当前位置:文档之家› 霍尔传感

霍尔传感

霍尔传感
霍尔传感

填空题

1.霍尔传感器是利用__霍尔效应_来实现磁电转换的,霍尔系数与霍尔灵敏度的关系可用公式___来表示。

2.霍尔传感器是利用___来实现电转换的,霍尔电动势的公式用

来表示。 3. 利用霍尔效应原理工作的半导体器件称 霍尔传感器 。

4. 霍尔元件的灵敏度KH 与材料的性质及几何尺寸有关,一般来讲元件 越薄 其灵敏度越大,霍尔元件输出电动势UH= K H IB 。灵敏度 K H = R H /d .

5. 霍尔传感器是根据 霍尔效应 制作的传感器,广泛用于电磁、压力、 压力、振动 、加速度等方面的测量。

6. 霍尔元件的测量误差产生的主要原因有两类,即 半导体固有特性 和 半导体制造工艺的缺陷 。

7. 霍尔元件是N 型半导体制成扁平长方体,扁平边缘的两对侧 面各引出一对电极。一对叫 控制 电极用于引人 控制电流 ;另一对叫 输出 电极,用于输出 霍尔电动势 。

8. 目前霍尔元件主要应用于自动控制、计算机装置和现代军事领域的电磁、压力、加速度和振动等方面的测量。

9.

霍尔传感器具有灵敏度高、线性好、稳定性好、体积小和耐高温等特性。分为普通型、高灵敏度型、低温度系数型、测温测磁型和开关式霍尔元件。 10. 霍尔片的灵敏度(灵敏系数)指单位磁场强度和单位电流作用下,所输出的霍尔电动势的大小。

11. 霍尔电势 是在L 无穷大前提下得到的,实际不可能为

无穷大,一般要求长宽比大于2.0即可。

12.

半导体电子迁移率一般大于空穴的迁移率,所以 霍尔元件多采用N 型半导体。霍尔元件厚度d 越小,霍尔灵敏度 KH 越大,所以霍尔元件做的较薄。 13. 霍尔传感器的应用类型主要有线性应用和开关应用两种,霍尔片的连接方式有控制电流端并联和控制电流端串联两种。

14.霍尔元件在交变磁场中工作时,即使不加控制电流,由于霍尔电极的引线布

IB K d

U H H H ==IB K d

IB R U H H H ==

局不合理,在输出回路中也会产生附加感应电动势,这一电动势的大小正比于磁场的变化频率和磁感应强度的幅值,并且和霍尔电动势引线构成的感应面积成正比。

选择题

1、霍尔元件不等位电势产生的主要原因不包括( c )

A.霍尔电极安装位置不对称或不在同一等电位上

B.半导体材料不均匀造成电阻率不均匀或几何尺寸不均匀

C.周围环境温度变化

D.激励电极接触不良造成激励电流不均匀分配

产生原因的是()。

2、下面不属于不等位电势U

A、霍尔电极安装位置不对称或不在同一等电位面上;

B、半导体材料不均匀造成了电阻率不均匀或几何尺寸不均匀;

C、元件由金属或绝缘体构成;

D、激励电极接触不良造成激励电流不均匀分布等。

3、关于霍尔传感器说法不正确的是()

A、霍尔片越厚,霍尔传感器输出灵敏度越大

B、霍尔片越薄,霍尔传感器输出灵敏度越大

C、霍尔传感器可以作测量元件

D、霍尔传感器可以作开关元件

4. 已知磁电式传感器的线圈运动时产生的磁场方向和原工作磁场方向相反,则随着线圈运动速度的增大,( 1 )了工作磁场的作用,传感器的灵敏度因此而(2)( A )

A.1增强,2增大

B.1增强,2减小

C.1减弱,2增大

D.1减弱,2减小

5.常用于测量位移的传感器是( )

A.光电三极管

B.热电偶

C.霍尔式

D.热电阻

E.光电管

6.下列不属于霍尔试传感器的特性的是()

A. 灵敏度高

B. 耐高温

C. 稳定性好

D. 体积大

7.

霍尔传感器正确说法是( )

A. 多数为半导体材料构成

B. 基于压电效应原理构成

C. 动态响应好

D. 体积大

8.

霍尔元件技术参数有( )

A. 输入输出电阻

B. 霍尔效应

C. 额定激励电流和最大允许激励电流

D. 几何尺寸

9.

霍尔元件连接方式有如下几种( )

A. 直流供电

B. 交流供电

C. 电桥电路

D.振荡电路

10.

霍尔元件输出电路应用方式有如下几种( ) A.

线性应用 B. 开关应用

C.放大应用

D.反馈应用

11.

霍尔元件温度误差的主要原因是( )。 A.半导体固有特性 B.工作原理造成的C.

采用恒温措施

D.制造工艺的缺陷。

12.对霍尔元件说法正确的有( )。

A.属于光电器件

B.基于霍尔效应原理制成的

C.半导体器件

D.有源器件 问答题:

1.影响霍尔元件输出零点的因素有哪些?怎样补偿?

答:影响霍尔元件输出零点的因素主要是霍尔元件的初始位置。

霍尔位移传感器,是由一块永久磁铁组成磁路的传感器,在霍尔元件处于初始位置0=?x 时,霍尔电势H U 不等于零。霍尔式位移传感器为了获得较好的线性分布,在磁极端面装有极靴,霍尔元件调整好初始位置时,可以使霍尔电势H U =0。

2. 温度变化对霍尔元件输出电势有什么影响?如何补偿?

答:霍尔元件的灵敏系数H K 是温度的函数,关系式为:()T K K H H ?+=α10,大

多数霍尔元件的温度系数α是正值,因此,它们的霍尔电势也将随温度升高而增加αΔT 倍。

补偿温度变化对霍尔电势的影响,通常采用一种恒流源补偿电路。基本思想是:在温度增加的同时,让激励电流 I 相应地减小,并能保持 I K H ?乘积不变,也就可以相对抵消温度对灵敏系数H K 增加的影响,从而抵消对霍尔电势的影响。 3. 霍尔传感器不等位电势的定义如何?产生的主要原因有哪些? 答:当霍尔元件的激励电流为I 时,若元件所处位置磁感应强度为零,则它的霍尔电势应该为零,但实际不为零。这时测得的空载霍尔电势称为不等位电势。

产生这一现象的原因有:

① 霍尔电极安装位置不对称或不在同一等电位面上;

② 半导体材料不均匀造成了电阻率不均匀或是几何尺寸不均匀; ③ 激励电极接触不良造成激励电流不均匀分布等。

4.

霍尔传感器寄生直流电势产生的主要原因有哪些? 答:

a 、激励电极与霍尔电极接触不良, 形成非欧姆接触,在控制电流极和霍尔电动势输出极之间造成整流效果;

b 、两个霍尔电极大小不对称,则两个电极点的热容不同, 散热状态不同而形成极间温差电势。

c 、寄生直流电势与工作电流大小有关,随着电流减小,寄生直流电势 将减小。

5. 霍尔元件能够测量哪些物理参数?霍尔元件的不等位电势的概念是什么?温度补偿的方法有哪几种?

答:霍尔组件可测量磁场、电流、位移、压力、振动、转速等。 霍尔组件的不等位电势是霍尔组件在额定控制电流作用下,在无外加磁场时,两输出电极之间的空载电势,可用输出的电压表示。 温度补偿方法:

a 分流电阻法:适用于恒流源供给控制电流的情况。

b 电桥补偿法

6. 霍尔元件的主要参数有哪些?

额定功率损耗;输入电阻和输出电阻;不平衡电动势;霍尔电动势的稳定系数;内阻温度系数;灵敏度。

7.霍尔元件能够测量哪些物理参数?霍尔元件的不等位电势的概念是什么?温度补偿的方法有哪几种?

答:霍尔组件可测量磁场、电流、位移、压力、振动、转速等。 霍尔组件的不等位电势是霍尔组件在额定控制电流作用下,在无外加磁场时,

两输出电极之间的空载电势,可用输出的电压表示。

温度补偿方法:

a 分流电阻法:适用于恒流源供给控制电流的情况。

b 电桥补偿法

判断题

1.霍尔效应是电荷受到洛伦兹力合电场力作用结果。(1)

2.霍尔传感器输出电动势大小与材料性质、霍尔片的厚度、控制电流、磁场强

度及几何尺寸有关。( 1 )

3.霍尔传感器输出电动势与材料性质、霍尔片的厚度、控制电流、磁场强度及几何尺寸有关,当改变磁场强度的方向时,电动势的机型也改变。( 1 )

4. 霍尔传感器输出电动势与材料性质、霍尔片的厚度、控制电流、磁场强度及几何尺寸有关,当同时改变磁场强度和电流的方向时,电动势的机型也改变。( 2 )

5.霍尔片的灵敏度(灵敏系数)指单位磁场强度和单位电流作用下,所输出的霍尔电动势的大小。( 1 )

6.霍尔片的灵敏度与霍尔常数R H成正比而与霍尔片厚度d成正比;为了提高灵敏度,霍尔元件常制成薄片形状。( 2 )

7.要想霍尔电动势高,半导体材料的电阻率必需大,且迁移率也要高。金属电子的迁移率高但电阻率小,绝缘体电阻率高但迁移率小,半导体正合适。(1)8.霍尔元件最大允许激励电流以元件允许最大温升为限制所对应的激励电流,因霍尔电势随激励电流增加而线性增加,改善霍尔元件的散热条件,可以使激励电流增加,进而增加电动势。(1)

9.霍尔元件激励电极间的电阻值称为输入电阻,这两个阻值可以在磁感应强度为零,且环境温度在20℃±5℃时用万用表的欧姆档直接测量。(1)

10.为了霍尔元件减少寄生直流电势,在元件的制作和安装时,应尽量改善电极的欧姆连接性能和元件的散热条件。(1)

综合题

1.如图霍尔传感器应用电路,说明工作原理。

答:霍尔集成元件是将霍尔元件和放大器等集成在一块芯片上。 它由霍尔元件、 放大器、电压调整电路、电流放大输出电路、 失调调整及线性度调整电路等几部分组成,它的特点是输出电压在一定范围内与磁感应强度成线性关系。霍尔开关传感器SL3501具有较高灵敏度的集成霍尔元件,能感受到很小的磁场变化, 因而可对黑色金属零件进行计数检测当钢球通过霍尔开关传感器时,传感器可输出峰值 20 mV 的脉冲电压,该电压经运算放大器(μA741) 放大后, 驱动半导体三极管V(2N5812) 工作, V 输出端便可接计数器进行计数,并由显示器显示检测数值。

2. 若一个霍尔元件的K H = 2.0 mv/mA .KGs,控制电流I=20 mA ,将它置于磁场

钢球

(a )

+(b )

中,磁场B在10KGS – 20 KGS之间变化,试求霍尔电动势V

的范围有多大?

H

并设计一个20倍的比例放大器放大该霍尔电动势。(画出电路图)

解:U H=K H IB

代入数值可得范围是0.4-0.8V

3.为了获得较大的霍尔电动势,可采用多片霍尔元件片同时工作的方法,按下列要求画出霍尔元件的测量电路图。

(1). 霍尔元件采用直流供电、直流输出的方式。

(2).对霍尔元件片的不等位电动势有补偿措施。(补偿一个桥臂即可)(3).具有可调的霍尔电动势。(电动势可调的范围不限)

(4).霍尔元件的输出电路作为线性测量用。

(5).以两片霍尔元件片为例加以说明,并标出霍尔电动势的极性。(用 -、+ 表示)

就上题回答下列问题:

①可选用什么样的霍尔元件?

②若K

= 3.0 mv/ MAKgs,控制电流I=30 MA,磁场B在40 – 60 KGS之间变化,H

试求霍尔电动势VH的范围。

解:线性应用:最好选择灵敏度低一些的、不等位电动势小一些的、稳定性好一些的、线性度好的元件。

由霍尔电动势表达式 IB K d

IB

R U H H H == 可知:

U Hh = 3.0 mv/ MAKgs ×30 MA ×60 KGS=5400 mv=5.4v

U H l= 3.0 mv/ MAKgs ×30 MA ×40 GS ×10-3=3.60 mv

U H 变化范围是: 3.6 mv----5.4 v

4. 为了获得较大的霍尔电动势,可采用多片霍尔元件片同时工作的方法,按下列要求画出霍尔元件的测量电路图。

(1). 霍尔元件采用直流供电、直流输出的方式。 (2).对霍尔元件片的不等位电动势有补偿措施。(补偿一个桥臂即可) (3).具有可调的霍尔电动势。(电动势可调的范围不限) (4).霍尔元件的输出电路作为开关用。 (5).以两片霍尔元件片为例加以说明,并标出霍尔电动势的极性。(用 -、+ 表示)

就上题回答下列问题:

①可选用什么样的霍尔元件?

②若K H = 3.0 mv/ MAKgs,控制电流I=30 MA ,磁场B 在40 – 60 KGS 之间变化,试求霍尔电动势VH 的范围。

线性应用:最好选择灵敏度低一些的、不等位电动势小一些的、稳定性好一些的、线性度好的元件。

由霍尔电动势表达式 IB K d

IB

R U H H H == 可知:

U Hh = 3.0 mv/ MAKgs ×30 MA ×60 KGS=5400 mv=5.4v

U H l= 3.0 mv/ MAKgs ×30 MA ×40 GS ×10-3=3.60 mv

U H 变化范围是: 3.6 mv----5.4 v

证明与分析题:

1.如图所示为霍尔元件产生霍尔电动势的原理图。设霍尔元件长度为无穷大,且元件材料为N 型半导体材料,试证明霍尔电动势的表达式为U H =K H BI 。

证明:电子受洛伦兹力f l 的作用,f l 的大小为: f l=eBv

e ——电子电荷;v ——电子运动平均速度; B ——磁场的磁感应强度。 此时电子除了沿电流反方向作定向运动外,还在

f l 的作用下漂移,结果使金属导电板内侧面积累电子,而外侧面积累正电荷,从而形成了附加内电场E H , 称霍尔电场,该电场强度为:

当电子所受洛伦磁力与霍尔电场作用力大小相等方向相反,即

eE H =eBv

E H =vB 电荷不再向两侧面积累,达到平衡状态。

若金属导电板单位体积内电子数为n ,电子定向运动平均速度为v ,则激励电流I=nevbd ,即 代入得 令R H=1/ne

2. 如图所示为霍尔元件示意图。当霍尔元件的激励电流为I 时,若元件所处位置磁感应强度为零时,霍尔电势应不为零,而存在不等位电动势。分析产生 不等位电动势的主要原因,并画出原理图说明你想采取的采取的补偿措施。

分析:产生这一现象的原因有:

① 霍尔电极安装位置不对称或不在同一等电位面上; ② 半导体材料不均匀造成了电阻率不均匀或是几何尺寸不均匀; ③ 激励电极接触不良造成激励电流不均匀分布等。

b U

E H

H =nedb

I v =nebd

IB

E H =

neb

IB U H =

IB K d

IB R U H H H ==

电位的高低,判断应在某一桥臂上并联一定的电阻,使电桥达到平衡, 从而使不等位电势为零。(画出1个图即可)

3. 图是

霍尔

元件的基本测量电路。图中各编号名称:

①和②是 霍尔电极 ;③和④是 激励电极 。该元件的两种应用是开关应用和线性测量。

图电路中的被测量是磁感应强度 。

霍尔传感器位移特性实验

实验14 直流激励时霍尔传感器位移特性实验 141270046 自动化杨蕾生 一、实验目的: 了解直流激励时霍尔式传感器的特性。 二、基本原理: 根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。 三、需用器件与单元: 主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。 四、实验步骤: 1、霍尔传感器和测微头的安装、使用参阅实验九。按图14示意图接线(实验模板的输出V o1接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V档。 2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加0.2mm记下一个读数,将读数填入表14。

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的是什么量的变化? 答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 实验数据如下: 表9-2

(1)由上图可知灵敏度为S=ΔV/ΔX=-0.9354V/mm (2)由上图可得非线性误差: 当x=1mm时, Y=-0.9354×1+1.849=0.9136 Δm =Y-0.89=0.0236V yFS=1.88V δf =Δm /yFS×100%=1.256% 当x=3mm时: Y=-0.9354×3+1.849=-0.9572V Δm =Y-(-0.94)=-0.0172V yFS=1.88V δf =Δm /yFS×100%=0.915% 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进 行补偿。 答:(1)零位误差。零位误差由不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。补偿方法是加一不等位电势补偿电路。 (2)温度误差。因为半导体对温度很敏感,因而其霍尔系数、电阻率、霍尔电势的输入、输出电阻等均随温度有明显的变化,导致了霍尔元件产生温度误差。补偿方法是采用恒流源供电和输入回路并联电阻。

霍尔传感器制作实训报告

佛山职业技术学院 实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试 专业电气自动化技术 班级08152 姓名陈红杰‘’‘’‘’‘’‘’‘’‘’‘ 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级08152学号31 姓名陈红杰时间2009-2010第二学期项目名称霍尔传感器电路制作与 指导老师张教雄谢应然调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

实验开始,每组会得到分发的元件,我先由霍尔传感器的电路原理图开始分析,将每个元件插放好位置,这点很重要,如果出了问题那么会使电路不能正常工作,严重的还有可能导致电路元件受损而无法恢复。所以我先由霍尔传感器的电路原理图开始着手,分析清楚每个元件的指定位置,插放好了之后再由焊接,最后要把多余的脚剪掉。 整个电路的元件除了THS119是长脚直插式元件之外,其余的元件均为低位直插或者贴板直插。 焊接的过程中,所需要注意的事情就是不能出现虚焊脱焊或者更严重的烙铁烫坏元件的表壳封装损坏印制电路板等。这些都是在焊接的整个过程中要注意的事情。 比如,焊接三端稳压管7812时,要考虑到电路板的外壳封装和三端稳压管7812的散热问题,如果直插焊接的话那么就会放不进塑料外壳里,还有直插没有折引脚的话对三端稳压管7812的散热影响很大。综合这些因素再去插放焊接元件,效果会好很多。 又比如,焊接THS119的时,原本PCB板在设计的时已经排好版了,就是在TL082的背面插放THS119。这样的设计很巧妙,能够保证每一个THS119插进去焊接完了之后都能很好地与塑料外壳严密配合安放进去。因为这是利用了IC引脚与PCB板的间距来实现定距离的,绝不会给焊接带来任何麻烦。 最后,顺便提及一下,在保证能将每一个元件正确地焊接在印制电路板上的前提条件下要尽量将元件插放焊接得美观。 五、实验心得体会 (1)首先,从整个霍尔传感器来看,设计的电路的合理性,元件的选用,还有焊接的制作工艺是保证整个电路能正常工作前提。 (2)在学习电子电路的过程中,急需有一个过度期,焊接霍尔传感器电路的过程当中就会得到一个这样的练习。 (3)简单的说就是,拿到一张电路原理图未必做得出一个比较好的产品,这里需要对整个电路设计的元件参数的考虑和排版,元件插放等等。只有将这些问题逐一解决了,才能做好一个电路,也只有这样才能做好一个产品。 (4)霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低。霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁场强度。 六、实验收获 从拿到第一个元件开始,我仍然没有太多的收获,直到开始分析整个电路原理图的时候才慢慢开始了解到一些确实精巧的设计,可以说是独具匠心,到整个霍尔传感器电路完成之后才算是明白了一二。 在此,我具体地说说。首先,为什么不用一个普通的稳压管替代Z2这个精密稳压集成电路TL431呢?我查阅相关资料知道它的温度范围宽能在 区间工作。将其的R、C脚并焊再串上一个电阻来等效代替电

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

霍尔元件分类及其特性

二:霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如下图所示,是其中一种型号的 外形图 三:霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种: 1.线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组 成,它输出模拟量。 2.开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

配合差分放大器使用霍尔元件产生的电势差很小,一般在毫伏量级,所以在使用时要进行一定的放大处理(如下图) 配合触发器用在上述电路的基础上,再添加一个施密特触发器用作阈值检测,则可以使霍尔器件输出数字信号,结构图如下: 集成场效应管在上述电路的基础上添加一个场效应管,可以

增强霍尔开关的驱动能力(可以直接驱动LED、继电器等) 四:霍尔传感器的特性 1.线性型霍尔传感器的特性 2.开关型霍尔传感器的特性 如图4所示,其中BOP为工 作点“开”的磁感应强度,BRP 为释放点“关”的磁感应强度当 外加的磁感应强度。超过动作点 Bop时,传感器输出低电平,当磁感应强度降到动作点Bop以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。Bop 与BRP之间的滞后使开关动作更为可靠。

A3144是开关霍尔传感器 五:开关型霍尔传感器 开关型霍尔传感器主要用于测转数、转速、风速、流速、接近开关、关门告知器、报警器、自动控制电路等。 1.测转速或转数 如图所示,在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

实验报告 班级: 姓名: 学号: 一、实验名称 集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场 二、实验目的 1、掌握霍尔效应原理测量磁场; 2、测量单匝载流原线圈和亥姆霍兹线圈轴线上的磁场分布。 三、实验仪器 亥姆霍兹线圈磁场测定仪、包括圆线圈和亥姆霍兹线圈平台(包括两个圆线圈、固定夹、不锈钢直尺等)、高灵敏度毫特计和数字式直流稳压电源。 四、实验原理 1、圆线圈的磁场 根据毕奥—萨伐尔定律,载流线圈在轴线上某点的磁感应强度为: NI x R R B 2 322 20) (2+= μ 式中I 为通过线圈的电流强度,R 为线圈平均半径,x 为圆心到该点的距离,N 为线圈的匝数,A m T /1047 0??=-πμ,为真空磁导率。因此,圆心处的磁感应强度为 NI R B 20 μ= 2、亥姆霍兹线圈的磁场 亥姆霍兹线圈:两个半径和匝数完全相同的线圈,其轴向距离等于线圈的半径。 这种线圈的特点是当线圈串联连接并通以稳定的直流电后,就可在线圈中心区域内产生较为均匀性较好的磁场,因而成为磁测量等物理实验的重要组成部件,与永久磁铁相比,亥姆霍兹线圈所产生的磁场在一定范围内具有一定的均匀性,且产生的磁场具有一定的可调性,可以产生极微弱的磁场直至数百高斯的磁场,同时在不通电的情况下不会产生环境磁场。 亥姆霍兹线圈如图所示,是一对彼此平行且连通的共轴圆形线圈,两线圈内电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的半径R 。 设z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,根据毕奥—萨伐尔定律及磁

场叠加原理可以从理论上计算出亥姆霍兹线圈轴上任意一点的磁感应强度为 ? ?????-++++???='--232 2232220]z 2([]z 2([21))R R R R R I N B μ 而在亥姆霍兹线圈上中心O 处的磁感应强度' B 为 R I N B ??= 02 3 ' 058μ 当线圈通有某一电流时,两线圈磁场合成如图 可看出,两线圈之间轴线上磁感应强度在相当大的范围内是均匀的。 3、测量亥姆霍兹线圈磁场的方法——霍尔效应法 直接测量,设备简单,操作容易,适用于弱磁场和非均匀磁场的测量,霍尔探头经定标后可直接显示磁感应强度值。 五、实验步骤 1、载流圆线圈和亥姆霍兹线圈轴线上各点磁感应强度的测量 (1)先按要求将各导线连接好,直流稳压电源中数字电流表已串接在电源的一个输出端,测量电流I=100 mA 时,单线圈a 轴线上各点磁感应强度a B ,每隔1.00 cm 测量一个数据。实验中,随时观察毫特斯拉计探头是否沿线圈轴线移动。每测量一个数据,必须先在直流电源输出电路断开(I=0)调零后,才测量和记录数据。将测得数据填入表1中。 (2)用理论公式计算圆线圈中轴线上各点的磁感应强度,将计算结果填入表1中并与实验测量结果进行比较。 (3)在轴线上某点转动毫特斯拉计探头,观察一下该点磁感应强度测量值的变化规律,并判断该点磁感应强度的方向。 (4)将线圈a 和线圈b 之间的距离d 调整到d=10.00 cm ,这时,组成一个亥姆霍兹线圈。取电流值I=100 mA ,分别测量两线圈单独通电时,轴线上各点的磁感应强度值a B 和b B ,然后将亥姆霍兹线圈在通同样电流I=100mA ,在轴线上的磁感应强度值b a B +,将测量结果填入表2中。证明在轴线上的点b a b a B B B +=+,即载流亥姆霍兹线圈轴线上任一点磁感应强度是两个载流单线圈在该点上产生的磁感应强度之和。 (5)分别把亥姆霍兹线圈间距调整为2 R d = 和R d 2=,与步骤(4)类似,测量在电流为I=100mA 时轴线上各点的磁感应强度值,将测量结果分别填入表3和表4中。 (6)作间距2 R d = ,R d =,R d 2=时,两个线圈轴线上磁感应强度B 与位置z 之间关系图,即B-z 图,验证磁场叠加原理。 2、载流圆线圈通过轴线平行面上的磁感应线分布的描绘 2 R 2 R R R B

霍尔电流传感器的电路设计

一种霍尔电流传感器的电路设计 设计了一种零磁通型霍尔电流传感器,可广泛应用于交流变频驱动、焊接电源、开关电源、不间断电源等领域。该零磁通型霍尔电流传感器通过砷化镓霍尔元件检测由通电电流产生的磁场,继而有效地检测被测电流。 由于霍尔元件产生的霍尔电势很微弱,而且还存在较大的失调电压,因此对霍尔电压的放大和对不等位电势的补偿是该设计的两个主要需要解决的问题,而且霍尔元件中载流子浓度等随温度变化而变化,因此还需用温度补偿电路对其温度补偿。 1 系统设计框架 系统分为4个部分:1)霍尔元件的供电电路,由电压基准(电流基准)芯片为霍尔片提供工作电流; 2)霍尔元件及磁芯,将感应片感应的磁场(该磁场由通电电流产生)转化为霍尔电压;3)放大电路,将微弱的霍尔电压进行放大;4)反馈部分,利用了磁平衡原理:一次侧电流所产生的磁场,通过二次线圈电流进行补偿,使磁芯始终处于零磁通工作状态。其系统总流程图如图1所示。 2 系统硬件电路设计 系统由±5 V的稳压源供电。用一片电压基准芯片REF3012为砷化镓系列的霍尔元件HW300B提供基准电压。HW300B是一款可采用电压模式供电和电流模式供电的霍尔元件,HW300B放在开有气隙的集磁环的气隙里,并用胶水加以固定(霍尔元件和集磁环相对位置如果发生变化,会影响产生的霍尔电势的大小)。霍尔元件的输出接至仪器放大器AD620,作为放大器的差模出入端和共模输入端。放大器的增益可通过调节1、8引脚之间的10 kΩ的电位器改变。放大器的输出接反馈线圈,该反馈线圈绕在集磁环上,其绕线方向能使通过它的电流产生的磁场与集磁环收集到的磁场方向相反。反馈线圈末端放1个75 kΩ的精阻接地,可以通过测量精阻两端的电压,计算反馈线圈中的电流,进而推算穿过集磁环中心的被测电流的大小。其具体电路图如图2所示。 2.1 REF3012 以SOT23-3封装的REF3012是一个高精度、低功耗、低电压差电压参考系列芯片。REF3012小尺寸和低功耗(最大50μA)非常适用于便携式和电池供电。它不需要负载电容,但对任何容性负载很稳定。因磁敏型霍尔元件很容易受温度的影响,可以采用恒流源供电以减小其温度系数。在该系统设计中,REF3012的输入引脚1接+5 V电源,并接10μF的旁路电容至地,该旁路电容对电源进行滤波,提高电源稳定性。而其输出引脚2接到HW300B的引脚1,并且也接1O μF的旁路电容至地,GND(地)引脚3接地。由于系统设计要求REF3012为HW300B提供2.5 V的基准电压,根据REF3012的数据资料可知,当输入电压为5 V 时,输出电压为2.5 V,所以REF3012引脚1接+5 V电压。 2.2 霍尔元件 本设计采用砷化镓系列的HW300B型霍尔元件,输出霍尔电压范围122~204mV,输入、输出阻抗为240~550 Ω,补偿电压为-7~7 mV,温度系数为-1.8%/℃。其输入可采用电压模式供电,也可采用电流模式供电。这里采用电压模式供电,即就是HW300B的引脚1、3为控制输入端,而引脚2、4为霍尔电压输出端。 霍尔元件是将磁场转换为电信号的线性磁敏元件,霍尔输出电压 式中,S为乘积灵敏度,mV/(mT·mA);Ic为工作电流,mA;B为磁感应强度,mT。 本设计中,将霍尔元件放进开有气隙的集磁环的气隙里,并将霍尔元件和集磁环固定,这样可以感应出更大、更稳定的霍尔电势。式(1)中,当S与Ic一定,则Vh与B有直接线性关系。通电导体周围必然产生磁场,根据安培定律,电流与磁场的关系式∮BdI=μ0I0得:

基于线性霍尔元件的位移传感器设计

郑州轻工业学院 传感器及应用系统课程设计说明书基于线性霍尔元件的位移传感器 姓名:吴富昌 专业班级:电子信息工程13-01 学号:9 指导老师:陆立平 时间:2016.6.27 -2016.7.1

郑州轻工业学院 课程设计任务书 题目基于线性霍尔元件的位移传感器设计 专业、班级电子信息工程13-01 学号39 姓名吴富昌 主要内容、基本要求、主要参考资料等: 一、主要内容: 利用线性霍尔元件设计一个位移传感器。 二、基本要求: (1)设计一个位移传感器,并设计相关的信号处理电路。 (2)为达到误差控制要求,需要对霍尔元件的误差进行补偿校正,主要包含霍尔元件的零位误差及补偿和温度误差及补偿。 (3)完成系统框图和电路原理图的设计和绘制,系统理论分析和设计详细明确,有理有据。 (4)信号处理电路应包含激励信号电路、消除不等位电势补偿电路、放大电路、相敏检波电路和低通滤波电路等。 (5)利用软件仿真,得出主要信号输入输出点的波形,根据仿真结果验证设计功能的可行性、参数设计的合理性。 (6)根据模拟结果计算位移传感器的迟滞误差、线性度和灵敏度等参数。 (7)写出3000~5000字的设计报告,主体文本字号为小四号,标题章节字号依照美观合理原则选择,并合理加黑,字体均为宋体。 三、主要参考资料: (1)何金田,张斌主编,传感器原理与应用课程设计指南。哈尔滨:哈尔

滨工业大学出版社,2009.01. (2)周继明,刘先任、江世明等,传感器技术与应用实验指导及实验报告。长沙:中南大学出版社,2006.08. (3)陈育中,霍尔传感器测速系统的设计,科学技术与工程,2010,10:7529-7532. 完成期限:2016年6月27 日-2016年7月1日 指导教师签章: 专业负责人签章: 2016年 6 月27 日 基于线性霍尔元件的位移传感器设计 摘要 霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔期间以霍尔效应为其工作原理。当被测物体分别与恒定电流I和恒定磁场B垂直二当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。 关键词霍尔传感器位移霍尔电压

根据霍尔传感器的电机测速装置设计

检测与转换技术大作业报告 题目 院系 班级 学生姓名 日期

霍尔传感器在电机转速测量装置上 的应用设计 利用霍尔传感器,设计了一种电机转速测量装置并提出了相应的测速算法,还设计了转速信号处理电路,将脉冲信号转化为标准的T TL 电平,便于A T89C52 单片机的计数运算,并通74LS164 寄存器将转速信号显示在L ED 上。该电机测速装置具有线路简单、实时性好、成本低、安装调试方便和节省空间等优点,尤其是在测量空间有限、轴偏心或传感器不便安装的条件下,该测量方法具有明显的优势。 第一章测速电路相关元件分析 1.1 AT89C52单片机 AT89C52是一个低电压、高性能CMOS8位单片机,片内含8KB的可反复擦写的Flash只读程序存储器和256B的随机存取数据存储器(RAM),兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读/写口线。AT89C52主要功能特性和引脚图如下所示: ·完全兼容MCS-51指令系统 ·8k可反复擦写Flash ROM ·全静态操作:时钟频率0-24MHz

·三级加密程序存储器 ·3个16位可编程定时/计数器中断 ·256x8bit内部RAM ·32个可编程的双向I/O口 ·2个外部中断源,共8个中断源 ·2个读写中断口线 ·可编程串行UART通道 ·低功耗空闲和掉电模式 ·软件设置睡眠和唤醒功能 1.2 LM317T三端稳压器 LM317T是可调节三端正电压稳压器,在输出电压范围为1.25V到37V时能够提供超过1.5A的负载电流。此稳压器使用非常容易,只需两个外接电阻来设置输出电压。其主要功能特性如下所示: ·输出电流超过1.5安 ·输出电压在1.2伏和37伏间连续可调 ·内部热过载保护 ·不随温度变化的内部短路电流限制

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

集成开关型霍尔传感器在汽车发动机启动按钮中的应用

普通物理实验C 课程论文 题目集成开关型霍尔传感器在汽车发动机启动按钮中的应用 学院物理科学与技术学院电子信息工程学院专业物理学(师范) 年级2011级 学号222011315231243 姓名王黎阳 指导教师雷衍涟 论文成绩____________________________________ 答辩成绩____________________________________ 2012年12月13日

集成开关型霍尔传感器在汽车发动机启动按钮中的应用 王黎阳 西南大学物理科学与技术学院,重庆 400715 摘要:为了解决传统钥匙式按钮开关启动汽车发动机稳定性差、不方便、容易发生机械故障等问题,设计了一种利用集成开关型霍尔传感器制成的启动式按钮开关,并采用磁极正对霍尔传感器接近启动的启动方式以及单极磁场的磁输入方式,以A44E型霍尔开关为例应用于启动汽车发动机,实现了方便、快速、美观、成本低、性能稳定、可靠性高等特点。 关键词:按钮开关;集成开关型霍尔传感器;A44E型霍尔开关;汽车发动机启动; 1引言 按钮开关是一种结构简单,应用十分广泛的主令电器。在电气自动控制电路中,用于手动发出控制信号以控制接触器、继电器、电磁起动器等。按钮开关的结构种类很多,可完成启动、停止、正反转、变速以及互锁等基本控制。而在启动汽车发动机时,传统的钥匙式按钮开关操作复杂,需要钥匙这一开启工具,且容易造成机械故障。 本文运用集成开关型霍尔传感器设计了一种新型启动式按钮开关,采用磁极正对霍尔传感器接近启动的启动方式以及单极磁场的磁输入方式,并以A44E型霍尔开关为例介绍它在汽车发动机启动时的应用,以实现方便、快速、准确、安全、美观等特点。 2集成开关型霍尔传感器 2.1集成霍尔开关的工作原理 集成霍尔传感器是在制造硅集成电路的同时,在硅片上制造具有传感器功能的霍尔效应器件,因而使集成电路具有对磁场敏感的特性。集成开关型霍尔传感器是把霍尔器件的输出电压经过一定的阀值甄别处理和放大,而输出一个高电平或低电平的数字信号[1]。 如图1所示,集成霍尔开关是由稳压器A、霍尔电势发生器(即硅霍尔片)B、差分放大法器C、施密特触发器D和OC门输出E五个基本部分组成。1,2,3代表集成霍尔开关的三个引出端点。

霍尔传感器课程设计

吉林建筑工程学院 电气与电子信息工程学院 传感器及检测技术课程设计报告 设计题目: 霍尔元件小车测速系统设计 专业班级: 电子信息科学与技术081班 学生姓名: 赵越 学 号: 10308105 指导教师: 王 超 吴鹤君 设计时间: 2011.12.12-2011.12.23 目 录 教师评语: 成绩 评阅教师 日期

1 绪论 (1) 1.1设计任务 (1) 1.2方案分析论证 (1) 2 基于霍尔传感器的电机转速测量系统硬件设计 (2) 2.1电机转速测量系统的硬件电路设计 (2) 2.2霍尔传感器测量电路设计 (4) 2.3单片机AT89C51 (8) 2.4显示电路设计 (11) 2.5系统软件设计 (14) 3 系统仿真和调试 (16) 3.1Proteus软件 (16) 3.2硬件调试 (17) 3.3软件调试 (19) 3.4软硬件联调 (19) 4 结论 (21) 参考文献 (22) 附录硬件实物图 (23)

1 绪论 1.1 设计任务 1.1.1课程设计目的: 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 1.1.2课程设计题目: 霍尔元件小车测速系统设计 1.1.3 课程设计内容: 1、霍尔元件测速系统设计 霍尔传感器一般由霍尔元件和磁钢组成,当霍尔元件和磁钢相对运动时,就会产生脉冲信号,根据磁钢和脉冲数量就可以计算转速,进而求出车速。 现要求设计一个测量系统,在小车的适当位置安装霍尔元件及磁钢,使之具有以下功能: 1)LED数码管显示小车的行驶距离(单位:cm)。 2)具有小车前进和后退检测功能,并用指示灯显示。 3)记录小车的行驶时间,并实时计算小车的行驶速度。 4)距离测量误差<2cm。 5)其它。 1.2 方案分析论证 1.2.1 霍尔测速模块论证与选择 方案一:采用型号为A3144的霍尔片作为霍尔测速模块的核心,该霍尔片体积小,安装灵活,价格合理,可用于测速,可与普通的磁钢片配合工作。 方案二:采用型号为CHV-20L的霍尔元器件作为霍尔测速模块的核心,该霍尔器件额定电流为100mA,输出电压为5V,电源为12~15V。体积较大,价格昂贵。 因此选择方案一。 1.2.2 单片机模块论证与选择 方案一:采用型号为AT89C51的单片机作为主控制器,使用霍尔传感器进行测量的直流电机转速测量系统。AT89C51是带4K字节闪烁可编程擦除只读存储器的低电压、高性能CMOS8位微处理器。它将多功能8位CPU和闪烁存储器组合在单个芯片中,为许多控制提供了灵活性高且价格低廉的方案[3]。

霍尔传感器制作实训报告

佛山职业技术学院实训报告 课程名称传感器及应用 报告内容霍尔传感器制作与调试专业电气自动化技术 班级08152 姓名陈红杰 学号31 二0一0年六月 佛山职业技术学院

《传感器及应用》 霍尔传感器制作实训报告 班级 08152 学号 31 姓名陈红杰时间2009-2010第二学期 指导老师张教雄谢应然 项目名称霍尔传感器电路制作与 调试 一、实验目的与要求: 1.对霍尔传感器的实物(电路部分)进行一个基本的了解。 2.了解双层PCB板以及一定(霍尔传感器)的焊接排版的技术和工艺。 二、实验仪器、设备与材料: 1.认识霍尔传感器(电路部分)的元件(附图如下): 2.焊接电路PCB板(双层)和对电路设计的排版工艺的了解。 3.对霍尔传感器的电路原理图进行基本的分析(附图如下):

霍尔传感器原理图: 霍尔开关电路(霍尔数字电路),由三 端7812稳压器,霍尔片差分放大器THS119, 三端可调分流稳压器TL431及双路JFET的输 入运放TL082和输出级组成。在外磁场的作 用下,当感应强度超过导通阀值时,霍尔电路 输出管导通,输出低电平 TL082是一通用的J-FET双运用算放大 器,其特点有,较低输入偏置电压和偏移电 流,输出没有短路保护,输入级具有较高的 输入阻抗,内建频率被子偿电路,较高的压 摆率。最大工作电压为18V。TL082是霍尔传 感器的核心处理部位。(CON2接口对应霍尔 元件THS119) 霍尔元件THS119封装图

印刷板: 3211 2 2 12 121 2121 21 21212 1 21 2 1 4321 1234 8 7653213 211 2321 121 2 1212 直流电源输入24V ,由IN4148、三端稳压管7812和TL431(串接一个电阻)构成的稳压支路,得到不同的电压。霍尔元件THS119是采样核心元件,值得一提的是Z2这个稳压元件。在实际运用当中精密稳压集成电路TL431并不一定要用实物,可以用一个NPN 型三极管来串接一个电阻来等效代替。 整个电路的设计运用了闭环温度反馈来实现自我保护。主要的设计是RT1热敏电阻,对电路在工作时的表面温度进行控制。这样的设计能很好的起到一个自我保护。 因为我们知道,霍尔传感器的PCB 板是封装在塑料外壳里,由于电路的工作环境的问题,导致电路几乎没有更好的散热(外壳有些导热)。至此,用到RT1热敏电阻来进行温度控制保护显得非常合理。 三、实验操作(焊接): 1.霍尔传感器PCB 双层印制电路板的焊接。 2.了解电路的元件的安排和电路设计线路的排版。

霍尔传感器及其应用

霍尔传感器及其应用 一、霍尔传感器介绍 (一)简介 霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。 (二)霍尔传感器的工作原理 磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。 霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。

1-霍尔半导体元件2-永久磁铁3-挡隔磁力线的叶片 (三)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (四)优势和特点 1、霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。副边电流忠实地反应原边电流的波形。而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波; 2、原边电路与副边电路之间有良好的电气隔离,隔离电压可达9600Vrms; 3、精度高:在工作温度区内精度优于1%,该精度适合于任何波形的测量; 4、线性度好:优于0.1%; 5、宽带宽:高带宽的电流传感器上升时间可小于1μs;但是,电压传感器带宽较窄,一般在15kHz以内,6400Vrms的高压电压传感器上升时间约500uS,带宽约700Hz。

霍尔传感器测位移课程设计

传感器课程设计说明书线性霍尔元件位移传感器 学号: 学院名称: 专业班级: 学生姓名: 教师姓名: 教师职称: 2015 年 1 月

线性霍尔元件位移传感器设计任务书 一、设计题目 线性霍尔元件位移传感器 二、设计目的 课程设计是工科各专业的主要实践性教学环节之一,是围绕一门主要基础课或专业课,运用所学课程的知识,结合实际应用设计而进行的一次综合分析设计能力的训练。《传感器技术》是测控技术与仪器专业的一门专业技能课,能够运用基本测控电路知识解决日常生活中的问题是本专业学生的基本素质。本次课程设计旨在培养学生运用所学过的理论知识,初步掌握解决实际应用问题时所应具有的查阅资料、综合运用所学知识的能力,为课程设计及今后从事专业学习工作打下坚实的基础。 三、设计内容及要求 1.掌握传感器工作原理 2.掌握信号处理电路的作用与原理 3.画出各电路处理后的信号波形 4.对位移进行测量(正负位移均三次以上) 5.算出传感器的迟滞误差、线性度 6.写出说明书。 四、设计方法和基本原理 1.问题描述 设计一个既能测量位移的大小,也能判别方向的线性霍尔元件位移传感器。 2.解决方案 ①搜集资料,确定电路原理图(包括激励信号电路、消除不等位电势补偿电路、放大电路、移相电路、相敏检波电路和低通滤波电路等信号处理电路) ②搭建实物测量系统,调试各部分电路。 ③测试得出相应的实验数据,给出相应的波形,计算出传感器的量程、线性度和灵敏度、迟滞误差。写出说明书,答辩。

目录 第一章引言 (2) 第二章霍尔传感器工作原理 (2) 2.1霍尔效应 (2) 2.2霍尔元件的主要特性 (4) 2.3霍尔传感器的应用 (4) 第三章测量系统组成 (7) 3.1霍尔元件的误差及补偿 (7) 3.1.1霍尔元件的零位误差与补偿 (7) 3.1.2霍尔元件的温度误差及补偿 (7) 3.2 直流激励的霍尔传感器电路 (8) 3.3交流激励的霍尔传感器电路 (8) 3.3.1传感器补偿放大电路 (8) 3.3.2移相电路 (9) 3.3.2相敏检波电路 (10) 3.3.4低通滤波电路 (10) 第四章电路测试与结果 (11) 4.1进行各部分电路线路元件的连接组装 (11) 4.2移相电路的测试 (12) 4.3相敏检波电路的测试 (13) 4.4低通滤波电路测试 (15) 第五章传感器测试与数据处理 (16) 5.1传感器的回程差 (16) 5.2传感器的灵敏度 (17) 5.3传感器的线性度 (18)

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

上海交通大学物理实验报告(大一下)集成霍尔传感器的特征测量与应用

集成霍尔传感器的特征测量与应用 【实验目的】 1.了解霍耳效应原理和集成霍耳传感器的工作原理。 2.通过测量螺线管励磁电流与集成霍耳传感器输出电压的关系,证明霍耳电势差与磁感应强度成正比。3.用通电螺线管中心点处磁感应强度的理论计算值校准集成霍耳传感器的灵敏度。 4.测量螺线管内磁感应强度沿螺线管中轴线的分布,并与相应的理论曲线比较。 【实验原理】 1、霍耳效应 将一导电体(金属或半导体)薄片放在磁场中,并使薄片平面垂直于磁场方向。当薄片纵向端面有电流I流过时,在与电流I和磁场B垂直的薄片横向端面a、b间就会产生一电势差,这种现象称为霍耳效应(Hall effect),所产生的电势差叫做霍耳电势差或霍耳电压,用U H表示。 霍耳效应是由运动电荷(载流子)在磁场中受到洛伦兹力的作用引起的。洛伦兹力使载流子发生偏转,在薄片横向端面上聚积电荷形成不断增大的横向电场(称为霍耳电场),从而使载流子又受到一个与洛伦兹力反向的电场力,直到两力相等,载流子不再发生偏转,在a、b间形成一个稳定的霍耳电场。这时,两横向端面a、b间的霍耳电压就达到一个稳定值。端面a、b间霍耳电压的符合与载流子电荷的正负有关。因此,通过测量霍耳电压的正负,即可判断半导体材料的导电类型。 实验表明,在外磁场不太强时,霍耳电压与工作电流和磁感应强度成正比,与薄片厚度成反比,即 ( 1) 式中比例系数和分别为霍耳系数和霍耳元件的灵敏度。用霍耳效应测量磁场是在霍耳元件的灵敏度和工作电流已知的情况下,通过测量霍耳电压,再由公式(1)求出磁感应强度。 2、集成霍耳传感器

SS495A型集成霍耳传感器(线性测量范围0-67mT,灵敏度31.25V/T)由霍耳元件、放大器和薄膜电阻剩余电压补偿器组成。测量时输出信号大,不必考虑剩余电压的影响。工作电压Vs=5V,在磁感应强度为零时,输出电压为。它的输出电压U与磁感应强度B成线性关系。该关系可用下式表示 (2) 式中U为集成霍耳传感器输出电压,K为该传感器的灵敏度。 3、螺线管内磁场分布 单层螺线管内磁感应强度沿螺线管中轴线的分布可由下式计算 (3) 式中N为线圈匝数,L为螺线管长度,Im为励磁电流,D为线圈直径,x为以螺线管中心 作为坐标原点时的位置,亨/米为真空磁导率。 实验中所用的螺线管是由10层绕线组成。根据每层绕线的实际位置,用公式(3)可以计算每层绕线的B (x)值,将10层绕线的B(x)值求和,即可得到螺线管内的磁场分布。书中表1给出了励磁电流 (100mA)时螺线管内磁感应强度的理论计算值。由它可以容易得到不通励磁电流时螺线管内磁感应强度的理论计算值。(对于同一点x来说,C(x)是相同的,也就是说, 即B和成正比关系,即螺线管内任意一固定点的磁场的理论计算值和励磁电流成正比关系)。 表1 . 励磁电流I M =0.1A时螺线管内磁感应强度的理论计算值

相关主题
文本预览
相关文档 最新文档