = (4-8-3) 在此式中,H U 、L 容易测,但电子运动速度v 难用简单的方法测量,而电流I 是

相关主题
文本预览
相关文档 最新文档