保护模式下寻址(易懂)

  • 格式:doc
  • 大小:39.00 KB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

保护模式下寻址(易懂)

保护模式下寻址(易懂):网上看到的一强帖,不转不行了,牛人啊,把这段代码拿捏的相当到位括号中是我的加注段机制轻松体验[内存寻址]实模式下的内存寻址:让我们首先来回顾实模式下的寻址方式段首地址×16+偏

移量=物理地址为什么要×16?因为在8086CPU中,地址线是20位,但寄存器是16位的,最高寻址64KB,它无法寻址到1M内存。于是,Intel设计了这种寻址方式,先缩小4位成16位放入到段寄存器,用到时候,再将其扩大到20位,这也造成了段的首地址必须是16的倍数的限制。保护模式下分段机制的内存寻址:保护模式下分段机制是利用一个称作段选择符的偏移量,从而到描述符表找到需要的段描述符,而这个段描述符中就存放着真正的段的物理首地址,再加上偏移量一段话,出现了三个新名词:1、段选择子2、描述符表3、段描述符我们现在可以这样来理解这段话:有一个结构体类型,它有三个成员变量:段物理首地址段界限段属性内存中,维护一个该结构体类型的是一个数组。而分段机制就是利用一个索引,找到该数组对应的结构体,从而得到段的物理首地址,然后加上偏移量,得到真正的物理地址。公式:xxxx:yyyyyyyy其中,xxxx也就是索引,yyyyyyyy是偏移量(因为32位寄存器,所以8个

16进制)xxxx存放在段寄存器中。现在,我们来到过来分析一下那三个新名词。段描述符,一个结构体,它有三个成员变量:1、段物理首地址2、段界限3、段属性我们再来重温一遍描述符表,也就是一个数组,什么样的数组呢?是一个段描述符组成的数组。接下来看看段选择子:段选择子,也就是数组的索引,但这时候的索引不在是高级语言中数组的下标,而是我们将要找的那个段描述符相对于数组首地址(也就是全局描述表的首地址)偏移位置。就这么简单,如图:图中,通过Selector(段选择子)找到存储在Descriptor Table(描述符表)中某个Descriptor(段描述符),该段描述符中存放有该段的物理首地址,所以就可以找到内存中真正的物理段首地址SegmentOffset(偏移量):就是相对该段的偏移量物理首地址+偏移量就得到了物理地

址本图就是DATA但这时,心细的朋友就发现了一个GDTR这个家伙还没有提到!我们来看一下什么是GDTR ?Global Descriptor Table Register(全局描述符表寄存器)但是这个寄存器有什么用呢?大家想一下,段描述符表现在是存放在内存中,那CPU是如何知道它在哪里呢?所以,Intel 公司设计了一个全局描述符表寄存器,专门用来存放段描述符表的首地址,以便找到内存中段描述符表。这时,段描述符表地址被存到GDTR寄存器中了。好了,分析就到这,我们来看一下正式的定义:当x86 CPU 工作在保护模式时,可

以使用全部32根地址线访问4GB的内存,因为80386的所有通用寄存器都是32位的,所以用任何一个通用寄存器来间接寻址,不用分段就可以访问4G空间中任意的内存地址。也就是说我们直接可以用Eip寄存器就可以找到茫茫内存里面所有的值!但这并不意味着,此时段寄存器就不再有用了[其实还有部分原因是要与8086兼容] 。实际上,段寄存器更加有用了,虽然再寻址上没有分段的限制了,但在保护模式下,一个地址空间是否可以被写入,可以被多少优先级的代码写入,是不是允许执行等等涉及保护的问题就出来了。[想想吧,单单就是靠eip找到所有内存的值显然不够的,醒醒吧,我们到了80386时代了,我们需要保护模式,要指示出来那些内存段是操作系统核心用的,那些是你打游戏时用的,打游戏时的cpu不能访问到操作系统核心所用的内存段。我们需要分出"级别"来] 。要解决这些问题,必须对一个地址空间定义一些安全上的属性。段寄存器这时就派上了用场。但是设计属性和保护模式下段的参数,要表示的信息太多了,要用64 位长的数据才能表示。我们把着64位的属性数据叫做段描述符,上面说过,它包含3个变量:段物理首地址、段界限、段属性80386的段寄存器是16位(注意:通用寄存器在保护模式下都是32位,但段寄存器没有被改变,比如cs还是16位的,16位的段寄存器怎么可能装下一个64位的段描述符)的,无法放下保护模式下64

位的段描述符。如何解决这个问题呢?方法是把所有段的段描述符顺序存放在内存中的指定位置,组成一个段描述符表(Descriptor Table);而段寄存器中的16位用来做索引信息,这时,段寄存器中的信息不再是段地址了,而是段选择子(Selector)。可以通过它在段描述符表中“选择”一个项目已得到段的全部信息。也就是说我们在另一个地方把段描述符放好,然后通过选择子来找到这个段描述符。那么段描述符表存放在哪里呢?80386引入了两个新的寄存器来管理段描述符,就是GDTR和LDTR,(LDTR 大家先忘记它,随着学习的深入,我们会在以后学习)。这样,用以下几步来总体体验下保护模式下寻址的机制1、段寄存器中存放段选择子Selector2、GDTR中存放着段描述符表的首地址3、通过选择子根据GDTR中的首地址,就能找到对应的段描述符4、段描述符中有段的物理首地址,就得到段在内存中的首地址5、加上偏移量,就找到在这个段中存放的数据的真正物理地址。=================================好的,那我们开始编码,看看如何实现先前描述的内容首先,既然我们需要一个数组,全局描述符表,那我们就定义一块连续的结构体:[SECTION .gdt] ;为了代码可读性,我们将这个数组放到一个节中;由一块连续的地址组成的,不就是一个数组吗?看下面代码,^_^段基地址段界限段属性

GDT_BEGIN: Descriptor 0, 0, 0 GDT_CODE32: Descriptor 0, 0, DA_C;上面,我定义了二个连续地址的结构体,大家先认为Descriptor就是一个结构体类型,我们会在以后详细讲述;第一个结构体,全部是0,是为了遵循Interl规范,先记得就OK;第二个定义了一个代码段,段基地址和段界限我们暂且还不知道,先初始化为0,但是因为是个代码段,代码段具备执行的属性,那么DA_C就代表是一个可执行代码段,DA_C是一个预先定义好的常量,我们会在详细讲解段描述符中讲解。我们继续来实现,那么下面,我们就需要设计段选择子了,因为上面代码已经包含了段描述符和全局描述符表还记得选择子是个什么东西吗?段选择子:也就是数组的索引,但这时候的索引不在是高级语言中数组的下标,而是我们将要找的那个段描述符相对于数组首地址(也就是全局描述表的首地址)偏移位置。看我代码怎么实现,包含以上代码不再说

明:[SECTION .gdt]GDT_BEGIN: Descriptor 0, 0,

0GDT_CODE32: Descriptor 0, 0, DA_C;下面是定义代码段选择子,它就是相对数组首地址的偏移量SelectorCode32 equ GDT_CODE32 - GDT_BEGIN;因为第一个段描述符,不被使用,所以就不比设置段选择子了。=================================偏移地址:注意一点,我们在程序中使用的都是偏移地址,相对于