当前位置:文档之家› α射线能谱测量(有算能量刻度哦)

α射线能谱测量(有算能量刻度哦)

α射线能谱测量(有算能量刻度哦)
α射线能谱测量(有算能量刻度哦)

****************************************************************************

西南科技大学

《α射线能谱测量》报告

设计名称α射线能谱测量

学院

班级

学生姓名

学号

设计日期 2014年12月

2014年10月制

目录

1实验目的 (1)

2实验内容 (1)

3实验原理 (1)

3.1α能谱 (1)

3.2α放射源 (2)

3.3α放谱仪 (3)

3.4探测器测量α射线能谱相关原理 (4)

3.5α谱仪的能量刻度和能量分辨率 (4)

4实验仪器、器材 (5)

5实验步骤 (5)

6实验数据记录、处理 (6)

7实验结论 (8)

1实验目的

α衰变中发射的α粒子能量及辐射几率的测量,对于核结构研究具有重要意义。这些核数据的测量通常是用α磁谱仪或半导体α谱仪。而本实验主要从以下几个方面进行:

1、了解α谱仪工作原理与特性

2、掌握α能谱测量原理及测量方法

3、测量获取表中各种放射源在不同探源距下α能谱的数据与图像记录并进行刻度

2实验内容

测定α谱仪在不同源距下α能谱的数据,并通过计算获得相关能量分辨率。同时,进行能量刻度。

3实验原理

3.1α能谱

α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其内部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:E

N=

W

公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质内,E就是α粒子的能量。

由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为8.62cm,能量最小232Th为2.5cm),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。

α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及内部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段内α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒

子的能量与活度。理论上,单能α粒子谱是线状谱,应是位于相应能量点处垂直于横坐标轴的单一直线,但由于α粒子入射方向、空气吸收、样品源自吸收的差异和低能粒子的叠加等原因,实际测得的是具有一定宽度的单个峰,其峰顶位置相应于α粒子的能量,谱线以下的面积为相应能量的α粒子的总计数率,峰的半高宽与峰顶能量比值的百分数则为α谱仪的能量分辨率。α谱仪硬件连接及内部结构框图图一所示。

图一α谱仪硬件连接及内部结构框图

3.2α放射源

α放射源是以发射α粒子为基本特征的放射源。α粒子能量一般为4-8MeV,在空气中的射程为2.5-7.5cm,在固体中的射程为10-20um。由于α粒子穿透物质的能力弱,为此,设计制备α放射源时必须考虑源的自吸收。目前工业用的α放射源主要有241Am、238Pu、239Pu、244Cm(锔)和210Po(钋)等,用量最大的是241Am源。因为241Am容易生产,价格便宜,而且半衰期长。常用α放射源核素数据如表一。

本次实验,所用α源:Am241的5.486MeV和Pu239的5.155MeV。

核素

半衰

主要α粒

子能量(MeV)

及分支比(%)

活度

(GBq/g)

来源

2 10Po

138.

4d

5.305

(100)

1.6

7×105

5.01

209210210

(,)d

Bi nγBi Po

???→

2 33U

1.59

×105a

4.824

(84.4)

22.3min27.0

232233233233

(,)d

Th nγTh Pa U

???→???→

4.783(13.2)

2 35U

7.1×

108a

4.216(6)

4.368(12)

4.374(6)

4.400(56)

天然放射性核素

2 38Pu

87.7

5a

5.445

(28.7)

5.499

(71.1)

636

.4

2.117

237238238

(,)d

Np nγNp Pu

???→

2 39Pu

2.44

×104a

5.103(11)

5.142(15)

5.155(73)

2.2

8

23.5min 2.355

238239239239

(,)d

U nγU Np Pu

???→???→

2

41Am 432a

5.443

(12.7)

5.486(86)

126

.9

238U多次中子俘获生成

241Pu14.4241

a Am

???→

2 42Cm

162.

5d

6.071

(26.3)

6.115

(73.7)

1.2

5×105

238U多次中子俘获加β-衰变

表一常用α放射源核素数据

3.3α谱仪

放射性样品的α粒子与探测器相互作用,经前置放大器输出正比于α粒子能量的脉冲

信号,经线性放大后输入多道脉冲分析器分析,得到的计数按照能量(道址)分布的α粒子能谱,实现核素的识别和活度测定。

本次试验仪器拟采用西南科技大学国防重点试验室α能谱仪,该α谱仪为美国ORTEC 公司生产的8通道α能谱仪,型号为:ALPHA-ENSEMBLE.

ORTEC在α谱仪上采用超低本底和PIPS工艺(表面钝化、离子注入、可擦洗)硅探测器,同时真空舱室也为超低本底材料。面积上提供300、450、490、600、900和1200平方毫米的选择,有效耗尽层100μm。

结构特性与性能指标:

●样品直径可从13mm至51mm。探测器与被测样品之间有10档距离可选,相邻两档之间的距离差为4mm,最大距离可达44mm。

●真空计:范围10mTorr到20Torr(1 Torr ≈ 133.322 Pa)。

●探测器偏压:范围0±100V,大小和正负极性可调节。漏电流检测器:范围0到10,000nA,显示分辨率3nA。

●脉冲产生器;范围0到10MeV,稳定性<50ppm/oC,脉冲的幅度可调。

●数字化MCA(多道脉冲幅度分析仪):通过软件可设置系统转换增益(道数)为256、512、1024、2048或者4096道,细调增益为0.25到1;增益稳定性:≤150ppm/oC;每个事件的转换时间(死时间):<2μs。

●数字化稳谱、ADC的零点(ZERO)和下阈(LLD)均由计算机调节设置。谱仪的探测器偏压、漏电流均可在软件相关界面上以数字和图形显示出来。

●输入电源:120/240 V ac,50/60 Hz输入功率50W。

●通讯:USB2.0接口。每一个Alpha Ensemble最终提供一条电缆给PC。

●应用软件:MAESTRO-32或AlphaVision

●工作条件:温度0oC到50oC,相对湿度≤ 95%。

●分辨率与本底:基于使用450mm2 ULTRA-AS探测器和高质量的241Am点源,能量分辨率(FWHM):≤20KeV (探测器到源的距离等于探测器的直径),探测器效率:≥25% (探测器到源的距离小于10mm),本底:在3MeV以上,每小时计数≤1。

●所有型号均可选择用于反冲抑制保护的样品盘选项。

主要特点:

探测室、前放、主放和多道一体化,系统具有高度的可靠性;

全部功能由计算机通过仿真软件控制;

每一路都完全独立、互不干扰或影响;

每一路谱仪可配不同规格型号探测器;

容纳样品直径最大可达51mm,探测器面积最大可达1200mm2;

系统可以扩展至8台共64路探测器。

3.4探测器测量α射线能谱相关原理

因离子注入PIPSα谱仪相关资料不足,故本实验报告以金硅面垒探测器为例加以说明。

金硅面垒探测器是用一片N型硅,蒸上一薄层金(100-200),接近金膜的那一层硅具有P型硅的特性,这种方式形成的PN结靠近表面层,结区即为探测粒子的灵敏区。探测

器工作加反向偏压。粒子在灵敏区内损失能量转变为与其能量成正比的电脉冲信号,经放大并由多道分析器测出幅度的分布,从而给出带电粒子的能谱。偏置放大器的作用是当多道分析器的道数不够用时,利用它切割、展宽脉冲幅度,以利于脉冲幅度的精确分析。为了提高谱仪的能量分辨率,探测器要放在真空室中。另外金硅面垒探测器一般具有光敏的特性,在使用过程中,应有光屏蔽措施。

金硅面垒型半导体谱仪具有能量分辨率高、能量线性范围宽、脉冲上升时间快、体积小和价格便宜等优点,在粒子及其它重带电粒子能谱测量中有着广泛的应用。

3.5α谱仪的能量刻度和能量分辨率

图一峰位-偏压曲线

谱仪的能量刻度就是确定粒子能量与脉冲幅度大小以谱线峰位在多道分析器中的道址表示。谱仪系统的能量刻度有两种方法:

用一个239Pu、241Am、244Cm混合的刻度源,已知各核素粒子的能量,测出该能量在多道分析器上所对应的道址,作能量对应道址的刻度曲线,并表示为:

E=Gd+E O

图二能量分辨率-偏压曲线

E为α粒子能量(keV),d为对应E谱峰所在道址,G是直线斜率(keV/每道),称为刻度常数。E0是直线截距(keV),它表示由于α粒子穿过探测器金层表面所损失的能量。

4实验仪器、器材

1、ALPHA-ENSEMBLEα谱仪探测器

2、PC机

3、真空泵Π3GcΠB T4

4、所用α源:Am241的5.486MeV和Pu239的5.155MeV

5实验步骤

1、打开PC机、8路α谱仪和真空泵

2、点击PC桌面上“MAESTRO for Windows”

3、测量源(也可测本底)

3.1点“MAESTRO for Windows”的“Acquire”

3.1.0 设置

3.1.1设置高压,点 high voltage 的可控按钮“on”,出现标志“On”表明高压设置ok

3.2点“MAESTRO for Windows”的“Alpha”

3.2.1Target设为”300”(小于1000即可)

3.2.2vacuum设置

A.“Pump”抽真空,通过“actual”看是否抽真空

B.“Vent“放弃真空

C.“hold“保持真空

3.2.3ADC:设置为4096

3.2.4点击“presets”,设置“live time”(测量活时间)(源小则时间设置长,反之则短)

3.2.5若本来存在有谱,则在“input“图上点右键,点”clear“

3.2.6“input“图上点右键,点”start“或菜单栏上”go“

3.3点“calculate“,realtime设置为300

3.3.1寻峰“peak search“

3.3.2选中该峰,右键,点“peak info“

Gross area:总计数,net area:净计数

能量分辨率=FWHM/peak位

3.3calibration:设置能量刻度,可默认

3.4截图,打印

4、关闭

4.1去高压

4.2去真空

4.3去源

4.4关机

6实验数据记录、处理

6.1数据记录

数据一源距4mm

Peak Peak(Kev) FWHM FW组Gross Area Net Area 239Pu 2357.09 5155 30.95 30.95 28599 28450±178 241Am 2514.75 5486 30.68 30.68 19844 19844±140 数据二源距8mm

Peak Peak(Kev) FWHM FW 组 Gross Area Net Area

239

Pu 2356.30 5155 35.19 35.19 40452 28967±544

241

Am 2514.57 5486 40.32 40.32 28508 28241±187

6.2数据处理

6.2.1能量分辨率:

能量分辨率(源距4mm):

Peak FWHM

=

00.515595

.30=0.0060=0.60%

能量分辨率(源距4mm):

Peak FWHM

=00.548668.30=0.0056=0.56% 能量分辨率(源距8mm):

Peak FWHM

=00.515519.35=0.0068=0.68% 能量分辨率(源距8mm):

Peak

FWHM

=00

.548632.40=0.0073=0.73% 6.2.2能量刻度:

即通过所得信号的分析得出相应的谱形和数据,处理后得到的道址与能量的对应关系。利用能量刻度曲线得出能量与道址的关系:E(keV)=aX+b (X 为道址)。 表一:

能量刻度数据记录

道址 道址误差(+ -)

能量(Kev )

2357.09 0.178 **** ****.75

0.147

5486

能量刻度曲线一:

由上图得出公式E(keV)=aX+b 中A 、B 的值分别为:a=2.099 b=205.1

即E(keV)=2.099X+205.1

表二:

能量刻度数据记录

道址道址误差(+ -)能量(Kev)

2356.300.141 5155

2514.570.111 5486 能量刻度曲线一:

由上图得出公式E(keV)=aX+b中A、B的值分别为:a=2.091 b=228.0 即E(keV)=2.091X+228.0

6.2.3不同探源距:

不同探源距使得所得图谱中谱峰有所不同,探源距越长,谱峰的低能尾部越明显,使分辨率越差。因此,应尽可能缩小探源距即将放射源尽可能靠近探测器,从而提高分辨率。

7实验总结

从实验中初步解到α谱仪的测量原理,即:放射性样品的α粒子与探测器相互作用,经前置放大器输出正比于α粒子能量的脉冲信号,经线性放大后输入多道脉冲分析器分析,得到的计数按照能量(道址)分布的α粒子能谱,实现核素的识别和活度测定。并在具体的实验操作过程中,作出如下误差分析:

能量刻度源少,造成能损dE计算不准确。由于测量环境条件变化,造成谱线漂移,使得对dE计算不准确;由于测量环境不可能是绝对真空,在不同时刻测量,真空度不一样导致空气对α粒子能量造成的损失不一样。

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。 【关键词】γ射线能谱γ闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

γ射线能谱测量

γ射线能谱测量 ——物理0805 乔英杰u200810200 王振宇u200810256 实验背景:19世纪下半叶,物理学家对X射线和阴极射线进行了大量的研究,导致了放射性、电子以及α、β、γ射线的发现,这些射线的发现同时也为原子科学的发展奠定了基础。 自20世纪进入原子能时代,科学家对射线进行了更进一步的研究,射线在科学技术中开始渗透,根据γ射线具有波长短、能量高、穿透能力强和对细胞有很强的杀伤力的特性,γ射线的应用也成了一门新兴产业,现在它已经应用到了国民经济和社会生活的各个领域,特别是在工农业、医疗卫生和生物学方面取得了巨大的成果和效益,为科学技术和人类历史的进程起了巨大而深刻的影响。 目前γ射线的应用正在蓬勃快速的发展,应用领域仍在不断拓宽,它以低能耗、无污染、无残留、安全卫生等优点,深受众多行业的青睐,可是,其危害性也不容忽视。我们需要对γ射线深入了解,才能在降低其危害性的同时让其更好的为我们服务。本实验采用闪烁探测器和多道脉冲幅度分析器对γ射线的能量分布谱进行测量,以便我们了解用闪烁探测器测量γ射线的方法,学会分析能谱的特征及其影响因素。 实验原理: 1、闪烁探测器工作原理:闪烁探测器探测γ射线时,γ光子与物质作用不直接产生电离,而是发生光电效应、康普顿效应、电子对效应,闪烁体的原子、分子、电离或激发的作用来自三种效应所产生的次级电子。这样,我们就得到了对应于γ射线能量强度的电信号。之后,光电倍增管将所得电信号放大(倍增管阴极与阳极之间有十余个打那级,每个打那级均发生电子的倍增现象),其阳极最后收集电子的电极,与射级跟随器电路相连,使收集到的电子流以电压脉冲的方式输出。 2、γ闪烁能谱仪的工作原理:如下图(1)所示,整个仪器的信号传递大致是:由γ射线放射源放出的γ射线被闪烁探测器接受并转换为电压脉冲,前置放大器和脉冲放大器对探测器输出的电压脉冲进行放大,最后这些脉冲被多道分析器采集、处理。 多道分析器的到是指在分析器中存在的记录不同高度脉冲的位置。我们在试验中采用的是1024道分析器,即将脉冲电压范围分成1024份,然后计算机记录探测器输出的脉冲落在每份范围上的数目。

α射线能谱测量

**************************************************************************** 西南科技大学 《α射线能谱测量》报告 设计名称α射线能谱测量 学院 班级 学生姓名 学号 设计日期 2014年12月 2014年10月制 目录 1实验目的 (1) 2实验内容 (1)

3实验原理 (1) α能谱 (1) α放射源 (2) α放谱仪 (3) 探测器测量α射线能谱相关原理 (4) α谱仪的能量刻度和能量分辨率 (4) 4实验仪器、器材 (5) 5实验步骤 (5) 6实验数据记录、处理 (6) 7实验结论 (8) 1实验目的 α衰变中发射的α粒子能量及辐射几率的测量,对于核结构研究具有重要意义。这些核数据的测量通常是用α磁谱仪或半导体α谱仪。而本实验主要从以下几个方面进行: 1、了解α谱仪工作原理与特性 2、掌握α能谱测量原理及测量方法

3、测量获取表中各种放射源在不同探源距下α能谱的数据与图像记录并进行刻度 2实验内容 测定α谱仪在不同源距下α能谱的数据,并通过计算获得相关能量分辨率。同时,进行能量刻度。 3实验原理 α能谱 α粒子通过物质时,主要是与物质的原子的壳层电子相互作用发生电离损失,使物质产生正负离子对,对于一定物质,α在其内部产生一对离子所需的平均能量是一定的(即平均电能w),所以在物质中产生的正负离子对数与α粒子损失的能量成正比,即:E N= W 公式中N为α粒子在物质中产生的正负离子对数目,E是在物质中损失的α粒子能量。如果α粒子将其全部能量损失在物质内,E就是α粒子的能量。 由于α粒子在空气中的射程很短(在T=15℃,P=1大气压时,天然放射性核素衰变产生的α粒子,射程最大为Thc’(212Po) 为,能量最小232Th为),所以测量室应采用真空室,如上图1所示,采用真空泵将测量室抽成真空,这样与探测器接触的α粒子的能量才近似等于放射性核素经过α粒子放出的α粒子的初始能量(近似是因为不可能将测量室抽成绝对真空)。 α粒子在探测器中因电离、激发(由于α粒子的质量很大,所以与物质的散射作用很不明显。α粒子在空气中的径迹是一条直线,这种直线很容易在威尔逊云室中看到。)等效应而产生电流脉冲,其幅度与α粒子能量成正比。电流信号经前置放大器、主放大器放大,出来的电信号通过多道分析器进行数据采集,最后通过计算机采集并显示其仪器谱(实验用α谱仪硬件连接及内部结构框图如图1所示)。仪器谱以α粒子的能量(即脉冲幅度)为横坐标,某个能量段内α粒子数(或计数率)为纵坐标,即可计算样品中各单个核素发射的α粒子的能量与活度。理论上,单能α粒子谱是线状谱,应是位于相应能量点处垂直于横坐标轴的单一直线,但由于α粒子入射方向、空气吸收、样品源自吸收的差异和低能粒子的叠加等原因,实际测得的是具有一定宽度的单个峰,其峰顶位置相应于α粒子的能量,谱线以下的

γ射线能谱的测量

(一) γ射线能谱的测量 摘要: 本实验将了解闪烁探测器谱仪的工作原理及其使用;学习分析实验测量的137Cs 和60Co γ谱之谱形和γ射线能谱的刻度测定谱仪的能量分辨率,本实验的目的是了解NaI(Tl)闪烁谱仪的原理、特性与结构,掌握NaI(Tl)闪烁谱仪的使用方法和γ射线能谱的刻度。 关键词:γ 射线 Na(Tl)闪烁探测器 能谱图 单道脉冲幅度分析器 引言: 闪烁探测器是利用某些物质在射线作用下会发光的特性来探测射线的仪器。它的主要优点是:既能探测各种带电粒子,又能探测中性粒子;既能测量粒子强度,又能测量粒子能量;且探测效率高,分辨时间短。它在核物理研究和放射性同位素测量中得到广泛的应用。核物理的发展,不断地为核能装置的设计提供日益精确的数据,新的核技术,如核磁共振、穆斯堡尔谱学、晶体的沟道效应和阻塞效应,以及扰动角关联技术等都迅速得到应用。核技术的广泛应用已成为现代化科学技术的标志之 正 文: 实验原理 1.闪烁谱仪结构与工作原理 NaI(Tl)闪烁谱仪结构如图。整个仪器由探头(包括闪烁体、光电倍增管、射极跟随器),高压电源,线性放大器、多道脉冲幅度分析器几部分组成。射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。带电粒子(如α、β粒子)通过闪烁体时,将引起大量的分子或原子的激发和电离,这些受激的分子或原子由激发态回到基态时就放出光子;不带电的γ射线先在闪烁体内产生光电子、康普顿电子及正、负电子对(当Eγ>1.02MeV时),然后这些电子使闪烁体内的分子或原子激发和电离而发光。闪烁体发出的光子被闪烁体外的光反射层反射,会聚到光电倍增管的光电阴极上,打出光电子。光阴极上打出的光电子在光电倍增管中倍增出大量电子,最后为阳极吸收形成电压脉冲。每产生一个电压脉冲就表示有一个粒子进入探测器。由于电压脉冲幅度与粒子在闪烁体内消耗的能量(产生的光强)成正比,所以根据脉冲幅度的大小可以确定入射粒子的能量。利用脉冲幅度分析器可以测定入射射线的能谱。 由原子物理学中可知γ射线与物质的相互作用主要是光电效应、康普顿效应和正、负电子对产生这三种过程分别如下: (1)光电效应。入射γ粒子把能量全部转移给原子中的束缚电子,而把束缚电子打出来形成光电子。由于束缚电子的电离能E1一般远小于入射γ射线能量Eγ,所以光电子的动能近似等于入射γ射线的能量E光电=Eγ-E1≈Eγ (2)康普顿效应。核外电子与入射γ射线发生康普顿散射,设入射γ光子能量为h,散射

γ射线的能谱测量和吸收测定 实验报告

g射线能谱的测量 【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,g 射线产生的原因正是由于原子核的能级跃迁。我们通过测量g射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。因此本实验通过使用g闪烁谱仪测定不同的放射源的g射线能谱。同时学习和掌握g射线与物质相互作用的特性,并且测定窄束g射线在不同物质中的吸收系数m。 【关键词】g射线/能谱/g闪烁谱仪 【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。 而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。 因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。 g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。 本实验主要研究的是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度随物质厚度的衰减服从指数规律。 本次实验仪器如下:

_能谱法测定_241_Am_n_242_Am_g_m_的反应分支比(精)

第41卷第6期 2007年11月原子能科学技术 AtomicEnergyScienceandTechnologyVol.41,No.6Nov.2007 能谱法测定 241Am(n, )242Amg,m的反应分支比 倪建忠,代义华,张海涛,鲁檑,施艳梅,常永福 (西北核技术研究所,陕西西安 710024) 摘要:研究建立了1种利用能谱测定241Am(n, )242Amg,m的反应分支比K1和K2的方法。利用242Amm与242Amg半衰期差别很大的特点,分两次测量241Am辐照样品中的242Cm含量,分别推算242Amg与242Amm的生成量,从而得到K1和K2。实际分析了某反应堆辐照的样品,测得了该反应堆中子能谱对应的K1和K2值。 关键词:241Am;中子俘获反应;分支比; 能谱法 中图分类号:O571.4 文献标识码:A 文章编号:1000 6931(2007)06 0671 03 241DeterminationofBranchingRatioofAm(n, )Am242g,mWith Spectrometry NIJian zhong,DAIYi hua,ZHANGHai tao,LULei,SHIYan mei,CHANGYong fu (NorthwestInstituteofNuclearTechnology,Xi an710024,China) Abstract:AmethodtodeterminethebranchingratioK1andK2of 242g242241Am(n, )242Amg,m242with spectrometrywasestablished.Basedonthefactthatthehalf lifeofAmmandAmarequitedifferent,theCmactivityofsampleirradiatedinareactorwasmeas uredattwodifferentmoments,thentheproductionamountof242Amgand242Ammduringirra diationwascalculated,finallytheK1andK2wereobtained. Keywords: 241241Am;neutroncapturereaction;branchingratio; spectrometry242g Am发生中子俘获反应生成Am的同 时,还会生成激发态的242Amm。反应及产物的 衰变示于图1。 241Am(n, )Am反应分支比K1和K2随 [1]242g,m入射中子的能量而变化。R.M.Harbour、Y. [2]Shinohara分别于1973年和1997年测量了K1 和K2(表1)。目前,国内尚未进行有关241Am(n, )242Amg,m反应分支比的测定工作。 本工作研究建立1种利用能谱同位素稀 释法测定K1和K2的方法,并获得某反应堆中 子能谱对应的K1和K2

γ射线的能谱测量和吸收测定报告

NaI(TI)单晶γ闪烁谱仪与γ射线能谱的测量 γ射线的吸收与物质吸收系数μ的测定 【摘要】 我们知道原子核的能级跃迁可以产生伽马射线,而通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。同时通过学习了解伽马射线与物质相互作用的特性,测定窄束γ射线在不同物质中的吸收系数μ。因此本实验通过使用伽马闪烁谱仪测定不同的放射源的γ射线能谱;根据当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量。闪烁体分子电离和激发,退激时发出大量光子,闪烁光子入射到光阴极上,光电效应产生光电子,电子会在阳极负载上建立起电信号等原理,对γ射线进行研究。 【关键词】 伽马射线吸收系数μ60Co、137Cs放射源能谱γ闪烁谱仪 【引言】 提出问题 某些物质的原子核能发生衰变,会放出射线,核辐射主要有α、β、γ三种射线。我们可以通过不同的实验仪器能够探测到这些肉眼无法看见的射线。同时由于射线与物质相互作用,导致射线通过一定厚度物质后,能量或强度有一定的减弱,称为物质对射线的吸收。而这在防护核辐射、核技术应用和材料科学等许多领域都有重要意义。核辐射主要是α、β、γ三种射线,人工辐射源包括放射性诊断和放射性治疗辐射源、放射性药物、放射性废物、核武器爆炸的落下灰尘以及核反应堆和加速器产生的照射等,辐射时处于激发态原子核损失能量的最显著方式。γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A均保持不变的退激发过程。我们使用何种仪器来探测伽马射线,又如何测量物质对射线的吸收规律,不同物质的吸收性能等。这是都是本次实验需要去解决的问题。 解决问题 本实验使用的是γ闪烁谱仪。γ闪烁谱仪内部含有闪烁体,可以把射线的能量转变成光能。实验中采用含TI(铊)的NaI晶体作γ射线的探测器。利用此来研究窄束γ射线在物质中的吸收规律。 【正文】 通过查阅相关资料,我了解了伽马闪烁谱仪的基本工作原理以及整个的工作过程。NaI(TI)闪烁探测器的结构如下图所示。整个谱仪由探头(包括闪烁体,

NaI(Tl) 闪烁晶体γ能谱测量

NaI(Tl) 闪烁晶体γ能谱测量 实验人:吴家燕学号:15346036 一、实验目的 1、加深对γ射线和物质相互作用的理解; 2、掌握NaI(Tl) γ谱仪的原理及使用方法; 3、学会测量分析γ能谱; 4、学会测定γ谱仪的能量分辨率、线性、探测效率曲线; 5、测定未知放射源的能量和活度。 二、实验原理 1、γ谱仪的组成 NaI(Tl)闪烁谱仪由NaI(Tl)闪烁探头(包括闪烁体、光电倍增管、前置放大器)、高压电源以及谱仪放大器、多道分析器、计算机等设备组成。图1 为NaI(Tl)闪烁谱仪装置的示意图。 2、射线与闪烁体的相互作用 当γ射线入射至闪烁体时,发生三种基本相互作用过程:(1)光电效应;(2)

康普顿散射;(3)电子对效应。 图2 为示波器上观察到的单能γ射线的脉冲波形,谱仪测得的能谱图。图3 是137Cs、22Na 和60Co 放射源的γ能谱。图中标出的谱峰称为全能峰。在γ射 线能区,光电效应主要发生在K 壳层。在击出K 层电子的同时,外层电子填补K 层 空穴而发射X 光子。在闪烁体中,X 光子很快地再次光电吸收,将其能量转移给光 电子。上述两个过程是几乎同时产生的,因此它们相应的光输出必然是叠加在一起的,即由光电效应形成的脉冲幅度直接代表了γ射线的能量(而非减去该层电 子结合能)。 3、137Cs 能谱分析 4、闪烁谱仪的性能 能量分辨率

探测器输出脉冲幅度的形成过程中存在着统计涨落。即使是确定能量的粒子的脉冲幅度,也仍具有一定的分布,其分布示意图如图4 所示。通常把分布曲线极大值一半处的全宽度称半宽度即 FWHM,有时也用表示。半宽度反映了谱仪对相邻脉冲幅度或能量的分辨本领。因为有些涨落因素与能量有关,使用相对分辨本领即能量分辨率η更为确切。一般谱仪在线性条件下工作,故η也等于脉冲幅度分辨率,即 对于一台谱仪来说,近似地有 对于单晶谱仪来说,能量分辨率是以137Cs 的0.662MeV 单能γ射线的光电峰为标准的,它的值一般在8-15%,最好可达6-7%。 能量线性刻度曲线 为检查谱仪的能量线性情况,必须利用一组已知能量的γ放射源,测出它们的γ射线在谱中相应的全能峰位置(或道址),然后,作出γ能量对脉冲幅度(或道址)的能量刻度曲线。这个线性关系可用线性方程表示,即 式中x p 为峰位,即道址;E0 为截距,即零道对应的能量;G 为斜率,即每道对应的能量间隔,又称增益。实验中用的γ核素能量列于表2 中。典型的能量刻度曲线如图5 所示。

伽马γ能谱测量分析近代物理实验报告

γ能谱的测量 中山大学 2013级材料物理 供参(吓)考(你),此报告真心累

数据处理 注:本实验所有数据来自文件“蝙蝠侠” 一、改变高压,保持其他条件不变(通道数1024)观察137Cs能谱变化 图1 改变高压,137Cs能谱变化曲线图 分析: 1.137Cs的γ能谱应该呈现三个峰和一个平台的连续分布,从通道低到高依次为X射 线峰、反散射峰、康普顿效应贡献的平台以及反映γ能量的全能峰。高压越大,统计越明显。 2.随着高压增大,全能峰向右移动,并且高度下降、宽度增大。因为闪烁谱仪能量 分辨率不变,高压增大,道址增大,?V V又不变,则?V大,故宽度变大,高道址的粒子数减少,高度下降。 二、改变通道数,保持其他条件不变(高压500V)观察137Cs能谱变化 分析:(见图2) 1.由于通道数1500后粒子数很少,能谱曲线趋于横轴,故横坐标只取到1500, 方便观察。 2.道数越小,全能峰对应的道址越小,全能峰也越高、越瘦。因为道数越小,则 每个道址包含的能量间隔越大,统计的粒子个数就越多,从而使全能峰越高。

三、60Co的γ能谱曲线图(500V,通道数2014) 图3 60Co的γ能谱曲线图

分析: 1.因为全能峰可以表示γ射线的能量,60Co两个峰对应的射线能量在图中标出,分别为 1173keV、1333keV。 2.为探究能谱仪的效率曲线,需要知道每个核素测量所得能谱图的全能峰面积。 计算方法如下: 全能峰面积即图中峰与底部线段所围成的面积,可用能谱曲线下的面积减去线段两端与横轴所围成的梯形面积,而能谱曲线下的面积可用线段之间所有道址对应的粒子数的加和来表示。加和结果通过matlab进行求和而得。虽然计算方式较为粗糙,但基本符合。 对于左侧全能峰:S(E)1=7287-(27+60)*(626-551)/2=3981 对于右侧全能峰:S(E)2=5824-(27+13)*(726-626)/2=3824 四、137Cs的γ能谱曲线图(500V,通道数2014) 图4 137Cs的γ能谱曲线图 分析: 1.全能峰面积为:S(E)=9916-(13+2)*90/2=9241 2.137Cs的γ能谱呈现三个峰和一个平台的连续分布,A为全能峰,这一幅度的脉冲是

能谱的测量-单道

云南大学物理实验教学中心 实验报告 课程名称:近代物理实验 实验项目: 能谱的测量-单道 学生姓名:朱江醒学号: 20051050148 物理科学技术学院物理系2005级数理基础科学专业 指导教师:葛茂茂 实验时间: 2007年 12 月 16 日 8 时 30 分至12时 30 分 实验地点:四合院 实验类型:教学(演示□验证□综合□设计□) 学生科研□课外开放□测试□其它□

一、实验目的 (1) 了解γ射线与物质相互作用的基本特性; (2) 掌握NaI(Tl) γ谱仪的工作原理及其使用方法; (3) 学会分析137Cs 单道γ能谱; (4) 测定谱仪的能量分辨率及线性。 二.实验原理 1、γ射线与物质相互作用。当γ射线的能量在30MeV 以下时,最主要的相互作用方式有三种: (1) 光电效应。γ射线的全部能量转移给原子中的束缚电子,使这些电子从原于中发射出来,γ光子本身消失。 (2)康普顿散射。入射γ光子与原子的核外电子发生非弹性碰撞,光子的一部分能量转移给电子,使它反冲出来,而散射光子的能量和运动方向都发生了变化。 (3) 电子对效应。 γ光子与靶物质原子的原子核库仑场作用,光子转化为正-负电子对。 在光电效应中,原子吸收光子的全部能量,其中一部分消耗于光电子脱离原子束缚所需的电离能,另一部分就作为光电子的动能。所以,释放出来的光电子的能量就是入射光子能量和该束缚电子所处的电子壳层的结合能B γ之差。虽然有一部分能量被原子的反冲核所吸收,但这部分反冲能量与γ射线能量、光电子的能量相比可以忽略。因此, E 光电子γγE B E i ≈-= (1) 即光电子动能近似等于γ射线能量。值得注意的是,由于必须满足动量守恒定律,自由电子(非束缚电子)则不能吸收光子能量而成为光电子。光电效应的发生除入射光子和光电子外,还需要有一个第三者参加,这第三者就是发射光子之后剩余下来的整个原子。它带走一些反冲能量,但该能量十分小。由于它的参加,动量和能量守恒才能满足。而且,电子在原子中被束缚得越紧(即越靠近原子核),越容易使原子核参加上述过程。所以在K 壳层上发生光电效应的概率最大。 图1是能量为hν,的入射光子发生康普顿散射的示意图,h ν'为散射光子的能量;θ为散射光子与入射光子方向间的夹角,称散射角;?为反冲电子的反冲角。 康普顿散射与光电效应不同。光电效应中光子本身消失,能量完全转移给电子;康普顿散射中光子只是损失掉一部分能量。光电效应发生在束缚得最紧的内层电子上;康普顿散射则总是发生在束缚得最松的外层电子上。我们可以分析一下散射光子和反冲电子的能量与反射角的关系。入射光子能量为νγh E =,动量为c h /ν碰撞后,散 射光子的能量为νγ'='h E ,动量为c h /ν',反冲电子的动能为E e ,总能量为E ,动量为 P ,见图 1,它们之间有下列关系式: 2 02 202 02 2 01c m c m c m mc c m E E e --= -=-=β (2) 2 01β -= =v m mv P (3)

r射线能谱实验报告

实验报告 系 级 姓名 日期 No. 评分: 实验题目:γ能谱及γ射线的吸收 实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律 实验原理: 1.γ能谱的形状 闪烁γ能谱仪可测得γ能谱的形状,下图所示是典型 Cs 137 的γ射线能谱图。图的纵轴代表单位时间内的脉 冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。 从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对应γ射线的能量γE 。这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全 部能量,所以光电峰的能量就代表γ射线的能量,对 Cs 137 ,此能量为0.661Me V。 C E 即为康普顿边界,对应反冲电子的最大能量。 背散射峰b E 是由射线与闪烁体屏蔽层等物质发生反向散射后进入闪烁体内,形成的光电峰,一般峰很小。 2.谱仪的能量刻度和分辨率 (1)谱仪的能量刻度 闪烁谱仪测得的γ射线能谱的形状及其各峰对应的能量值由核素的蜕变纲图所决定,是各核素的特征反映。但测得的光电峰所对应的脉冲幅度(即峰值在横轴上所处的位置)是与工作条件有关系的。如光电倍增管高压改

变、线性放大器放大倍数不同等,都会改变各峰位在横轴上的位置,也即改变了能量轴的刻度。因此,应用γ谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定谱仪的能量刻度,即给出每道所对应的能量增值E。例如选择 Cs 137 的光电峰γE =0.661Me V和Co 60的光电峰MeV E 17.11=γ、MeV E 33.12=γ等能量值,先 分别测量两核素的γ能谱,得到光电峰所对应的多道分析器上的道址(若不用多道分析器,可给出各峰位所为应的单道分析器上的阈值)。可以认为能量与峰值脉冲的幅度是线性的,因此根据已知能量值,就可以计算出多道分析器的能量刻度值E。如果对应MeV E 661.01=的光电峰位于A道,对应MeV E 17.12=的光电峰位于B 道,则有能量刻度 MeV A B e --= 661 .017.1 (1) 测得未知光电峰对应的道址再乘以e 值即为其能量值。 (2)谱仪分辨率 γ能谱仪的一个重要指标是能量分辨率。由于闪烁谱仪测量粒子能量过程中,伴随着一系列统计涨落因素,如γ光子进入闪烁体内损失能量、产生荧光光子、荧光光子进入光电倍增管后,在阴极上打出光电子、光电子在倍增极上逐级打出光电子而使数目倍增,最后在阳极上形成电流脉冲等,脉冲的高度是服从统计规律而有一定分布的。光电峰的宽窄反映着谱仪对能量分辨的能力。如图2.2.1-7中所示的光电峰的描绘,定义谱仪能量分辨率η为 %100??=?= V V E E 光电峰脉冲幅度半高度η (2) η表示闪烁谱仪在测量能量时能够分辨两条靠近的谱线的本领。目前一般的闪烁谱仪分辨率在10%左右。对η的影响因素很多,如闪烁体、光电倍增管等等。 (3)物质对γ射线的吸收 当γ射线穿过物质时,一旦与物质中的原子发生三种相互作用,原来的光子就消失或通过散射改变入射方向。通常把通过物质且未经相互作用的光子所组成的射线称为窄束γ射线(或良好几何条件下的射线束)。实验表明,单能窄束γ射线的衰减遵循指数规律: (8)

实验1 γ射线能谱的测量实验报告

γ射线能谱的测量 光信息081 邵顺富 08620122摘要:本实验要求大家了解NaI(TI)闪烁探测器的结构,并对其工作原理有一定的认识。γ射线射入闪烁体,通过光电效应、康普顿效应和电子对产生这三种效应,产生次级电子,再由这些次级电子去激发闪烁体发光。所发之光被光电倍增管接收,经光电转换及电子倍增过程,最后从光电倍增管的阳极输出电脉冲。分析、记录这些脉冲就能测定射线的强度和能量,从而得到γ射线的能谱。 关键词:闪烁探测器γ射线能谱 引言:γ射线是原子核从激发态跃迁到较低能态时发射的波长很短的电磁辐射。其能量由原子核跃迁前后的能级差来表示:γ射线与物质发生相互作用则产生次级电子或能量较低的射线,将γ射线的次级电子按不同能量分别进行强度测量,从而得到γ辐射强度按能量的分布,即为“γ能谱”。本实验采用NaI(TI)单晶闪烁谱仪测量“γ能谱”。研究γ射线的能谱对于放射性核素的应用和研究原子核的能级结构有很重要的意义。 闪烁探测器在科学技术的许多部门有着十分重要的应用,它的主要优点是:既能探测各种类型的带电粒子,又能探测中性粒子,既能对辐射强度进行测量,又能对辐射的能量进行分析,而且探测效率高(比G-M计数器高几十倍),分辨时间短(约10 秒)。通过本实验,你将学习掌握一种测量射线能量的方法:用NaI(Tl)闪烁探测器测量γ能谱。 正文 实验背景 γ辐射是处于激发态原子核损失能量的最显著方式。光子(γ射线)会与下列带电体发生相互作用:1)被束缚在原子中的电子;2)自由电子(单个电子);3)库仑场(核或电子的);4)核子(单个核子或整个核)。 这些类型的相互作用可以导致下列三种效应中的一种:1)光子的完全吸收;2)弹性散射;3)非弹性散射。因此从理论上讲,γ射线可能的吸收和散射有12种过程,但在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种:光电效应、康普顿效应、电子对。 实验目的 1.了解闪烁探测器的结构、原理; 2.掌握Nal(T1)单晶γ闪烁谱仪的几个性能指标和测试方法; 3.了解和电子学仪器的数据采集、记录方法和数据处理原理; 实验内容 1.学会NaI(Tl)单晶γ闪烁谱仪整套装置的操作、调整和使用,调试一台谱仪至正常工作状态。 2.测量137Cs的γ能谱,求出能量分辨率、峰康比、线性等各项指标,并分析谱形。3.了解多道脉冲幅度分析器在NaI(Tl)单晶γ谱测量中的数据采集及其基本功能4.数据处理(包括对谱形进行光滑、寻峰,曲线拟合等)。 实验原理

γ射线能谱测量

γ射线能谱测量 γ 射线能谱测量中的物质变化过程是: γ 射线(光子)→ 次级电子(三种相互作用)→ 荧光(光子,探头的闪烁体发出)→ 光电子(在打拿极上产生并倍增)→ 光电流 打拿极上光电子激发更多次级电子,打拿极上所加电压对电子加速,使形成更多的电子,从而形成足够大的较稳定的可以被探测到的光电流。电流与极间电压应该成正比关系,计数不能反映初始的电子产生数目,但能反映其统计规律,计数应该是由光电流的大小与单个电子的电量的比值所得到的。示波器的幅度可以反映射线粒子的能量大小。 数据处理与结果 ○ 1 0(6.98,127.6) B (7.67,127.5) C (7.42 ,255.21)7.42 V U 0.69 V 0.69 W= 100%8.97%7.67 O A U U U =?=??== ○2 0截距=-0.04473 G=斜率=0.1962 线性方程 E(x )0.19620.04473 p O p p E E Gx x ==+=- 实验分析 ○1 示波器上的波形有一波幅最大的曲线,下面的弥漫区域还有小的波形。这是因为在闪烁体中发生了光电效应,康普顿效应,电子对效应,这三种效应中,光电效应最强,产生的次级电子最多,对应着波幅最大的波形,下面的小波形则是由康普顿效应造成的,其强度要弱于光电效应。 ○ 2 γ射线是单能射线,其对应的能谱应该是单一的分立的,但是我们测得的能谱却是连续的。这是因为三种效应激发出的电子的能量是不一样的,加上闪烁体分辨能力低,还有其它电子学的干扰存在,因此闪烁体谱仪测量单能射线不可能就一单能峰值。 ○ 3实验中用示波器观察波形的时候,为什么要将光电峰置于8 伏左右?我猜想是:示

便携式γ能谱仪的原理及应用

便携式γ能谱仪的原理及应用 γ射线是由原子核衰变所产生的,当原子核从激发态跃迁到较低能态或基态时,就可能会辐射出γ射线。γ射线强度按能量分布即为γ能谱。测量γ能谱最常用的仪器为便携式γ能谱仪。γ能谱仪可以将探测到的γ射线强度和能量绘制成γ能谱,进行快速核素识别,因此也常用于野外对岩地或地层的钾、钍、铀(镭)、的γ强度测量,或计算含量分析地质等。在实际应用中便携式γ能谱仪因其性价比高、操作维护比较简单、探测效率高(识别时间短),能满足大多数测量需求,因此广泛应用于工业生产、质量检查、工程地质、建筑材料和环境检测中。 探测原理 便携式γ能谱仪探头部分由探测器(闪烁体)、光电倍增管和前置放大器构成。闪烁体是一类能吸收能量,并能在大约一微秒或更短的时间内把所吸收的一部分能量以光的形式再发射出来的物质。由于γ射线不同于α和β粒子,它类似于光和其它电磁辐射,具有很强的穿透性,容易被高电子密度的物质所吸收(如铅)。就探测器而言,某些无机盐能有效地吸收γ光子,发射出强度正比于所吸收γ射线能量的光子。例如铊激活的碘化钠(闪烁体),用来探测γ射线,效率较高。当射线通过闪烁体时,闪烁体被射线电离、激发,会使闪烁体探测器产生荧光,光子被光电倍增管所接收。所探测到的γ射线能量越高,所产生的荧光光子数目也就越多,再由光电倍增管实现光子到脉冲信号的转换,经电路信号处理完成模/数转换输出。闪烁体探测器也是近几年来发展快速,应用广泛的核辐射探测器。 使用方法

便携式γ能谱仪比较热门的型号有AT6102、Interceptor、SAM940等,就拿常用的几款举例来说实际使用操作是差不多的。在检测之前仪器应当保持电量充足以便于长时间的现场测量。当需要检测时检查仪器电量并开机充分预热(几分钟),以便于调节光电倍增管的电压,稳定系统增益,从而达到稳定谱线准确测量的目的。有的γ能谱仪也可能会使用到参考源,参考源同样也是为了稳定谱线而制作的,如果稳定温度和测量温度差别较大可能需要重新稳定。当仪器预热稳定完毕之后即可检测,需要注意的是如果进行样品检测,应当对准样品源并扣除本底计数率,这样才能得到样品的净计数率,并得出准确的能量谱图。仪器除了识别核素也可以作为固定式的γ检测仪,例如应用于海关检查,此时只需将预设γ的剂量率报警阈值调整为三倍本底水平即可。当某些违禁物体通过通道时即可检测γ辐射是否超标,超标时仪器会立即发出警报提醒进行处理。 仪器维护 探测仪器本身设计的工业防护等级都比较高,外壳多数为耐腐蚀耐冲击高强度材料。因此只要按操作规程操作,特别要注意的是,储存条件不适宜可能会导致电池老化影响仪器寿命,另外测量较强的辐射源之后应清洁仪器的探测器部分并恢复本底测量水平再关机,防止下次稳谱时间过长影响测量。

闪烁伽马能谱测量实验报告

近代物理实验 原子核物理 实验报告 实验题目:《闪烁γ能谱测量》 一、 实验目的 1加深对γ射线和物质相互作用的理解。 2.掌握NaI(Tl)γ谱仪的原理及使用方法。 3.学会测量分析γ能谱。 4.学会测定γ谱仪的刻度曲线.。 二、实验仪器 Cs 放射源 Co 放射源 FH1901型NaI 闪烁谱仪 SR-28双踪示波器 三、 实验原理 1. γ射线与物质相互作用 γ射线与物质相互作用主要有光电效应、康普顿散射及电子对效应。 1) 光电效应:在光电效应中,原子吸收光子的全部能量,其中一部分消耗于光电子脱离原 子束缚所需的电离能,另一部分就作为光电子的动能。所以,释放出来的光电子能量和 该束缚电子所处的电子壳层的结合能B γ之差。因此, =i E E B E γγ -≈光电子 (需要原子核参加) 2) 康普顿散射:康普顿散射是γ光子与原子外层电子相互作用的结果。反冲电子的动能为: 220(1cos )(1cos ) e E E m c E γγθθ-= +- 即使入射γ光子的能量是单一的,反冲电子的能量却是随散射角连续变化的。 3) 电子对效应:电子对效应是γ光子从原子核旁经过时,在原子核的库伦场作用下,γ光 子转化为一个正电子和一个负电子的过程。根据能量守恒定律,只有当入射光子的能量 h ν大于2 02m c ,即 h ν〉1.02MeV 时,才能发生电子对效应。(与光电效应相似,需要 原子核参加) 2. NaI (Tl )γ能谱仪介绍 1)闪烁谱仪装置示意图

2)闪烁谱仪的工作原理 Γ射线 次级电子 荧光 Γ放射源 与闪烁体发 闪烁体受 光阴极吸收 生三种作用 激辐射 光电子 电脉冲 定标器记录 分析器分析 放大器放大 各打拿极逐级放大 3)能谱分析(以137Cs 为例) 全能峰是γ光子与闪烁体发生光电效应产生的,直接反映了γ射线的能量;康普顿坪是由康普顿效应贡献的;逸出的γ射线与闪烁体周围的物质发生康普顿散射,反散射光子进入闪烁体发生光电效应形成反散射峰。 4) 谱仪的能量分辨率和能量刻度曲线 闪烁单晶γ谱仪最主要的指标是能量分辨率和线性。 a.能量分辨率 100%U W U ?= ? 闪烁谱仪的能量分辨率取决于闪烁体、光电倍增管、电子学线路的选择与配合。由于现在电子学线路技术的提高,分辨率主要取决于闪烁体的分辨本领。 b.能量线性 0()E p p E x Gx =+ 能量线性是指谱仪的输出脉冲幅度与带电粒子能量之间是否有线性关系。由于NaI(Tl)单晶对于能量在100keV 到1300keV 是近似线性的,谱仪的能量线性主要取决于谱仪的工作情况。利用两种能量确定的放射源就可以做出能量刻度曲线。 四、 实验内容 1. 连接仪器,检查线路确认无误后开低压电源预热,将 137 Cs 放射源放在托盘上,加高压 用脉冲示波器观察探头工作状态。得到负脉冲表明探头以开始工作 2. 调节放大器的放大倍数和时间常数,用示波器观察放大器输出波形,使放大器输出脉冲 幅度为8V 左右,且使输出波形尽量与探头输出波形相似。

伽玛射线能谱测量实验报告

伽玛能谱的测量及透射率的测定实验报告 吴伟岑 摘要: 本实验将伽玛射线的次级电子按不同的能量分别进行强度测量,从而得到伽玛辐射强度按能量的分布。由于伽玛射线的能量与原子核激发态的能级特性相联系,不仅对于原子核的结构和性质至关重要,而且对各种放射性同位素的应用也是或不可缺的。 关键词: 伽玛射线、能谱、NaI(Tl)、伽玛闪烁谱 引言 测量伽玛射线的强度和能量是核辐射探测的一个重要方面,在核物理研究中,测量原子核的激发能级、研究核衰变纲图、测定短的核寿命及进行核反应实验等,都需要测量伽玛射线,在放射性同位素的工业、农业、医疗和科学研究的各种应用中也经常使用伽玛射线和要求进行伽玛射线的各种测量。在伽玛射线测量工作中广泛使用Nal(Tl)单晶能谱仪和Ge(Li)半导体能谱仪,由于后一谱仪具有高的能量分辨率,同时使用计算机技术,使伽玛射线的能谱测量工作在广度和精度方面都有很大的进展。Ge(Li)半导体谱仪虽然具有高的分辨率和良好的线性,但是它要求在低温下保存和使用,且要定期加液氮,这显然是不方便的,而且它对仪器设备有较高的要求,价格也较贵,而Nal(Tl)单晶伽玛谱仪则有较高的探测效率,保单晶闪烁探测器伽玛能谱仪。Nal(Tl)管和使用都较为方便,所以在一般情况下尽可能使用 正文 一.实验内容 1.学会NaI(Tl)单晶伽玛闪烁体整体装置的操作、调整和使用,调试一台谱仪至正常工作状态。 2.测量Cs、Co的伽玛能谱,求出能量分辨率、峰康比、线性等各项指标,并分析60137谱形。 3.了解多道脉冲幅度分析器在NaI(Tl)单晶伽玛谱测量中的数据采集及其基本功能。 4.数据处理(包括对谱形进行光滑、寻峰、曲线拟合等)。 二.实验装置 1.伽玛放射源Cs和Co (强度~1.5微居里); 2.200微米Al窗NaI(Tl)闪烁头; 3.高压60137电源、放大器、多道脉冲幅度分析仪。 三.实验步骤 1.阅读仪器使用说明,掌握仪器及多道分析软件的使用方法。调整实验装置,使放射源、准直孔、闪烁探测器的中心位于一条直线上。. 2.仪器开机并调整好工作电压(700-750V)和放大倍数后,预热30分钟左右。

[整理]γ能谱及γ射线的吸收.

3系08级 姓名:方一 日期:6月12日 PB08206045 实验题目: γ 能谱及γ射线的吸收 实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律。 实验原理: γ射线与物质的相互作用 γ射线与物质原子之间的相互作用主要有三种方式:光电效应、康普顿散射、电子对效应。 1)光电效应 当能量γE 的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应.发射出光电子的动能 i e B E E -=γ (1) i B 为束缚电子所在壳层的结合能。原子内层电子脱离原子后留下空位形成激发 原子,其外部壳层的电子会填补空位并放出特征X 射线。例如L 层电子跃迁到K 层,放出该原子的K 系特征X 射线。 2)康普顿效应 γ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向。计算给出反冲电子的动 能为

) cos 1(1) cos 1() cos 1(2 0202θθθγγ γγ-+ = -+-=E c m E E c m E E e (2) 式中20c m 为电子静止质量,角度θ是γ光子的散射角,见图2.2.1-2所示。由图看出反冲电子以角度φ出射,φ与θ间有以下关系: 2tan 1cot 2 0θ ?γ??? ? ?? +=c m E (3) 由式(2)给出,当 180=θ时,反冲电子的动能e E 有最大值: γ γE c m E E 212 0max += (4) 这说明康普顿效应产生的反冲电子的能量有一上限最大值,称为康普顿边界E C 。 3)电子对效应 当γ光子能量大于202c m 时,γ光子从原子核旁边经过并受到核的库仑场作用,可能转化为一个正电子和一个负电子,称为电子对效应。此时光子能量可表示为两个电子的动能与静止能量之和,如 202c m E E E e e ++=- + γ (5) 其中MeV c m 02.1220=。 综上所述,γ光子与物质相遇时,通过与物质原子发生光电效应、康普顿效应或电子对效应而损失能量,其结果是产生次级带电粒子,如光电子、反冲电子或正负电子对。次级带电粒子的能量与入射γ光子的能量直接相关,因此,可通过测量次级带电粒子的能量求得γ光子的能量。

衰变原理及其能谱的测量

β衰变原理及其能谱的测量 于蓉 β衰变原理 1899年,卢瑟福发现了α射线和β射线。[1]1914年,查德威克公布了关于α射线和β射线能谱的研究结果:放射性物质所发射的α射线能谱是分立的(见图1),β射线的动能有一个连续变化的能谱范围(见图2)。[2] 问题:[3] 1、原子核是个量子体系,它具有的能量必然是分立的。而核衰变则是不同 的原子核能态之间的跃迁,由此释放的能量也必然是分立的。α衰变证实 了这一点,那么β射线的能谱为什么是连续的呢? 2、不确定关系不允许核内有电子,那么β衰变放出的电子是从哪里来的呢? 图1 图2 第一个难题由泡利所解决,他在1930年指出:“只有假定在β衰变过程中,伴随每一个电子有一个轻的中性粒子(称之为中微子)一起被发射出来,使中微子和电子的能量之和为常数,才能解释连续β谱。”也就是说只有认为β衰变是三体衰变过程,才能说明β能谱连续的事实。释放出的中性粒子被称为中微子,其质量接近于零,自旋为1/2。[4] 第二个难题由费米解决,他认为,正像光子是在原子或原子核从一个激发态跃迁到另一个激发态时产生的那样,电子和中微子是在衰变中产生的。费米指出β-衰变的本质是核内一个中子变为质子,β+和EC(俘获)的本质是一个质子变为中子。而中子与质子可视为核子的两个不同状态,因此,中子与质子之间的转变相当于一个量子态到另一个量子态的跃迁,在跃迁过程中放出电子与中微子,它们事先并不存在于核内。正好像光子是原子不同状态之间跃迁的产物,事先并不存在于原子内。导致产生光子的是电磁相互作用,而导致产生电子何种位子的是一种新的相互作用:弱相互作用。[5](补充:1956年李政道和杨振宁提出在弱相互作用中宇称不守恒,并由吴健雄 用放射源进行了实验验证。次年,李、杨二人为此获得诺贝尔物理学奖。) β能谱的测量 单能β谱如下图所示:

相关主题
文本预览
相关文档 最新文档