当前位置:文档之家› 840D全闭环的基本调试参数

840D全闭环的基本调试参数

840D全闭环的基本调试参数

840D全闭环主要参数

30200编码器数量2

30230(0)1(1)2;1为电机测量系统2为光栅尺

30240(0)1(1)1;位置环纠正偏差

31010(0)0.01(1)0.04分辨率

31000(0)0(1)1直尺为1主轴旋转为0

31040(0)0(1)1电机上还是机床上

32110(0)1(1)-1显示是否一致(实际运动和显示)

DB31.DBX1.6=1第二测量系统有效

DB31.DBX1.5=1第一测量系统有效

如果同时为1则DBX1.5有效

如果出现轮廓监控报警原因可能是正反馈,更改32110

在服务画面中,伺服调整中可以监视两个测量系统运动距离是否一致,第一测量系统稍微滞后属正常,如差距大则更改31010分辨率

840d主要参数设定

西门子840D数控系统的参数设定 摘要本文主要针对以西门子840D为控制乐境的数控机床,对算机床数据的调整进行了分析,同时对机床限住的设定与驱神的配王 进行了论述。 关键词保护级别有效方式设定配置 l 概述 随着电站经济的飞跃发展,对电站产品的加工设备的要求越来越高,对机械加工的要求也越来越高,如高低压加热器的管板,冷凝器 的隔板等加工,这些都必须用数控机床来完成。我国在80年代初进口了许多数控机床,其采用的数控系统十分多样化,其中西门子 840D数控系统由于其强大的功能,优越的性能,已越来越被广大厂商的各种数控机床所采用,但西门子公司所提供的标准数据并不一 定完全适合机床,因些很有必要进行参数的设定与调整。 2 相关问题 在对机床参数进行调整前,有两个与数据调整有关的问题需要特别注意的:西门子数据的保护级别和数据写入有效的方式。 2.1 数据的保护级别 西门子共设有7个等级的数据保护级别(见表1),级别0是最高的而级别7是最低的,高级别向下兼容低级别。在修改数据的时候,若设 定的Password级别不够高,将无法修改某些特定的机床参数。具体修改密码的方法是在操作面板(OP)上依次按如下的软

2.2 数据有效的方式 数据修改后并不全是简单的就能有效,840D数控系统提供了多种数据有效的方式,而具体采用哪种方式又取决于所修改数据的参数类型。数据的类型及其生效的方式共有如下几种: (1)POWER ON(of)生效方式是按操作 (2)NEW-CONF(cf)生效方式是按操作 面板的或者按机床控制面 (3)RESET(re)按机床控制面板上的l 键生效 (4)II~ F_,DLt,TE(s0)数据输人后即可生效 3 参数的设定与调整 西门子840D数控的控制系统参数是由机床数据(MD)与设定数据(sD)组成,机床数据与设定数据的数据范围及其定义见表2所示。由表2中可以看出,机床数据(MD)主要由通用,特别通道,特别轴等机床数据构成;设定数据(sD)由通用,特别轴,特别通道设定数据组成。西门子840D数控数据的调整

数控机床编码器的选型及各类编码的特点及调试

一:增量旋转编码器选型有哪些注意:1.械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。 2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。 3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。 二如何使用增量编码器?1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。 2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B 或B超前A进行判向,我公司增量型编码器定义为轴端看编码器顺时针旋转为正转,A超前B为90°,反之逆时针旋转为反转B超前A为90°。也有不相同的,要看产品说明。 3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。 4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。 5,在电子装置中设立计数栈 三:从接近开关、光电开关到旋转编码器:工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了: 信息化:除了定位,控制室还可知道其具体位置; 柔性化:定位可以在控制室柔性调整; 现场安装的方便和安全、长寿:拳头大小的一个旋转编码器,可以测量从几个μ到几十、几百米的距离,n个工位,只要解决一个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。 多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。 经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。 四:电源供应及编码器和PLC连接:一般编码器的工作电源有三种:5Vdc、5-13Vdc或11-26Vdc。如果

编码器使用与设置要点

从增量值编码器到绝对值编码器 旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

840D五轴联动的参数

SINUMERIK 840D涉及五轴转换的主要参数 10620 EULER_ANGLE_NAME_TAB Euler角名称 10630 NORMAL_VECTOR_NAME_TAB 正常矢量名称 10640 DIR_VECTOR_NAME_TAB 方向矢量名称 10642 ROT_VECTOR_NAME_TAB 旋转矢量的名称 10644 INTER_VECTOR_NAME_TAB 暂时矢量的名称 10646 ORIENTATION_NAME_TAB 编程一个第二方向路径的名称 10648 NUTA TION_ANGLE_NAME 垂头角名称 10670 STAT_NAME 状态信息名称:笛卡儿PTP行程中模糊点解决的状态信息标识符 10672 TU_NAME 轴的状态信息名:笛卡儿行程中模糊点解决的状态信息标识符,必须选择一个与其他不冲突的标识符(如轴,Euler角,通常矢量,方向矢量,中间点坐标) 10674 PO_WITHOUT_POLY 无G功能的POLY的多项式编程 20150 GCODE_RESET_V ALUES G组的初始设定,选择一些G组 [0]1=G0,2=G01(std) [5]1=G17(std)2 =G18,3=G19 [7]1=G500(std)2 =G54,3=G55,4=G56,5=G57 [9]1=G60(std)2 =G64,3=G641 [11]1=G601(std)2 =G602,3=G603 [12]1=G70 2 =G71(std) [13]1=G90(std)2 =G91 [14]1=G93 2 =G94(std),3=G95 [20] 1=BRISK(std),2=SOFT

ABB断路器参数调试讲义

ABB 断路器参数调试讲义 电控柜的断路器进行设置,在ABB 塑壳断路器(正面)下方有两个旋钮(见下图),通过调节旋钮的位置可以设置断路器的过流、过载保护值,具体设置方法如下: 一、ABB 塑壳断路器过流、过载旋钮设置说明: 1、过流调节旋钮,设置电控箱整个负载的过流保护值,调节范围从2000A —4000A ,从MIN —MED —MAX 共有9个档位,档位对应值如下: MIN (1)档—2000A; (2)档—2250A; (3)档—2500A; (4)档—2750A; 过流调节 旋钮 过载调节旋钮

MED(5)档—3000A; (6)档—3250A; (7)档—3500A; (8)档—3750A; MAX(9)档—4000A; 2、过载调节旋钮,设置电控箱整个负载的过载保护值,调节范围从280A—400A,从MIN—MED—MAX共有9个档位,档位对应值如下: MIN(1)档—280A; (2)档—295A; (3)档—310A; (4)档—325A; MED(5)档—340A; (6)档—355A; (7)档—370A; (8)档—385A; MAX(9)档—400A; 二、ABB断路器机型设置说明

三ABB断路器低压断路器的参数详解 3.1、空气断路器的框架电流Iu、额定电流Ie、额定电流整定值Ir的 含义是什么? ?框架电流Iu: 又称为额定不间断电流。指在规定条件下,电器在长期工作 制下,各部件的温升不超过规定极限值时所承受的电流值。 ?额定工作电流Ie: 指在规定条件下,能保证电器正常工作的电流值。它和额定 电压、电网频率、额定工作制、使用类别、触头寿命及防护 等级等因素有关。有时被标识为In。 ?额定电流整定值Ir: 这是使用者通过断路器的脱扣器自行整定的一个电流值,断 路器根据使用者整定的Ir对电路进行过载、短路保护。 ?比如ABB的塑壳断路器S5N400 R320 PR112/LI FF 3P , Iu=400A Ie=320A, Ir=( 0.4 – 1)Ie 可调。 3.2、极限短路分断能力Icu、额定运行短路能力Ics、短时耐受电流 Icw的含义是什么? ?极限短路分断能力Icu 断路器在承受此短路电流时必须可靠的分断短路故障,但不要求断路器未经过维修或更换零件的条件下能继续使用。

ABB断路器参数调试讲义教学提纲

A B B断路器参数调试 讲义

ABB 断路器参数调试讲义 电控柜的断路器进行设置,在ABB 塑壳断路器(正面)下方有两个旋钮(见下图),通过调节旋钮的位置可以设置断路器的过流、过载保护值,具体设置方法如下: 一、ABB 塑壳断路器过流、过载旋钮设置说明: 1、过流调节旋钮,设置电控箱整个负载的过流保护值,调节范围从2000A —4000A ,从MIN —MED —MAX 共有9个档位,档位对应值如下: MIN (1)档—2000A; (2)档—2250A; (3)档—2500A; (4)档—2750A; 过流调 过载调

MED(5)档—3000A; (6)档—3250A; (7)档—3500A; (8)档—3750A; MAX(9)档—4000A; 2、过载调节旋钮,设置电控箱整个负载的过载保护值,调节范围从280A—400A,从MIN—MED—MAX共有9个档位,档位对应值如下: MIN(1)档—280A; (2)档—295A; (3)档—310A; (4)档—325A; MED(5)档—340A; (6)档—355A; (7)档—370A; (8)档—385A; MAX(9)档—400A; 二、ABB断路器机型设置说明

三ABB断路器低压断路器的参数详解 3.1、空气断路器的框架电流Iu、额定电流Ie、额定电流整定值Ir 的含义是什么? ?框架电流Iu: 又称为额定不间断电流。指在规定条件下,电器在长期工 作制下,各部件的温升不超过规定极限值时所承受的电流 值。 ?额定工作电流Ie: 指在规定条件下,能保证电器正常工作的电流值。它和额 定电压、电网频率、额定工作制、使用类别、触头寿命及 防护等级等因素有关。有时被标识为In。 ?额定电流整定值Ir: 这是使用者通过断路器的脱扣器自行整定的一个电流值, 断路器根据使用者整定的Ir对电路进行过载、短路保护。 ?比如ABB的塑壳断路器S5N400 R320 PR112/LI FF 3P , Iu=400A Ie=320A, Ir=( 0.4 – 1)Ie 可调。 3.2、极限短路分断能力Icu、额定运行短路能力Ics、短时耐受电流 Icw的含义是什么? ?极限短路分断能力Icu

编码器基础知识大全

编码器 科技名词定义 中文名称: 编码器 英文名称: coder;encoder 定义: 一种按照给定的代码产生信息表达形式的器件。 应用学科: 通信科技(一级学科);通信原理与基本技术(二级学科)以上内容由全国科学技术名词审定委员会审定公布 编码器 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电

刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 作用 设计图纸 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组

的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1 和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。 分类 按照工作原理编码器可分为增量式和绝对式两类。 增量式 增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。 绝对式

各种编码器的调零方法

各种编码器的调零方法 增量式编码器的相位对齐方式 增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下: 1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察编码器的U相信号和Z信号; 3.调整编码器转轴与电机轴的相对位置; 4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系; 5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。 撤掉直流电源后,验证如下: 1.用示波器观察编码器的U相信号和电机的UV线反电势波形; 2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。 上述验证方法,也可以用作对齐方法。 需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。 将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以: 1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线; 2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形; 3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置; 4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。 由于普通增量式编码器不具备UVW相位信息,而Z信号也只能反映一圈内的一个点位,不具备直接的相位对齐潜力,因而不作讨论。 绝对式编码器的相位对齐方式 绝对式编码器的相位对齐对于单圈和多圈而言,差别不大,其实都是在一圈内对齐编码器的检测相位与电机电角度的相位。早期的绝对式编码器会以单独的引脚给出单圈相位的最高位的电平,利用此电平的0和1的翻转,也可以实现编码器和电机的相位对齐,方法如下:1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置; 2.用示波器观察绝对编码器的最高计数位电平信号;

西门子Siemens840D全参数详解

西门子840D主要参数意译 西门子840D的主要参数释义 文字一、通道机床数据 20000 通道名称 20050 几何轴-通道轴的分配 20060 通道中的几何轴名称 20070 通道中机床轴号 20080 通道中的通道轴名称 20090 主导主轴的号 20092 主轴旋转的使能/使能取消 20094 轴运行的M运行(西门子模式) 20095 轴运行的M功能(外部模式) 20096 T,M 刀具地址代号改变 20098 在MMC上显示轴 20100 带面对轴功能的几何轴 20108 事件驱动程序调用的设置 20109 Prog-Events 的属性 20110 RESET复位时的基本功能设置 20112 NC启动的基本功能设置 20114 方式改变中断了MDI 20116 带读限制的中断程序关闭 20117 带信号的中断程序关闭 20118 几何轴改变自动使能 20120 复位时刀具生效 20121 复位的预选刀具 20122 RESET复位/启动和TC时刀具生效 20123 RESET时 $P_USEKT 的预选值 20124 刀具夹持装置号 20126 RESET复位时刀架生效 20128 换刀在搜索中 20130 RESET复位时刀沿生效 20132 有效总偏差复位 20140 用复位健使转换生效。 20150 G代码组的初始设定 20152 G代码组复位 20154 G代码组的初始设定 20156 外部 G 组复位方式 20160 C 样条程序块的数量 20170 COMPRESS压缩的最大程序块长度 20172 COMPRESSION压缩方式计算的最大路径进给率20180 带刀架的旋转轴增量 20182 带刀架的旋转轴偏置 20184 零件偏置的基本FRAME号 20200 倒角/圆角的空程序段

ABB断路器参数调试讲义

ABB 断路器参数调试讲义 电控柜的断路器进行设置,在ABB 塑壳断路器(正面)下方有两个旋钮(见下图),通过调节旋钮的位置可以设置断路器的过流、过载保护值,具体设置方法如下: 一、ABB 塑壳断路器过流、过载旋钮设置说明: 1、过流调节旋钮,设置电控箱整个负载的过流保护值,调节范围从2000A —4000A ,从MIN —MED —MAX 共有9个档位,档位对应值如下: MIN (1)档—2000A; (2)档—2250A; (3)档—2500A; (4)档—2750A; 过流 调节旋钮 过载调节旋钮

MED(5)档—3000A; (6)档—3250A; (7)档—3500A; (8)档—3750A; MAX(9)档—4000A; 2、过载调节旋钮,设置电控箱整个负载的过载保护值,调节范围从280A—400A,从MIN—MED—MAX共有9个档位,档位对应值如下: MIN(1)档—280A; (2)档—295A; (3)档—310A; (4)档—325A; MED(5)档—340A; (6)档—355A; (7)档—370A; (8)档—385A; MAX(9)档—400A; 二、ABB断路器机型设置说明

EBZ230380132400A7档2档 EBZ260H 380132400A7档2档380160400A8档2档 EBZ318H380200400A9档3档 三ABB断路器低压断路器的参数详解 3.1、空气断路器的框架电流Iu、额定电流Ie、额定电流 整定值Ir的含义是什么 框架电流Iu: 又称为额定不间断电流。指在规定条件下,电器在长期工作 制下,各部件的温升不超过规定极限值时所承受的电流值。 额定工作电流Ie: 指在规定条件下,能保证电器正常工作的电流值。它和额定电压、电网频率、额定工作制、使用类别、触头寿命及 防护等级等因素有关。有时被标识为In。 额定电流整定值Ir: 这是使用者通过断路器的脱扣器自行整定的一个电流值,断路器根据使用者整定的Ir对电路进行过载、短路保 护。 比如ABB的塑壳断路器S5N400 R320 PR112/LI FF 3P , Iu=400A Ie=320A, Ir=( – 1)Ie 可调。 3.2、极限短路分断能力Icu、额定运行短路能力Ics、短 时耐受电流Icw的含义是什么 极限短路分断能力Icu 断路器在承受此短路电流时必须可靠的分断短路

万能增量式光电编码器控制的伺服电机零位调整技巧

万能增量式光电编码器控制的伺服 电机零位调整技巧 下述述两种调法完全取决于你的手工能力和熟练程度,一般来说,每款伺服电机都有自己专门的编码器自动调零软件.不外传仅是出于商业羸利和技术保密.如果你是一家正规的维修店,请不要采用以下方法,应通过正常渠道购买相应的专业设备.实践证明,手工调整如果技巧掌握得当, 工作仔细负责,也可达到同样的效果. 大批量更换新编码器调零方法 第一步:折下损坏的编码器 第二步:把新的编码器按标准固定于损坏的电机上第三步:按图纸找出Z信号和两根电源引出线,一般电源均为5V. 第四步:准备好一个有24V与5V两组输出电源的开关电源和一个略经改装的断线报警器,把0V线与Z 信号线接到断线报警器的两个光耦隔离输入端上。 第五步:在电机转动轮上固定一根二十厘米长的横杆,这样转动电机时转角精度很容易控制. 第六步:所有连线接好后用手一点点转动电机轮子

直到报警器发出报警时即为编码器零位,前后反复感觉一下便可获得最佳的位置,经实测用这种方法校正的零位误差极小,很适于批量调整,经实际使用完全合格.报警器也可用示波器代替,转动时当示波器上的电压波形电位由4V左右跳变0V时或由0V跳变为4V 左右即是编码器的零位.这个也很方便而且更精确.杆子的长度越长精度则越高,实际使用还是用报警器更方便又省钱.只要用耳朵感知就行了.在编码器的转子与定圈相邻处作好零位标记,然后拆下编码器。 第七步:找一个好的电机,用上述方法测定零位后在电机转轴与处壳相邻处作好电机的机械零位标记第八步:引出电机的U V W动力线,接入一个用可控制的测试端子上,按顺序分别对其中两相通入24V 直流电,通电时间设为2秒左右,观察各个电机最终停止位置(即各相的机械零位位置)其中一个始必与刚才所作的机械零位标记是同一个位置.这就是厂方软件固定的电机机械零位,当然能通过厂方专用编码器测试软件直接更改编码器的初始零位数据就更方便了.如果你只有一台坏掉的伺服电机,你就要根据以上获得的几个相对机械零位逐个测试是不是我们所要的那个位置,这一步由伺服放大器的试运行模式来进行测试.有关资料是必须的,否则不要轻易动手,以

西门子840D主要参数意译

西门子840D主要参数意译西门子840D的主要参数释义 文字一、通道机床数据 20000 通道名称 20050 几何轴-通道轴的分配 20060 通道中的几何轴名称 20070 通道中机床轴号 20080 通道中的通道轴名称 20090 主导主轴的号 20092 主轴旋转的使能/使能取消20094 轴运行的M运行(西门子模式) 20095 轴运行的M功能(外部模式) 20096 T,M 刀具地址代号改变 20098 在MMC上显示轴 20100 带面对轴功能的几何轴 20108 事件驱动程序调用的设置 20109 Prog-Events 的属性 20110 RESET复位时的基本功能设置20112 NC启动的基本功能设置 20114 方式改变中断了MDI 20116 带读限制的中断程序关闭 20117 带信号的中断程序关闭 20118 几何轴改变自动使能 20120 复位时刀具生效 20121 复位的预选刀具 20122 RESET复位/启动和TC时刀具生效 20123 RESET时$P_USEKT 的预选值20124 刀具夹持装置号 20126 RESET复位时刀架生效20128 换刀在搜索中 20130 RESET复位时刀沿生效 20132 有效总偏差复位 20140 用复位健使转换生效。 20150 G代码组的初始设定 20152 G代码组复位 20154 G代码组的初始设定 20156 外部G 组复位方式 20160 C 样条程序块的数量 20170 COMPRESS压缩的最大程序 块长度 20172 COMPRESSION压缩方式计 算的最大路径进给率 20180 带刀架的旋转轴增量 20182 带刀架的旋转轴偏置 20184 零件偏置的基本FRAME号 20200 倒角/圆角的空程序段 20201 斜面圆整行为 20202 有/无带SA的传输运动程序 块数量 20204 在趋近/回退时的方向反转 20210 带TRC的补偿程序块的最大 角度 20220 DISC的最大值 20230 带TRC的插值计算的最大角 度 20240 带TRC的程序段轮廓计算 20250 有/无带TR的传输运动程序 块数量 20252 带刀具补偿的最大程序块数 量 20254 在线刀具补偿使能 20256 多项式插值是可能的 20260 对样条插补的速度控制 20262 执行SPLINE(样条)时路径速度 出错 20270 没有程序的初始位置边沿 20272 不带编程的初始位置总校验 20310 刀具管理功能有效 20320 刀架中刀具的时间监控 20350 激活刀具监控 20360 刀具参数的定义 20380 带G43 / G44的刀具补偿模式 20382 刀具补偿的活动 20384 从动轴刀具长度补偿模拟 20390 温度补偿激活 20392 刀具长度温度补偿的最大值 20396 在刀具方向DRF偏置 20400 预处理随后程序块的速度 20430 预处理倍率速度字符的数量 20440 程序预处理状态速度特征的倍率 20450 程序块循环时间的释放系数 20455 预测未来的特殊功能 20460 预见功能的平滑系数 20462 带编程进给的进给率 20465 轨迹动态进给率的匹配 20470 轮廓编程精度 20480 带G64x的平滑特性 20482 压缩机的方式 20484 压缩机功率 20490 G641/G642不受倍率系数约束 20500 固定速度的最小时间

电控柜技术规范书

Xxxxxxxxxxxxx XXXXXXXXXXXXXXX项目 电控柜 技术规范书

目录1.总则 2.基本技术参数及要求 3.供货范围 4.技术资料和交付进度 5. 监造、检验/试验和性能验收试验 6.技术服务和设计联络 7 .分包与外购 8 .差异表

1、总则 1.1 一般要求 1.1.1 本技术规范适用于xxxxxxxxx限公司XXXXXXXXXXXXXXX项目。本技术规范详细的说明了电控柜及其附属设备的功能、设计、结构、性能、安装和试验等方面的技术要求。 1.1.2 本技术规范阐明了电控柜的最低技术要求。卖方提供的设备在技术上应是成熟的、先进的和可靠的,要求产品工艺精湛、功能完善、稳定性高、维护方便,完全符合技术要求。适用于交流额定电压400V、额定频率50HZ的厂用电系统、是完整的成套设备,在符合使用环境条件情况下,接通电源即可使用。 1.1.3卖方提供的设备是完全符合工业标准及规范要求的优质产品。 1.1.4 卖方保证提供的低压电控柜产品须在国内通过国家检测中心型式试验,并获得《3C中国国家强制性认证》CCC认证证书,产品在国内大中型项目中可靠运行。 1.1.5 卖方应仔细阅读招标文件,包括商务和技术部分的所有规定。由卖方提供的设备的技术规范应与本技术规范书中规定的要求相一致。 1.1.6 本规范书提出了对电控柜本体及其附属设备的技术参数、性能、结构、试验等方面的技术要求。 1.1.7本规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,卖方应提供符合GB和IEC最新版本的标准及本规范书的优质产品。 1.1.8 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备完全符合本规范书的要求。如有异议,应以“对规范书的意见和同规范书的差异”为标题的专门章节加以详细描述。 1.1.9 规范书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。 1.1.10 规范书经供、需双方确认后,作为合同的附件,与合同正文具有同等的法律效力。 1.1.11 本规范书未尽事宜,由买方和卖方在合同技术谈判时双方协商确定。 1.2 工作范围 1.2.1本技术规范的使用范围仅限于本工程所订电控柜(简称低压电控柜或电控柜)。其中包括电控柜本体及其辅助设备的功能设计、结构、性能、安装和试验等方面的技术要求,以及供货和现场技术服务。 1.2.2 合同签订后,卖方应在三天内,向买方提出一个详尽的生产计划,包括电控柜设计、材料采购、设备制造、厂内测试以及运输等项的详情,以确定每部分工作及其进度。 1.2.3 如有延误,卖方应及时将延误交货的原因、后果及采取的补救措施等,向买方加以说明。 1.3主要标准和规范 1.3.1 合同中所有设备、备品备件,包括卖方自其它单位获得的所有附件和设备,除本合同中规定的技术参数和要求外,其余均遵照最新版本的国家标准(GB或GB/T)国际电工委员会标准(IEC)及国际单位制(SI)。

西门子变频器基本参数设置

6SE70调试基本参数设置 恢复缺省设置 P053=6 允许参数存取 6:允许通过PMU和串行接口OP1S变更参数 P060=2 固定设置菜单 P366=0 0:具有PMU的标准设置 1:具有OP1S的标准设置 P970=0 参数复位 参数设置P060=5 系统设置菜单 P071= 装置输入电压 P095=10 异步/同步电机,国际标准 P100= 1:V/f控制 3:无测速机的速度控制 4:有测速机的速度控制 5:转矩控制 P101= 电机额定电压 P102= 电机额定电流 P103= 电机励磁电流,如果此值未知,设P103=0 当离开系统设置,此值自动计算。 P104= 电机额定功率因数 P108= 电机额定转速 P109= 电机级对数 P113= 电机额定转矩 P114=3 3:高强度冲击系统(在:P100=3,4,5时设置)P115=1 计算电机模型 参数值P350-P354设定到额定值 P130= 10:无脉冲编码器 11:脉冲编码器 P151= 脉冲编码器每转的脉冲数 P330= 0:线性(恒转矩) 1:抛物线特性(风机/泵) P384.02= 电机负载限制 P452= % 正向旋转时的最大频率或速度 P453= % 反向旋转时的最大频率或速度 数值参考P352和P353 P060=1 回到参数菜单 P128= 最大输出电流 P462= 上升时间 P464= 下降时间 P115=2 静止状态电机辩识(按下P键后,20S之内合闸)P115=4 电机模型空载测量(按下P键后,20S之内合闸)

6SE70 变频装置调试步骤 一.内控参数设定 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0 P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手 册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障 1.4 补充参数设定如下 P128=最大输出电流A P571.1=6 PMU 正转 P572.1=7 PMU 反转

配电柜柜体钣金参数标准

非标控制盘柜钣金技术参数标准一、项目概况: □室内□室外 三、外形尺寸:(见附表二) □自立式□壁挂式□并联式□仿威图 五、材质说明: 1)柜体: □ 1.5mm冷板□ 2.0mm冷板□ 2.5mm冷板 □ 1.5mm不锈钢□ 2.0mm不锈钢□其它___________ 2)安装板: □ 1.5mm冷板□ 2.0mm冷板□ 2.5mm冷板 □ 1.5mm热锌□ 2.0mm热锌□ 2.5mm热锌3)其它附件: □ 1.5mm冷板□ 2.0mm冷板□ 2.5mm冷板 □ 1.5mm不锈钢□ 2.0mm不锈钢□其它___________ 六、表面处理: 1)柜体及附件表面处理: ①喷粉形式: □平纹□橘纹□不喷□其它__________

②喷粉颜色: □ RAL7035 □ 5Y7/1 □其它________________ 2)安装板: □冷板镀白锌□锌板(边缘防锈处理)□其它__________________ 七、结构: 1)吊耳:□ 2个□ 4个□无 2)通风系统:□百叶窗□风机开圆孔□风机开方孔□无 3)出线方式:□底板小圆孔□底板大方孔加挡板□其它_____________ 4)底座样式: □无□柜体一体式□板材折弯焊接 □仿威图底座(高度:□ 80mm □ 100mm □ 150mm) □角钢焊接式 ①角钢规格 □ 40*40*3 □ 40*40*4 □ 40*40*5 □ 50*50*4 □ 50*50*5 ②底座高度□ 200mm □ 300mm □ 400mm □ 500mm □ 600mm □槽钢钢焊接式 槽钢规格□ 8# (80*43*43)□ 10# (100*48*48)□ 16# (160*65*65)5)柜门:□单门□双门□单层门□双层门□后门 6)框架:□角钢□扁钢□型材□无 7)其它可选结构: □防雨顶盖□出线孔橡胶圈□柜内照明系统支架□墙壁挂架 □门内侧加强筋□门内侧资料框□底座固定孔和柜体固定孔 八、防护等级:(见附表一) 柜体外壳要求防护等级为: □ IP54 □ IP53 □ IP52 □ IP44 □ IP43 □ IP42 □其它________ 九、附件: 1)锁具: ①品牌:□生久□星本□普通 ②类型:□平面锁□连杆锁□把手锁□圆柱锁□面板锁□搭扣 2)铰链: ①品牌:□生久□星本□普通②类型:□ 90°□ 110°□ 130°□ 180°□其它______ 附表一:柜体IP防护等级各要素及含义

旋转编码器工作方式图解

旋转编码器 旋转编码器是由光栅盘(又叫分度码盘)和光电检测装置(又叫接收器)组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光栅盘与电机同轴,电机旋转时,光栅盘与电机同速旋转,发光二极管垂直照射光栅盘,把光栅盘图像投射到由光敏元件构成的光电检测装置(接收器)上,光栅盘转动所产生的光变化经转换后以相应的脉冲信号的变化输出。 编码器码盘的材料有玻璃、金属、塑料等。玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高。金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性也比玻璃的差一个数量级。塑料码盘成本低廉,但精度、热稳定性、寿命均要差一些。 编码器以信号原理来分,有增量式编码器(SPC)和绝对式编码器(APC),顾名思义,绝对式编码器可以记录编码器在一个绝对坐标系上的位置,而增量式编码器可以输出编码器从预定义的起始位置发生的增量变化。增量式编码器需要使用额外的电子设备(通常是PLC、计数器或变频器)以进行脉冲计数,并将脉冲数据转换为速度或运动数据,而绝对式编码器可产生能够识别绝对位置的数字信号。综上所述,增量式编码器通常更适用于低性能的简单应用,而绝对式编码器则是更为复杂的关键应用的最佳选择--这些应用具有更高的速度和位置控制要求。输出类型取决于具体应用。 一:增量式旋转编码器工作原理 增量式旋转编码器通过两个光敏接收管来转化角度码盘的时序和相位关系,得到角度码盘角度位移量的增加(正方向)或减少(负方向)。

增量式旋转编码器的工作原理如下图所示。 图中A、B两点的间距为S2,分别对应两个光敏接收管,角度码盘的光栅间距分别为S0和S1。 当角度码盘匀速转动时,可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理,当角度码盘变速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为: 我们把当前的A、B输出值保存起来,与下一个到来的A、B输出值做比较,就可以得出角度码盘转动的方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,再除以所用的时间,就得到此次角度码盘运动的角速度。 S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。

绝对值编码器调试说明书

绝对值编码器调试说明书 编辑人:章晶 一.绝对值编码器调试安全注意事项 1. 电池装上后不能拔下或松掉,特别是绝对值原点设定后,否则会造成绝对值编码器的读数乱掉,造成撞机等事故。 2. 绝对值原点设置前,必须松开联轴器进行定位和重复定位测试,观察电池记忆绝对值坐标的稳定性。 3. 绝对值编码器装机后,必须测试电机运转的正反向及编码器的读数方向,防止撞机事件。 4. 设置完绝对值原点后,由于绝对值方案没有硬限位,必须先设定好各轴软限位保护,防止工作台飞出,造成人员伤亡。 二.绝对值编码器调试步骤 1. 开启绝对值编码器模式 先设置X轴系统参数->DspB0->DspB0-50->将261参数设置为0,如图1所示。 图1 再设置Y轴系统参数->DspB0->DspB0-51->将381参数设置为0,如图2所示。

图2 最后设置Z轴系统参数->DspB0->DspB0-52->将501参数设置为0,如图3示。 图3 2. 绝对值编码器的初始化 1). 先在伺服驱动器端编码器位置装上电池,然后松开X、Y、Z轴联轴器。 2). 第一次设定绝对值编码器出现A.810报警,连接SigmaWin软件,选择安装->绝对值编码器设定->绝对值编码器复位->然后一直按确定,直到完成,如图4所示。依此初始化X、Y、Z轴,然后断电重启伺服驱动器,此时报警清除。

图4 3. 绝对值编码器机床坐标值的定位测试与重复定位测试 1). 系统与伺服都上电,记录此时的机床坐标,然后将伺服断电,等候5~10分钟,再上电,记录此时的机床坐标,对比上次的机床坐标看有无变化。如此重复3~5次。 2). 伺服断电,将X、Y、Z轴手动正向转动,伺服上电,记录此时的机床坐标是否往正方向运动了。然后伺服断电,等候5~10分钟,再上电,记录此时的机床坐标,对比上次的机床坐标看有无变化。再伺服断电,将X、Y、Z轴手动正向转动,伺服上电,记录此时的机床坐标是否往正方向运动了,如此重复3~5次。 3). 伺服断电,将X、Y、Z轴手动反向转动,伺服上电,记录此时的机床坐标是否往反方向运动了。然后伺服断电,等候5~10分钟,再上电,记录此时的机床坐标,对比上次的机床坐标看有无变化。再伺服断电,将X、Y、Z轴手动反向转动,伺服上电,记录此时的机床坐标是否往反方向运动了,如此重复3~5次。 4. 绝对值编码器机床坐标值的装机测试 1). 连上联轴器,将X、Y、Z轴往正方向、反方向手动移动,观察X、Y、Z各轴移动方向是否正确。 2). 观察编码器读数方向是否正确,如读数方向反了,则设置DSP系统参数修改。X轴参数->DspB0->DspB0-1->将06参数设置为0改为1或者1改为0。Y轴参数->DspB0->DspB0-1->将07参数设置为0改为1或者1改为0。Z轴参数->DspB0->DspB0-1->将08参数设置为0改为1或者1改为0。5.绝对值原点的设置 1). 先将X、Y、Z各轴软限位设定范围改大,保证各轴移动到两端时不出现超软限位报警。 2). 将X、Y、Z移动到一端,绝对坐标清零,然后移动到另一端,分别记录X、Y、Z的最大可用行程。 3). 将X、Y、Z移动到机床坐标最大值端,然后移动到需要设定的机床坐标零点位置,记录此时的X、Y、Z各轴机床坐标,将其值置反,去掉小数点后分别输入到X轴如图5所示的DspB0-50中参数359、Y轴如图6所示的DspB0-51中参数479、Z轴如图7所示的DspB0-52中参数599.

相关主题
文本预览
相关文档 最新文档