当前位置:文档之家› 芳纶纤维复合材料

芳纶纤维复合材料

芳纶纤维复合材料
芳纶纤维复合材料

绵阳职业技术学院

材料系

先进复合材料成型工艺

芳纶纤维增强的先进复合材料制品

目录

1 芳纶纤维增强的先进复合材料的应用 (1)

1.1 概况 (1)

1.2 芳纶品种及性能 (1)

1.3 芳纶纤维产品形态及复合材料的成型方法 (3)

1.4 芳纶纤维复合材料的应用 (3)

2 原材料 (5)

2.1 聚氨酯树脂 (5)

2.2 芳纶纤维 (7)

3 制作工艺 (8)

3.1成形方法的选择 (8)

3.2 芳纶1313 (10)

4 修补及性能检测 (10)

4.1 缺陷 (10)

4.2 芳纶表面改性 (10)

5 参考文献 (13)

先进复合材料成型工艺

芳纶纤维增强的先进复合材料制品

1 芳纶纤维增强的先进复合材料的应用

1.1 概况

目前,先进复合材料的增强材料主要是S高强玻璃纤维非碳纤维和芳纶纤维。前两者介绍文章较多,本文主要针对芳纶复合材料及应用情况作概括介绍。

芳纶纤维是芳香族聚酰胺类纤维的通称。它是一种强度高、模量高、低密度、耐折、耐磨性好的人工合成的有机纤维。据了解,现在美国、荷兰、日本、德国、法国和俄罗斯等国都在开发芳纶纤维。我国也进行了这方面研制并取得了一定成绩。

美国杜邦公司开发的芳纷纤维,商品名“凯芙拉”(K velar)有多种规格出售,年产量已达2t。荷兰阿克苏(AKZO)公司研制的芳纶纤维,商品名“特瓦纶”(Twaron),年产量在5000t以上。日本帝人公司开发的共聚芳纶纤维,商品名“太库诺拉”,年产量为500t以上。德国赫斯特公司(HOECHST)生产芳纶纤维年产量为150t。我国1981年研制成功芳纶I,1985年研制成功芳纶Ⅱ,1994年北京燕山石化公司研究院研制成功溶致液晶全芳香族聚酰胺(PPTA),通过专家鉴定,为今后中石、工业化生产开辟了途径。

在世界范围内,芳纶纤维正以年增长率20%左右的速度发展,并从单一军用向民用转移。芳纶纤维用于汽车及防护用品方面占68%,用于造船业达21%,其余为航空、航天及军用。

1.2 芳纶品种及性能

芳纶纤维,因选择原料的不同及合成工艺不同,又可分为间位芳香族聚酰胺纤维,商品名为“欧梅克斯”(Nomex)对位芳香族聚酰胺纤维,商品名“凯芙拉”(Kevlar)和芳香族聚酰胺共聚纤维,商品名“太库诺拉”等。表1将具有代表性的“凯芙拉”纤维和我国研制的芳纶I、芳纶Ⅱ主要性能列出,同时与S高强玻璃纤维及碳纤维进行比较。

从表1中可以发现芳纶纤维密度最小,拉伸强度与S2玻璃纤维和碳纤维接近,拉伸模量居中。此外,芳纶纤维的热稳定性好,可在180℃下长期使用,短期可耐300℃,对强度无大的影响。在-170℃下也不会变脆,仍保持其性能。芳纶纤维的力学性能在有机纤维中是非常突出的,与无机纤维比也不逊色,芳纶纤维除强酸、强碱外,几乎不受有机溶剂、油类影响。但芳纶纤维对紫外线敏感, 若长期暴露在阳光下,其强度会有很大的损失,因此,在使用中应加保护层。

1

表1芳纶纤维主要品种与S高强玻纤、碳纤维性能比较纤维名称密度(g/cm3)拉伸强度(MPa)拉伸模量(MPa)延伸率(%)Nomex 1.38 6471 17052 22 Kevlar 1.44 2940 71736 3.6 Kevlar-29 1.44 2940 71736 3.6 Kevlar-49 1.45 2842 108780 2.4 Kevlar-119 1.44 3038 54586 4.4 Kevlar-129 1.44 3332 96530 3.3 Kevlar-149 1.47 2352 144060 1.5 Kevlar-100 1.44 2744 60368 3.9

芳纶Ⅰ 1.465 2744 88200 1.8

芳纶Ⅱ 1.44 2548 147000 2.0

S2高强玻纤 2.54 2940 81340 -

碳纤维T300 1.75 2744 225400 1.2

表2芳纶纤维、碳纤维、E玻纤树脂浸渍纱带性能

测试项目密度(g/cm3)拉伸强度(MPa)拉伸模量(MPa)延伸率(%)Kevlar-29 1.44 3616 82320 4.4 Kevlar-49 1.45 3616 124460 2.9

碳纤维T300 1.75 3097 220500 1.25

E玻纤 2.50 2411 68600 1.5

表3芳纶纤维、碳纤维、E玻纤单向纤维板性能

测试项目Kevlar-49 碳纤维T300 E玻纤

密度(g/cm3) 1.38 1.52 2.07

拉伸强度0。(MPa) 90。(MPa)1382

27.4

1235

34.3

1098

41.2

压缩强度0。(MPa) 90。(MPa)274

137

1098

137

588

137

层间剪切强度(MPa)68.6 98.0 78.4 备注:单向纤维板树脂为环氧V f=60%,0。为纤维方向

芳纶纤维作为复合材料的增强材料性能优良。表2列出芳纶纤维、碳纤维和E玻璃纤维的树脂浸渍纱带性能,表3列出单向纤维板性能。

国内已有对芳纶增强丁腈橡胶、环氧树脂的研究报道。如有研究做出的芳纶/环氧复合材料

2

与常规材料力学性能的比较[1-2]。

表4芳纶/环氧复合材料与常规材料力学性能的比较

材料

密度

(g/cm3)

拉伸强度

(GPa)

比强度

(1x107mm)

拉伸模量

(GPa)

比模量

(1x109mm)

芳纶/环氧 2.1 1.6 7.5 220 10.5

钢7.8 1.4 1.8 210 2.7

铝合金 2.8 0.5 1.7 77 2.8

钛合金 4.5 1.0 2.2 110 2.4

尼龙6 1.2 0.1 0.1 3 0.02

1.3 芳纶纤维产品形态及复合材料的成型方法

芳纶纤维和玻璃纤维一样,产品形态有有捻纱、无捻粗纱,各种规格布、带、毡及短切原丝等。常与芳纶纤维匹配的树脂有环氧、酚醛、不饱和聚脂、乙烯基脂、聚酰亚胺等,近年来还与尼龙、PBT等复合使用。成型方法也和玻璃钢等成型方法一样,有缠绕法、手糊法、预浸渍法、真空袋法、加压法以及注射法等,可根据需要选择。

1.4 芳纶纤维复合材料的应用

1.4.1 在航空、航天、军需方面的应用

芳纶纤维可制作大型飞机的二次结构材料,如机舱门、窗、整流罩体表面、机翼有关部件。也可制机内天花板、隔板、舱壁、行李架、座椅等。采用芳纶纤维复合材料可以减轻飞机自重30%左右。如L一1011三星式客机总的芳纶纤维复合材料用量达1135kg,使机重减轻365kg;波音757、767使用芳纶纤维复合材料,减轻机重454kg;DHC-7短程飞机减轻机重91kg。S-76商用直升机的外蒙皮使用芳纶复合材料已达50%;喷气式教练机T-4也采用芳纶纤维复合材料。芳纶纤维复合材料可制造火箭发动机壳体、压力容器、宇宙飞船驾驶舱等。芳纶纤维复合材料还可制造坦克、装甲车、飞机、潜艇的防弹板和头盔及防弹衣等。

1.4.2 在造船方面的应用

芳纶纤维复合材料可制造快艇、帆船、赛艇、渔船、独木舟等。采用芳纶纤维复合材料造船,船自重比玻璃钢和铝都好,船体可减轻3O%左右,节约燃料30%以上,可相应增加航程。由于芳纶纤维复合材料具有吸收振动及承受连续冲击的能力,船航行稳,使人感到安静、舒适。

1.4.3 在体育器材方面的应用

芳纶复合材料可用来制造高尔夫球棒、网球拍、滑雪橇、雪车、钓鱼杆、弓、标枪等。

1.4.4 在汽车方面的应用

芳纶纤维可取代石棉,因而可降低对环境和人体健康的危害,它可制造刹车片、离合器、整流器、引擎垫片、汽车车身。尤其赛车可减轻车重,提高强度,增加车速。

1.4.5 在建筑方面的应用

芳纶纤维复合材料在建筑领域越来越受到重视。芳纶纤维可取代石棉用来增强水泥,可提供轻结构、高强度构件,并防止水泥制品开裂。加拿大蒙特楼市奥运体育馆采用芳纶纤维复合材料制成

3

的可伸缩性屋顶,面积达5600m2,具有抗强风及承受大雪负荷的强度。近年来,国外正在开发芳纶纤维增强胶粘层压木梁的技术,这种增强材料称作FiRptm。它的出现意味着用低级木材可取代高级、贵重木材,而且安全、经济。这种增强胶粘层压梁比钢筋水泥构件还经济。目前,美国、德国、日本、澳大利亚、加拿大等国都在研究采用,有广阔的发展前景。

1.4.6芳纶在信息技术产业上的应用

由于IT技术的发展[3],光纤铺设量猛增,全球光纤总长度2001年为1.6亿km,到2003年增至2.0亿km。对位芳纶可用作光缆中的“张力构件(Fension member) "(或称芯捍),有了这种具有高模量性能的张力构件,可保护细小而脆弱的光纤在受到拉力时不致伸长,从而不使光传输性能受到损害。目前用于此张力构件的对位芳纶约3000-4000t,据业者预测,其实际短缺量约

4000-5000t。[4]

1.4.7 其他方面的应用

芳纶是用于增强子午线轮胎及机械用橡胶制品,如软管、输送带及动力传送皮带而专门设计制造的品种。芳纶纤维还可作增强橡胶的材料,可制轮胎、传动带、胶管、绳索等。[5]中国芳纶纤维研制始于20世纪70年代末,80年代中期完成小试和中试鉴定。芳纶1414接近Kevlar-49的水平。由于芳纶纤维价格颇高,目前国内还只有航空、航天、船舶及体育器械等系统使用,且根据最终产品用途不同,成型工艺和加工方法亦不完全一致,其应用领域随着中国高新技术的发展会具有广阔的应用前景。

4

2 原材料

2.1 聚氨酯树脂

2.1.1 聚氨酯化学和物理性质

聚氨酯(PU)树脂是由异氰酸酯与多元醇反应制成的一种具有氨基甲酸酯链段重复结构单元的聚合物。有机异氰酸酯化合物含有高度不饱和键的异氰酸醋基团(NCO,结构式(-N=C=O),因而化学性质非常活泼。

由于氮和氧原子上的电子云密度较大,其电负性较大,NCO基团的氧原子电负性最大,是亲核中心,可吸引含活性氢化物分子上的氢原子而生成轻基,但不饱和碳原子的轻基不稳定,重排成为氨基甲酸酯(若反应物为醇)或脲(若反应物为胺)。碳原子电子云密度最低,呈较强的正电性,为亲电中心,易受到亲核试剂的进攻。异氰酸酯与活泼氢化合物的反应,就是由于活泼氢化合物分子中

:

的亲核中心进攻NCO基的碳原子而引起的[6]。反应机理如下

聚氨酯是由长链原料和短链原料聚合而成的,是一种嵌段聚合物。一般长链二元醇构成软段,而硬段则是由多异氰酸酯和扩链剂构成。软段和硬段的种类影响着材料的软硬程度、强度等性能。

影响各种聚氨酯制品性能的因素很多,一般影响性能的基本因素为:基团的内聚能、氢键、结晶性、交联度、分子量、温度。软段在聚氨酯中占大部分,软段的分子量对聚氨酯的力学性能有影响,一般来说,假定聚氨酯分子量相同,其软段若为聚酯,则聚氨醋的强度随着聚酯二醇分子量的增加而提高,软段的结晶性的提高对聚氨酯制品的性能是有利的。异氰酸酯的结构影响聚氨酯的刚性。

聚氨酯材料是一类性能较为全面的材料,具有良好的物理机械性能、优异的耐候性、弹性及软硬度随温度变化不太大等优点,在涂料、胶粘剂及油墨等许多领域都得到了广泛的应用。聚氨酯弹性体是一种介于橡胶与塑料之间的高分子材料,它在具有一定弹性的同时,还有很好的耐磨、耐温和抗撕裂性能,如将聚氨酯与无机非金属硬质填料结合制成复合材料磨机衬板,既可以增加材料的

5

耐磨性,又可缓解研磨体对衬板的冲击力,从而提高衬板的使用寿命。同时,随着硬质填料的加入,还可大大降低衬板的成本,提高衬板的市场竞争能力。

聚氨酯树脂(Polyurethane Resin)作为一种具有高强度、抗撕裂、耐磨等特性的高分子材料,在日常生活、工农业生产、医学等领域广泛应用。聚氨酯制品品种繁多、形态各异,它广泛用于机电、船舶、航空、车辆、土木建筑、轻工以及纺织等部门。

聚氨酯弹性体用作滚筒、传送带、软管、汽车零件、鞋底、合成皮革、电线电缆和医用人工脏器等;软质泡沫体用于车辆、居室、服装的衬垫,硬质泡沫体用作隔热、吸音、包装、绝缘以及低发泡合成木材,涂料用于高级车辆、家具、木和金属防护,水池水坝和建筑防渗漏材料,以及织物涂层等。胶粘剂对金属、玻璃、陶瓷、皮革、纤维等都有良好的粘着力。此外聚氨酯还可制成乳液、磁性材料等。

2.1.2 全球聚氨酯发展现状与发展趋势

聚氨酯(PU)是世界六大发展的合成材料之一,其工业发展较快,过去五年始终保持6%的年均增长率。就其应用广度而言,已跃居诸种合成材料的首位。可以预料,随着科技的进步及新应用领域的拓展,聚氨酯工业的发展将为人们带来更为便利和舒适的生活。而中国这一具有巨大潜力的市场,在吸收了世界水平的技术和规模装置后,必将成为世界聚氨酯工业发展的动力源。据陶氏化学公司公布的数据,在20世纪70年代,全球聚氨酯年产量总计只有110万吨,而进人21世纪已超过了900万吨,增长了约9倍。在我国,近10年的增长速度也大大高于国民生产总值的增长。2000年我国各种聚氨醋产品年产量已近100万吨,比1997年的60多万吨增长了约50% 。

表5 世界各地聚氨酯的销量

1980年1985年1990年1999年消耗量比例消耗量比例消耗量比例消耗量比例

北美洲107 35.4 170 39.0 220 37.5 254 33.0

欧洲99 32.8 133 30.4 180 30.7 246 32.0

亚太地区40 13.2 57 13.0 73 12.4 177 23.0

拉丁美洲21 7.0 29 6.6 43 7.3 46 6.0

非洲等35 11.6 48 11.0 71 12.1 46 6.0

合计302 100 437 100 587 100 769 100 注: 1: 1999年所列数据为拜耳公司统计

2:该数据包括东欧国家

3:非洲指非洲、中东及东欧等地区,但该项1999年数据不包括东欧等国家

从表5[7]中趋势可以看出,进入20世纪90年代以来,亚太地区聚氨酯工业有了较快的发展,尤其是日本,发展更快。我国的聚氨酯工业起源于20世纪50年代末期,至今已有40多年的发展历史。我国聚氨酯工业分基本原料、助剂、制品和加工机械等部分。基本原料分异氰酸酯(TDI, MDI 等)、多元醇(聚醚和聚酯多元醇)等,制品主要分软泡、硬泡、弹性体(包括革、鞋树脂制品和纤维)、涂料及胶粘剂。1998年到2005年我国聚氨酯总产量将由77万吨增加到140万吨左右,平均年增长率约10%,按此预测到2015年我国聚氨酯总产量将达到260万吨[8-9]。

6

国外聚氨酯工业总的发展趋势概括如下:(l)基本原料生产的特大规模化。(2)聚氨酯技术向适应环境保护、安全卫生、资源回收等方向发展,主要包括替代破坏臭氧层的CFC发泡剂技术、降低VOC(挥发性有机化合物)散发技术、降低游离TDI等有害物质的技术等。(3)聚氨酯CASE(涂料、胶粘剂、密封剂、弹性体、灌封料)发展明显快于泡沫产品,是另一趋势。近年来国外聚氨酯CASE 产品的产量以6%- 10%的速度增长,是泡沫增长速度的2倍以上,且向高性能、功能化和进一步扩大应用领域方向发展。在CASE产品方面,国内的发展水平与国外差距较大,其中许多重要制品、中间体(预聚体、树脂等)多半是靠进口。

2.2 芳纶纤维

2.2.1 芳纶纤维化学和物理性质

芳纶纤维是由聚对苯二甲酰对苯二胺(PPDA)的液晶溶液经干喷湿纺工艺成型而制得,按分子结构称为“芳香聚酰胺纤维”,美国商品名为Kevlar纤维。早在1968年美国杜邦公司就开始了芳香聚酰胺树脂的合成及成纤工艺研究,于1972年杜邦公司实现了聚对苯二甲酰对苯二胺纤维的工业化生产,称为B纤维,规模为2000吨/年,1973年改名为Kevlar纤维。

:

聚合物制备

以上合成时用的酰胺溶剂包括:六甲基磷酰二胺,N-甲基毗咯烷酮和二甲替乙酰胺(DMA)[10]。

从芳纶的分子链结构来看,它是由苯环和酰胺基按一定规律排列而成。分子链具有相当的规整性,致使芳纶纤维具有较高结晶性。酰胺键可在分子链之间形成氢键。芳纶分子链中的苯环及分子间的氢键结构使得分子链难以内旋转,分子链不能折叠,呈伸展的刚性棒结构,分子链之间可排列得十分紧密,从而使纤维具有很高的模量和强度。这种刚性分子结构还赋予芳纶纤维高温下的尺寸稳定性能。芳纶分子沿纤维方向是较强的共价键,而纤维横向是较弱的氢键。因此芳纶纤维在力学性能上是各向异性的,芳纶纤维拉伸断裂时纵向开裂而劈成许多更细的单丝,横向受压时受压部位会出现一定数量的纵向层。

芳纶是一种由高度取向结晶微区组成的材料,具有一些缺陷和空隙,但没有无定形区。由于分子链段中庞大苯环的位阻作用,酰胺基团较难与其它原子或基团发生反应,具有化学惰性,因而芳纶纤维同基体的粘合性很差,必须进行一定的工艺处理使纤维表面取向降低或增加一定数量的活性基团,如-COOH,-OH,=CO和-NH2等,这些基团可与基体间形成反应性共价键结合,从而提高复合材料的界面剪切强度和剥离强度。

芳纶具有优异的力学性能,抗张强度为280kg/mm2,模量为6480 kg/mm2(kevlar29)和13300 kg/mm2(kevlar49),断裂伸长率为2.3 -4.0%,比重轻(d=1.44g/cm2)而且耐高温(可在250。C以下

7

使用)。

芳纶纤维具有密度小、模量高、强度高、伸长率低等特点。芳纶的这种性质主要由其高结晶、高取向的大分子结构所决定的。它是一种高强度、高模量、低密度的有机纤维,它的强度比碳纤维高,质量比玻璃纤维、碳纤维都轻,热膨胀系数低,抗疲劳性好,具有一定的竞争能力。由于芳纶纤维具有各异性,且压缩强度、剪切强度与其断裂强度相比要低得多;而纤维的弯曲是由弯曲、压缩及拉伸三方面性能决定的,因此芳纶的弯曲强度比拉伸强度要差得多。由于芳纶纤维分子取向度高,横向联系弱,从而使其剪切强度弱、扭转疲劳性差。

3 制作工艺

芳纶短纤维增强聚氨醋复合材料成形工艺研究

高分子基复合材料的成形方法有很大的灵活性。根据增强体和基体材料的种类的不同,需要应用不同的制造工艺和方法。高分子基复合材料的主要制造方法按基体材料的不同分为两类。一类是热固性复合材料的制造方法,其中主要有手工成形法,喷涂成形法,压缩成形法(模压成形方法),注射成形法,SMC压缩成形法,RTM成形法(注塑成形法),真空热压成形法,连续缠绕成形法,连续拉挤成形法。另一类是热塑性复合材料的制造方法,类似于热固性复合材料的制造方法,其中主要有压缩成形法,注射成形法,RTM成形法,真空热压成形法,连续缠绕成形法等[ 11]。各种成形法有各自的特点,采用时需根据产品的质量、成本、纤维和树脂的种类来选择合适的成形法。

3.1成形方法的选择

短纤维增强树脂基复合材料的常用的成形方法有:手工成形法、喷涂成形法、注射成形法、压缩成形法和SMC压缩成形法(Compression molding of SMCs )。

手工成形法是高分子基复合材料的制造的最主要的方法。多用于玻璃纤维/聚醋树脂复合材料的产品制造。例如,浴缸、船艇、房屋设备等。手工成形法主要以玻璃纤维布或片材和聚酯树脂为原材料。在根据产品的形状制造的底模上,先涂一层不粘胶或铺一层不粘布或不粘薄膜等,然后铺一层玻璃纤维布,再用刷子或滚轮等工具将树脂涂抹在玻璃纤维布上,使树脂均匀地渗透到玻璃纤维布里。重复此过程直到达到产品要求的厚度。然后将铺层完成后的制品送到固化炉实现固化。喷涂成形法是在人工铺层涂抹成形法上改进的一种成形法。喷涂成形法以长纤维和树脂为原材料,它使用的主要工具是一杆能自动切断纤维并喷出切断的短纤维和树脂的自动化喷枪。它是利用自动化喷枪,将自动切断的短纤维和树脂一起喷涂在底模上来实现积层。与其他的制造方法相比,手工成形和喷涂成形的特点是设备、工具等成本低,能适应各种形状产品的成形。但是由于以人工为主生产效率低,不易实行大量生产。

注射成形法是先将低模固定、预热,然后利用注射机械在一定的压力条件下通过一注入口将增强材料的纤维和树脂等一起挤压入模型内使之成形。注射成形法的特点是易于实现自动化,易于实现大批生产,但制造的产品的纤维含有量不高。此外,由于纤维和树脂的混合物在模型内的流动引起纤维的排列,产品的强度分布会不均匀。注射机的注射口由于和纤维的摩擦易于磨损。

压缩成形法是将增强材料和树脂等一起先放入底模,然后加压,加热使之成形、固化的一种复

8

9

合材料制造方法。

压缩成形的特点是可以制造大型产品,含纤维量高的产品,高强度产品,可以用于制造热固性材料和热塑性材料,短纤维增强复合材料制品用的较多。

SMC 压缩成形法与前述的成形方法最大的不同点是使用的原材料不是纤维和树脂,而是SMC 预制片。SMC 是Sheet Molding Compound 的缩写,是指经热固性树脂浸渍后的、未固化的玻璃纤维/树脂预制片。一般有三种预制片:短纤维随机分布的预制片,短纤维单方向分布的预制片,长纤维单方向分布的预制片。SMC 压缩成形法实际上是分两步来实现的一种成形法:第一步是未固化的玻璃纤维/树脂预制片的制作;第二步是SMC 压缩成形。SMC 压缩成形法的特点是易于实现自动化、适于大量生产、产品尺寸精度高、表面光滑、强度较高。结合SMC 压缩成形法特点,以压缩成形工艺制备复合材料。拟采用的成形工艺分三步:

第一步是预成形片的制备,将按配方合成的液态聚氨醋预聚体与芳纶短纤维于室温下混合均匀,加入扩链剂混合均匀,涂敷预成形于模具中,于8 0 0C 下预固化数小时,制成预成形片。

第二步是模具准备,清理模具,对模具做不粘处理,并将其加热到一定温度。[12]

第三步将预成形片制入模具,加温加压,固化。基本流程工艺如下:

底模的制作

不粘处理 热压

脱模

放入纤维和树脂

固化

图3.1 压缩法成形的基本制造工艺

预成形片的制备

模具准备

放入预成形片

热压 固化

脱模

3.3 实验流程工艺

3.2 芳纶1313

工艺:一步法工艺,即低温溶液间歇聚合,原液经过过滤后直接进行湿法纺丝,水洗后干燥,切断后打包。

性能:耐高温:分解温度371℃;阻燃性:极限氧指数29;断裂强度:4-5 g/d;初始模量:60-120g/d。用途:高温过滤材料;绝缘材料;消防服、赛车服;高温传送带。②芳纶1414

工艺:两步法工艺,低温溶液连续聚合,聚合物分离后洗涤干燥后用浓硫酸重新溶解,干喷湿法纺丝,纤维经过水洗后干燥,卷绕成形。

性能:耐高温:分解温度500℃;阻燃性:极限氧指数32;高强度:断裂强度20-27g/d;高模量:初始模量600-800g/d。

用途:个体防护:防弹衣、防弹头盔;防弹装甲:装甲战车、运钞车;复合材料:汽车轮胎帘子线;摩擦材料:刹车片;航空航天材料、光缆增强材料。

4 修补及性能检测

4.1 缺陷

由芳纶结构可知,它是一种分子对称性、定向程度和结晶度很高的刚性分子而分子间横向作用较弱;另外,由于分子结构中存在大量不易移动的芳香环,使其分子间的氢键结合较弱,致使横向强度低,分子表面活性基团少,表面极性低,使得在压缩及剪切力作用下容易产生断裂,而且芳纶纤维表面易吸水,导致芳纶纤维与树脂基体结合成的两相界面强度低、层间剪切强度较小,影响了复合材料综合性能的发挥。因此,为了发挥芳纶纤维复合材料的综合性能,通过对纤维进行表面改性[13-14]和选择合适的树脂基体来改善芳纶纤维增强复合材料界面结合情况成为了复合材料学界研究的一个热点。

除此之外,纤维的耐光性差,暴露于可见光和紫外线时会产生光致降解(即力学性能下降和褪色)。用高吸收率材料对Kevlar纤维增强聚合物基复合材料作表面涂层,可以减缓其光致降解;芳纶的溶解性差;抗压强度低;吸湿性强,吸湿后纤维性能变化大,因此应密封保存,在制备复合材料前应增加烘干工序。

鉴于以上原因本文重点讨论近年来关于芳纶复合纤维材料在纤维表面改性和适用树脂基体选择上的研究。

4.2 芳纶表面改性

芳纶纤维的化学结构使得酰胺基团很难树脂的原子或基团发生反应,纤维表面呈现出较大的化学惰性,纤维与树脂的界面结合能较低,粘附性及浸润性很差,两相界面粘结不理想,而载荷又都是通过界面来进行应力传递的,导致复合材料的层间剪切强度低,影响了复合材料综合性能的发挥,限制了它在复合材料中的广泛应用。

芳纶纤维表面改性的主要目的是使纤维表面粗糙度增加或在纤维表面引入一定数量的活性基团(-COOH,-OH,-NH2等)芳纶纤维表面改性技术可分为物理改性和化学改性两类,物理改性所需技术手段较高,本文重点讨论化学改性手段。国内外研究的芳纶表面处理方法很多,但真正实际

10

应用的并不多。在这些方法中,化学表面接枝改性和等离子体改性两种技术是处理效果比较明显的。

4.2.1 物理改性

物理改性法主要有等离子体处理法,超声波浸渍改性法,高能射线法(高能射线法又分为r射线、x射线和高能电子束法),表面涂层法。重点讨论运用较多的等离子体处理法和表面涂层法。

4.2.2 超声波浸渍改性法

超声波浸渍改性法是一种利用超声振动能量来改变物质的结构、状态、功能或加速这些改变的过程的超声波浸渍技术,通过增加纤维表面极性基团的含量和纤维表面粗糙度来提高材料的界面粘结性能,却对纤维损害较小、较有效地提高复合材料力学性能的方法。它对改善树脂基复合材料界面粘结性能的作用主要体现在以下两点:一是在超声作用下,树脂胶液的结构和性能发生变化,有利于提高树脂基体的活性;二是利用超声的振荡来消除胶槽中的气泡,空气以及其它杂物,使胶液能均匀地浸润纤维,从而改善复合材料的界面粘结性能。

4.2.3 表面涂层法

表面涂层法是在芳纶纤维表面涂上柔性树脂,然后与树脂基体复合,有利于芳纶纤维与基体形成良好的粘合界面.该涂层可以钝化裂纹的扩展,增大纤维的拔出长度,从而增加材料的抗破坏能力。

1998年,西安交通大学宋月贤等[15]用不含有机溶剂的水溶液高活性改性环氧树脂(CSJR-2)活化液和预缩合间苯二酚-甲醛树脂(SJR-1)配制的RFL浸渍液处理芳纶帘线,获得了令人满意的黏合活化效果.此活性剂不含有机溶剂,工艺简单,可以避免纤维表面未固化的环氧树脂对人体的侵害。

4.2.4化学改性

化学改性主要包括有表面接枝、表面刻蚀、偶联剂等方法。

4.2.5 表面刻蚀改性

表面刻蚀技术是通过化学试剂处理芳纶,引起纤维表面的酰胺键水解,从而破坏纤维表面的结晶状态,使纤维表面粗化.人们常用酰氯类(甲基丙烯酰氯等)、酸碱类(乙酸酐等)等化学刻蚀剂来处理芳纶。

1989年,希腊Andreopoulos等[16],以及1997年,希腊Tarantili采用甲基丙烯酰氯的CCl4溶液对芳纶进行了处理,一方面,表面粗糙度增加,增大了纤维与基体的啮合,同时除去了弱界面层,增加纤维/基体间的接触面积;另一方面提高了纤维的表面能,使树脂更有效地润湿纤维,因而使改性后的芳纶/环氧复合材料韧性提高8%。

1999年,新加坡Yue[17]采用乙酸酐刻蚀芳纶表面也使界面剪切强度从38 MPa提高到63 MPa,提高了60%,这主要是乙酸酐的作用使纤维表面氧含量增大,从而增大了纤维与基体表面的润湿与结合。

王杨等[18]采用不同浓度的磷酸对芳纶纤维进行处理,酸性物质具有较强的表面氧化和表面刻蚀的能力,当浓度达到20%时,复合材料的界面性能最佳,其层间剪切强度和界面粘结强度分别达到62MPa和60.8MPa,高于未处理纤维的复合材料。

4.2.6表面接枝

11

在芳纶表面进行接枝改性是化学改性方法中研究最多的方法之一。据接枝官能团位置的不同,大致可分为:苯环上的接枝反应和取代芳纶表层分子中酰胺键上氢的接枝反应。

Ou[19]等采用氯丙烯和3-氯丙基三甲氧基硅烷在Kevlar纤维表面接枝改性,研究表明接枝改性改善了Kevlar纤维与高密度聚乙烯间的相容性,提高了Kevlar纤维/木粉/高密度聚乙烯复合材料的综合力学性能。

B.J.Briscoe等[20]采用无水反应路线,成功将丙二醇、烷基、环氧基及三甲基硅烷等基团接枝到芳纶纤维表面,表面接枝后的芳纶纤维与树脂间的接触角、纤维与水及二碘甲烷的粘附作用都明显降低。

12

5 参考文献

[1]Maksimov R D.Plume E.long-lerm creep of hybrid aramid/glass-fiber-reinforccd.plasties[J].Mechanies of Composite Materials,2001,37(4);271-280.

[2]袁金慧,江棂,马家举等.芳纶的应用和发展[J],高科技纤维与应用,2005.30(4);29.

[3]彭涛,叶光斗,对位芳香族聚酰胺纤维及其增强复合材料的发展[J].合成纤维工业;2004,27(6)

[4]谭小红,高性能纤维的发展及其应用[J].纺织科技进展,2004,5;14-16.

[5]毕鸿章,芳纶纤维复合材料及其应用概述[J]。建材工业信息,1996.03:8-9.

[6]李绍雄,刘益军,聚氨酯树脂及其应用[M].北京;化学工业出版社材料科学与工程出版社出版中心,2002;16-17.

[7]翁汉文,我国聚氨酯工业现状和发展展望[J].聚氨酯工业,2001,16(3):2.

[8]翁汉文,聚氨酯工业的最近进展[A],中国聚氨酯工业协会第十一次年会论文集,江苏无锡,2002,10.

[9]蔡建国,中国大陆聚氨酯原材料市场状况浅析[A],中国聚氨酯工业协会第十一次年会论文集,江苏无锡,2002,10.

[10]沃西源,涂彬,夏英伟,芳纶纤维及其复合材料性能与应用研究[J].航天返回与遥感,2005,26(2):50-55.

[11]陈全德,材料成形工程[M].西安.西安交通大学出版社.2000.

[12] 蒋向,邓剑如,芳纶短纤维聚氨酯树脂复合材料成型工艺研究, 湖南大学化学化工学院,长沙,410082:2007,03.

[13] Ju Wu,Xianhua Cheng. Interfacial Studies on the Surface Modified Aramid Fiber Reinforced Epoxy Composites [J]. Journal of Applied Polymer Science,2006,102:4165-4170.

[14] Pieter J.de Lange,Peter G.Akker,Edith Ma’der. Controlled interfacial adhesion of Twaron aramid fibers in composites by the finish formulation[J].Composites Science and Technology,2007,67:2027-035.

[15]宋月贤,郑元锁,袁安国等. 芳纶帘线与NR的粘合性能研究[J]. 橡胶工业,1998 , 45 (11) : 660-662.

[16]Tarantili P A, Andreopoules A G. Mechanical properties of epoxies reinforced with chloridetreated aramid fibers [J]. Journal of Applied Polymer Science,1997,65 (2):267 -276.

[17]Yue C Y, Padmanabhan K. Interfacial studies on surfacemodified Kevlar fiber/epoxy matrix composites[J]. Composites Part B: Engineering, , 1999 ,30(2):205-217.

[18]王杨,李鹏,于运花等. 芳纶纤维的磷酸表面处理及其树脂基体复合材料界面性能[J]. 复合材料学报,2007,3(24):33-37.

[19]Ou Rongxian,Zhao Hui,Sui Shujuan,et al. [J]. Composites:Part A,2010,41:1272-1278.

[20]B. J. Briscoe and D. R. Williams.Chemically Grafted Kevlar Fibers and Their Surface Characterization [J]. Controlled Interphases in Composite Materia1s,1990:67.

13

FRB复合材料

2、FRP复合材料在结构加固工程中应用领域 2.1民用建筑、桥梁及工业厂房 FRP复合材料因其优异的力学性能,在民用建筑及工业厂房的加固中应用很多,主要有:①梁加固。加固的作用包括抗弯和抗剪。在进行抗弯加固时,FRP复合材料的纤维方向与梁的轴向一致,一般贴在梁的受拉侧,已提高梁的承载能力。据有关试验得出,只要该梁不是超筋梁,贴一层AK-60可以提高承载力30%左右,贴两层可以提高40%左右;在进行抗剪加固时,FRP复合材料的纤维方向与梁的轴向垂直; ②板加固。一般对于板的加固净空要求比较高,而且加固后不影响其外观,所以用厚度很薄且柔软的FRP复合材料进行加固是一种理想的选择;③柱加固。芳纶纤维布、玻璃纤维布是比较理想的柱加固材料。因为它们的弹模小,相对于碳纤维(弹模235Gpa),其延性较好;并且,在进行棱角打磨时一般只需要10mm左右,一般不需打磨,而碳纤维则需要30mm左右,若采用芳纶纤维就可以节约很多工时。2.2地铁、隧道 因地铁和隧道是一种在地下工作的结构,所以它的受力与地面结构是不一样的。在洞顶和洞侧,它都有土压力的作用,而且也有净空的要求,所以进行裂缝修补时,传统的加固方法不可行,而用芳纶纤维布(不导电)进行加固维修就可以满足它的各方面要求,因为在地铁或隧道的拱顶或侧壁的裂缝一般是多向且不规则的,这就要求修复材料必须具有良好的抗剪性能,而且还是一种不导电的材料,所以芳纶布在隧道地铁工程中是一种最佳的选择。 2.3烟囱、水塔 由于烟囱水塔这样向高空发展的结构,加固维修特别困难,传统加固方法(如扩大截面法、粘钢法)基本上很难解决这样的问题,而采用轻质高强、耐腐蚀、耐久性能都很好的复合材料(尤其是芳纶纤维)进行加固,就是一种很好的方法。 3、几种加固方法的比较

高性能增强材料——芳纶纤维

高性能增强材料——芳纶纤维 安源 摘要: 芳族聚酰胺纤维由美国杜邦公司于20世纪60年代首先开发并最早实现工业化生产。该产品可以用做增强材料。介绍芳族聚酰胺纤维的发展、性能、制备及其应用。 关键词:芳纶;性能;制备;应用 1 概述 增强材料就像树木中的纤维,混凝土中的钢筋一样,是复合材料的重要组成部分,并起到非常重要的作用。它不仅能使材料显示出较高的抗张强度和刚度,而且能减少收缩,提高热变形温度和低温冲击强度等。复合材料的性能在很大程度上取决于纤维的性能、含量及使用状态。例如在纤维增强复合材料中,纤维是承受载荷的组元,纤维的力学性能决定了复合材料的性能。 芳纶是芳族聚酰胺纤维的通称,主要分为聚对苯二甲酰对苯二胺(PPTA)纤维(芳纶1414)和聚间苯二甲酰间苯二胺(PMIA)纤维(芳纶1313)。美国杜邦公司于20世纪60年代首先开发出芳纶1313和芳纶1414 ,并最早实现工业化生产(商品名分别为Nomex和Kevlar)。1987年推出了KevlarHT、Kevlar68和Kevlar149。1986年荷兰阿克苏(Akzo)公司生产出Twaron纤维; 1987年日本帝人公司生产出Technora纤维。而中国于1972年开始进行芳纶的研制工作,并于1981年通过芳纶14的践定,1985年又通过芳纶1414的鉴定,它们分别相当于美国杜邦公司的Kevlar29和Kevlar49。 2 全球芳纶纤维的发展概况 全球芳纶纤维产能主要集中在日本、美国和欧洲,生产芳纶纤维的公司也较为集中,目前全球从事芳纶纤维生产的厂家主要有5个:美国杜邦公司(Kevlar)、日本帝人公司(Twaron、Technora)、俄罗斯卡明斯克化纤股份公司(SVM、Apmoc、Rusar)和特威尔化纤股份公司(SVM、Apmoc)、韩国科隆公司(Kolon),其他国家或公司仅有少量生产。 2009年,全球芳纶纤维生产能力约9.51万t/a,其中对位芳纶纤维产能约6.61万t/a,杜邦和帝人二家公司产能合计6.15万t/a,占对位芳纶纤维产能的93%;间位芳纶纤维的产能约为2.9万t/a,主要的生产公司仍为杜邦公司,产能为全球总产能的75%以上。预测到2015年全球对位芳纶纤维产能可达11.0万t/a,问位芳纶的产能为5.2万t/a。 2009年全球芳纶纤维的消费量约为7.5万t,其中对位芳纶纤维5.2万t,间位芳纶纤维2.3万t。芳纶纤维的消费区域主要也集中在美国、欧洲和日本。欧洲是世界芳纶纤维的最大消费市场,其消费量占全球总消费量的48%,约为3.6万t;美国消费量占全球36,约2.7万t;日本消费量约占全球11%,约0.8万t;其他地区约0.4万t。随着生产技术的发展以及生产成本的逐步降低,芳纶纤维的消费领域已经逐步从应用于军工和航天领域的特殊材料,发展成为在工业和民用领域有着广泛应用的高性能材料。 3 我国芳纶纤维的基本概况

芳纶纤维国内市场结构简析

然而,我国对位芳纶纤维的研发起步较晚。因技术研发实力等原因,一直未有规模化生产芳纶1414的企业。而今年以来,苏州兆达特纤科技有限公司在建总投资2.6亿元,年产1000吨对位芳纶技术产业化项目的一期年产500 吨对位芳纶于2010年7月投入运行。 目前全球芳纶产能主要集中在日本和美国、欧洲;生产对位芳纶的厂家主要有美国杜邦公司、日本帝人公司和俄罗斯耐热公司等,前两家公司的年产量分别占世界总产量的55%和40%;仅美国Kevlar纤维目前就有十多个牌号,每个牌号又有数十种规格。 中国从20世纪60年代初开始研究开发间位芳纶生产技术,直到2004年,该项技术才得以攻破,烟台氨纶股份有限公司在国内率先实现间位芳纶的工业化生产,打破了国外公司垄断的局面。到2009年,烟台氨纶股份有限公司的间位芳纶生产能力已达到4300t/a,在世界间位芳纶供应商中列居第二位。除烟台氨纶外,中国苏州圣欧、广东彩艳公司也共有1 000t/a 的间位芳纶生产装置投产,使得中国在全球仅有的6个间位芳纶供应商中占据了3席。间位芳纶的国产化大大拉动了上下游产业的发展。在中国纺织工业加工制造优势明显的背景下,全球间位芳纶产业特别是间位芳纶下游加工业出现了明显向中国转移的趋势。 而随着国内市场需求不断扩大,对位芳纶需求量也与日俱增。据统计,我国每年直接和间接进口对位芳纶及相关制品总额达10亿元人民币,进口量达3000吨,年需求量达5000吨~5500吨,市场潜力巨大。在我国,芳纶纤维的主要用途是光纤补强材料,其次为防弹材料领域。 然而,我国对位芳纶纤维的研发起步较晚。因技术研发实力等原因,一直未有规模化生产芳纶1414的企业。而今年以来,苏州兆达特纤科技有限公司在建总投资2.6亿元,年产1000吨对位芳纶技术产业化项目的一期年产500 吨对位芳纶于2010年7月投入运行;河北硅谷化工公司1000t/a芳纶Ⅱ2006年试车投产,其产品芳纶Ⅱ产品命名为特威纶(Teweil un Fibre)并开始销售。 广东彩艳股份公司研制生产的芳纶Ⅲ是杂环共聚酰胺纤维,其力学性能、复合强度、耐温性能均高于芳纶1414,其中复合强度比芳纶1414高30%以上,可以达到5000Mpa;模量高10%,可以达到145-150GPa以上。 中国纺织工业协会于2007年10月15日在上海市组织和主持了艾麦达纤维科技有限公司“100 吨/年对位芳纶纤维制造中试研究”项目鉴定会。 2010年8月20日上午,中国石化“十条龙”科技攻关项目之一——“对位芳纶的力学性能与结构形态的表征“和“百吨级对位芳纶工业化试验装置成套技术开发”项目在仪化通过了由中国石化科技发展部组织的审查。 河南神马集团有限公司2005年10月成立赛尔项目,开始进行对位芳纶纤维的聚合纺丝及其产业化技术研发,并建设了年产500吨对位芳纶纤维生产线。2007年8月,集团打通

芳纶纤维复合材料

绵阳职业技术学院 材料系 先进复合材料成型工艺 芳纶纤维增强的先进复合材料制品

目录 1 芳纶纤维增强的先进复合材料的应用 (1) 1.1 概况 (1) 1.2 芳纶品种及性能 (1) 1.3 芳纶纤维产品形态及复合材料的成型方法 (3) 1.4 芳纶纤维复合材料的应用 (3) 2 原材料 (5) 2.1 聚氨酯树脂 (5) 2.2 芳纶纤维 (7) 3 制作工艺 (8) 3.1成形方法的选择 (8) 3.2 芳纶1313 (10) 4 修补及性能检测 (10) 4.1 缺陷 (10) 4.2 芳纶表面改性 (10) 5 参考文献 (13)

先进复合材料成型工艺 芳纶纤维增强的先进复合材料制品 1 芳纶纤维增强的先进复合材料的应用 1.1 概况 目前,先进复合材料的增强材料主要是S高强玻璃纤维非碳纤维和芳纶纤维。前两者介绍文章较多,本文主要针对芳纶复合材料及应用情况作概括介绍。 芳纶纤维是芳香族聚酰胺类纤维的通称。它是一种强度高、模量高、低密度、耐折、耐磨性好的人工合成的有机纤维。据了解,现在美国、荷兰、日本、德国、法国和俄罗斯等国都在开发芳纶纤维。我国也进行了这方面研制并取得了一定成绩。 美国杜邦公司开发的芳纷纤维,商品名“凯芙拉”(K velar)有多种规格出售,年产量已达2t。荷兰阿克苏(AKZO)公司研制的芳纶纤维,商品名“特瓦纶”(Twaron),年产量在5000t以上。日本帝人公司开发的共聚芳纶纤维,商品名“太库诺拉”,年产量为500t以上。德国赫斯特公司(HOECHST)生产芳纶纤维年产量为150t。我国1981年研制成功芳纶I,1985年研制成功芳纶Ⅱ,1994年北京燕山石化公司研究院研制成功溶致液晶全芳香族聚酰胺(PPTA),通过专家鉴定,为今后中石、工业化生产开辟了途径。 在世界范围内,芳纶纤维正以年增长率20%左右的速度发展,并从单一军用向民用转移。芳纶纤维用于汽车及防护用品方面占68%,用于造船业达21%,其余为航空、航天及军用。 1.2 芳纶品种及性能 芳纶纤维,因选择原料的不同及合成工艺不同,又可分为间位芳香族聚酰胺纤维,商品名为“欧梅克斯”(Nomex)对位芳香族聚酰胺纤维,商品名“凯芙拉”(Kevlar)和芳香族聚酰胺共聚纤维,商品名“太库诺拉”等。表1将具有代表性的“凯芙拉”纤维和我国研制的芳纶I、芳纶Ⅱ主要性能列出,同时与S高强玻璃纤维及碳纤维进行比较。 从表1中可以发现芳纶纤维密度最小,拉伸强度与S2玻璃纤维和碳纤维接近,拉伸模量居中。此外,芳纶纤维的热稳定性好,可在180℃下长期使用,短期可耐300℃,对强度无大的影响。在-170℃下也不会变脆,仍保持其性能。芳纶纤维的力学性能在有机纤维中是非常突出的,与无机纤维比也不逊色,芳纶纤维除强酸、强碱外,几乎不受有机溶剂、油类影响。但芳纶纤维对紫外线敏感, 若长期暴露在阳光下,其强度会有很大的损失,因此,在使用中应加保护层。 1

芳纶纤维

芳纶纤维 摘要:芳纶纤维是一种新型高科技合成纤维,是由美国杜邦公司在2O世纪60年代成功开发并率先产业化的纤维产品。芳纶纤维的问世被认为是材料界发展的一个重要里程碑。由于芳纶纤维具有优良的性能,在我国的航空航天,体育用材料,轮胎,高强绳索等材料中有广泛的应用,因此受到了普遍的关注。本文介绍了芳纶纤维的结构、性能、用途及生产方法,分析了芳纶纤维的国内外发展现状,并对我国发展高性能芳纶纤维提出了几点建议。 关键词:芳纶纤维;结构;性能;用途;生产技术;发展建议 芳纶纤维主要分为对位芳纶纤维(芳纶1414)和间位芳纶纤维(芳纶1313)。芳纶纤维是一种高性能合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的0.2倍左右。此外,芳纶纤维还具有良好的绝缘性和抗老化性能,其应用领域十分广泛。对位芳纶纤维主要用于橡胶增强制品、防弹织物、复合结构材料、线缆材料、隔热隔声、防辐射结构板等。间位芳纶纤维主要用于电器绝缘纸、阻燃织物、隔热隔声、防辐射结构板、飞行器承力结构材料、烟尘过滤袋等。 1、芳纶纤维结构 芳纶纤维的全称是芳香族聚酰胺纤维, 是一种高强度、高模量、低密度和高耐磨性的有机合成纤维。芳纶分为对位芳纶纤维(PPTA)和间位芳纶纤维( PMIA)两种。聚对苯二甲酰对苯二胺纤维是PPTA最有代表性的一种, 英文全称 AramidFiber ,其化学结构式如下图: 关于芳纶纤维的微观结构,颇具代表性的主要有皮、芯层结构模型,Morgan 等人认为,每一根单纤均具有可区分的皮、芯特征,皮层和芯层具有不同的结构和性能。皮层厚度在0.1-lμm,且表现出类似小云母片的结构形态,在长度方向上则保持结构一致性,而芯层却没有这种结构。阿克苏·诺贝尔公司的科学家van A

芳纶纤维介绍

芳纶 芳纶(芳族聚酰胺纤维)可能是最知名的特种纤维,由尼龙而来,且与尼龙极其类似。芳纶中含5%直接与两个芳香环相连的酰胺键。著名的品牌,包括杜邦的Nomex和Kevl~,以及日本帝人公司与Kevl~非常相似的Twaron纤维。Kevl~的强度和模量比传统的高强尼龙纤维,分别高2倍和9倍。 Kevlar能够应用于如下领域:防弹材料、复合材料支撑物,振动延续阻滞物、轮胎增强材料,高应力作业下的机械橡胶布、高强低延伸的绳索。Nomex与Kevlar在化学组成上不同,它用异酞酰胺取代对酞酰胺,从而获得有优异耐热性的纤维,在高温条件下有优异的性能。 随着芳纶在安全和强力市场领域应用的深入,市场应用将会缓慢增加,但其量不会显著扩大,问题在于产量/价格/利润之间的相互关系。从Spandex大量上市导致价格下降的经验来看,如果纤维价格下跌20%-50%,纤维的产量将会急剧增加芳纶纤维全称为"聚对苯二甲酰对苯二胺",英文为Aramid fiber,是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。它具有良好的绝缘性和抗老化性能,具有很长的生命周期。芳纶的发现,被认为是材料界一个非常重要的历史进程。 芳纶的发明:20世纪60年代由美国杜邦(DuPont)公司成功地开发并率先产业化; 芳纶的发展: 在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,价格也降低了将近一半。现在国外芳纶无论是研发水平还是规模化生产都日趋成熟。在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国、欧洲。如美国杜邦的Kevlar纤维,荷兰阿克苏诺贝尔(Akzo Nobel)公司(已与帝人合并)的Twaron 纤维,日本帝人公司的Technora纤维及俄罗斯的Terlon纤维等。间位芳酰胺纤维的品种有Nomex、Conex、Fenelon纤维等。美国杜邦生产的Kevlar纤维,目前就有Kevlar一49、Kevlar-29等十多个牌号,每个牌号又有数十种规格的产品。杜邦公司在去年宣布将扩大Kevlar纤维的生产能力,该扩建项目预计在今年年底完工。帝人、赫斯特等芳纶生产的知名企业也不甘示弱,纷纷扩产或联合,并积极开拓市场,希望成为这个朝阳产业的生力军 芳纶纤维在高性能纤维世界中有独特地位。它是强度很高的纤维——以相同重量为基础,是钢材强度的5倍;其另一种卓越性能是极高的比张力模量(抗拉伸)——其韧度是最常用的增强纤维E-玻璃纤维的三倍。 它具有固有的不可燃性,连续使用温度范围极宽,由﹣320。F(﹣196。C)到400。F(204℃)。可耐受超过1000°F(538℃)的材料作有限度接触。 芳纶KEVLAR是杜邦公司独一无二的aramid纤维系列的注册商标,有四种类型的产品出售——芳纶KEVLAR 29、KEVLAR129、KEVLAR 49、KEVLAR 149。 芳纶是用于增强子午线轮胎及其机械用橡胶制品,如软管、输送带及动力传送皮带而专门设计制造的品种。芳纶的工业专门用途,例如绳索、缆绳、防弹织物、涂层织物、

对位芳纶纤维及其应用概述_胡延韶

CHINA RUBBER 第27卷第19期 对位芳纶纤维及其应用概述 胡延韶 一、概述 芳香族聚酰胺纤维是最重要的有机合成纤维之一,具有优异的物理机械性能、热氧稳定性、阻燃性及优良的电绝缘性能等。广泛应用于光缆增强、子午线轮胎、轻型复合装甲等领域。我国俗称芳纶,如芳纶1313、芳纶1414等。 目前,芳纶产品主要包括聚间苯二甲酰间苯二胺纤维(简称间位芳纶或芳纶1313)、聚对苯二甲酰对苯二胺纤维(简称对位芳纶、芳纶-II 、芳纶1414)和杂环芳香族聚酰胺纤维(简称芳纶Ⅲ)等品种。 自20世纪60年代,由美国杜邦公司成功开发 出芳纶纤维并率先产业化后,在40多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国、欧洲。 二、芳纶1414材料性能、用途、需求状况 1.芳纶1414的性能 对位芳纶于1971年研制成功,次年投入生产。对位芳纶性能中突出特点是高强度和高模量。它的强度为钢的3倍,为强度较高的涤纶工业丝的4 受水分、温度的影响,可以省去用于促进钢丝粘合的专用粘合剂,如钴盐等,胶料的成本低于钢丝用胶料,有资料表明可降低成本约18%。芳纶成品胎胎面柔软,断面宽和同规格的钢丝带束胎相比断面宽显得较大,而整个高度(外直径)显得较小,由于带束层柔软,胎面对地面的移动性和剪切力小,行驶时增大了轮胎与地面的接触面积,胎侧较柔软,缓冲性能好,行驶噪声小,舒适性好。 2.滚动阻力低,节油性能提高。芳纶帘线的动态 模量明显高于聚酯和尼龙帘线,而损耗因子则比聚酯和尼龙低得多,这种高模量、低损耗损失的特性非常适宜于作低滚动阻力高性能轮胎的骨架材料;采用特殊的胎面胶配方,轮胎的滚动阻力大大降低(滚动阻力最大可降低20%),减少能源的消耗,节油性能至少可提高1.5%,进而起到保护环境的作用;优化的胎体、带束设计,减轻了轮胎的重量和惯性,增强了轮胎的抓地力,减少冲击和由于跳跃所产生的振动,使得车辆制动更快、行驶更平稳。 3.很好的耐刺扎、耐切割性能。芳纶轮胎的耐磨 性性能提高约3%。芳纶兼备了材料的刚性和韧性(刚性是钢的4~6倍,韧性是钢的2倍),且分子结构呈现惰性,对化学药品和物理侵蚀有很强的抵抗力,可以提高轮胎的翻新次数,而且带束柔软,角度小,每根帘线长度比胎面接地长度长,轮胎滚动时 移动小,耐磨性好,周向变形小,因此高速性能好,轮胎的使用寿命长。 4.芳纶轮胎使用过程中接地压力重心移动小,转 向性能好,轮胎变形滞后小、生热较低,芳纶帘线模量高,硫化后帘线不收缩,轮胎使用出现的“平点”问题也可以得到强有力的限制,对于有后充气装置的厂家来说,可以节省这方面的费用。另外芳纶轮胎的硫化时间也可以适当减少,提高硫化效率。 芳纶作为一种新兴的高性能纤维进入了飞速发展的时期,我国也加紧了芳纶的生产步伐,四川晨光金路公司、山东烟台氨纶股份有限公司等都建立了一定规模的芳纶生产线,随着芳纶生产技术不断发展和产能的不断提高,芳纶的国产化是大势所趋,芳纶价格的也必将会大幅度下降。 基于芳纶轮胎具有节油、生热低、舒适性好、使用寿命长等一系列优点,因此芳纶轮胎的价格无疑会得到提高,据市场预测,以芳纶作带束层的高性能轮胎单胎价格可提高5%~10%,因此即使在目前芳纶价格较高的情况下,芳纶轮胎的经济效益也优于同规格的钢丝胎,对于低宽断面、大直径轮辋、高速度级别的高档胎来说,其经济效益则会更高。随着芳纶价格的降低,经济效益的增加,芳纶帘线在高性能轮胎中的应用将日益广泛。□ 视点·专题 对位芳纶 17··

芳纶纤维的研究现状及其发展

芳纶纤维的研究现状及其发展展望 摘要 芳纶纤维是芳香族聚酰胺类纤维的通称,国外商品牌号叫凯芙拉(Kevlar)纤维,我国命名为芳纶纤维。 芳香族聚酰胺纤维最早开发于20世纪60年代初,1962年美国杜邦公司率先研制出商品名为“Nomex”的间位芳纶,并于1967年开始工业化生产;1966年又研制出商品名为“Kevlar”的高性能芳纶,并于1971年开始工业化生产。目前全球从事芳纶1414生产的厂家主要有美国杜邦公司(Kevlar)、日本帝人公(Twaron、Technora)、俄罗斯耐热公司(Pycap)等。 我国芳香族聚酰胺纤维的研制始于20世纪70年代。从上世纪80年代开始,我国还进行了芳纶I(芳纶14)和芳纶Ⅲ(一种新型芳香族共聚酰胺纤维)的研究,但仅限于小试和中试阶段,未能实现规模化生产。多年来,我国一直致力于高性能芳纶国产化、规模化的技术开发。 芳纶纤维是综合性能优异,性价比理想的有机耐高温纤维,在先进复合材料、防弹制品、建材、特种防护服装、电子设备等领域具有广阔的应用前景。芳纶纤维产业将迎来大发展,将成为世界上应用量最大、用途最广的高性能纤维。 关键词:芳纶,生产工艺,市场分析,前景

The Present Situation and The Outlook of Aramid Fiber ABSTRACT Aromatic polyamide fiber is of aramid fiber collectively, foreign goods brand called kay fulla (Kevlar) fiber, our country named aramid fiber. Aromatic polyamide fiber the earliest development in the early 1960s, in 1962 the United States dupont takes the lead in developing a commodity, called "Nomex" between a aramid, and in 1967 started to industrial production; 1966 years and developed the goods, called "Kevlar" high performance of aramid, and in 1971 started to industrial production. Now engaged in the production of aramid 1414 global manufacturer mainly American dupont (Kevlar), Japanese emperor people male (Twaron, Technora), Russia (Pycap) heat. The development of aromatic polyamide fiber in our country the development began in the 1970s. Since the 1980s, China is still the aramid I (aramid 14) and aramid Ⅲ (a new type of aromatic polyamide fiber), but only for small and pilot phase, failed to realize large-scale production. For many years, our country has been committed to the localization of high performance, large scale aramid fiber technology development. Aramid fiber is variety performance is excellent, price ideal organic high temperature resistant fiber, in advanced composite materials, bulletproof products, building materials, special protective clothing, electronic equipment etc has wide application prospects. Aramid fiber industry will have big development, will become the world's largest application , use is the most extensive high performance fibers. KEY WORDS: Aramid, Production process, Market analysis, Prospects

芳纶纤维材料及其应用

芳纶纤维材料及其应用 摘要:本文对芳纶纤维的发展概况,结构性能以及主要应用领域作简单介绍。最后分析一下芳纶纤维的发展前景。 关键词:芳纶纤维材料;芳纶1313;芳纶1414;结构性能;应用;发展前景 Aramid fiber material and its application Abstract:In this paper, the general development of aramid fiber, structure, performance and main application field are introduced.Finally, analysis of the development of the aramid fiber Key words:Aramid fiber material;Aramid 1313; Aramid 1414;Structure performance; Application; Future development 1 芳纶纤维概况 芳纶纤维即芳香族聚酞胺纤维,是以芳香族化合物为原料经缩聚纺丝制得的合成纤维。芳香族聚酰胺纤维首先是由美国杜邦公司于1965年引入市场的。这种间位取向的芳香族聚酰胺纤维称作Nomex。上世纪70年代早期,杜邦公司开发了第二种产品即对位芳香族聚酰胺纤维Kevlar,并且此后一直占据芳纶的首要地位,直到1986年荷兰Akzo公司的Twaron、1987年日本帝人公司的Technora及俄罗斯的ARMOC纤维的出现,才使Kevlar独占体系崩溃。[1] 芳纶纤维工业化的产品有两种:芳纶1313(全称为聚间苯二甲酰间苯二胺纤维)和芳纶1414(全称为聚对苯二甲酰对苯二胺纤维)。芳纶纤维具有良好的抗冲击和耐疲劳性能,有良好的介电性和化学稳定性,耐有机溶剂、燃料、有机酸及稀浓度的强酸、强碱,耐屈折性和加工性能好。它可用普通织机编织成织物,编织后其强度不低于原纤维强度的90%[2]。 2 芳纶1313 2.1发展情况 芳纶1313最早由美国杜邦公司研制成功并实现工业化生产,产品注册为Nomex(诺美克斯)。1967年正式工业化生产。是一种耐高温纤维,由聚间苯二甲酰间苯二胺构成,是目前所有耐高温纤维中产量最大,应用最广的一个品种。日本Teijin公司于1974年也成功实现商业化,商品名为Conex ,其主要侧重纤维的开发,除常规纤维品种外,还有染色纤维、高度阻燃稳定纤维Conex FR和耐候性极好的Conex L。另外,还有日本Unitika公司的

芳纶纤维项目报告20110914

芳纶纤维项目报告 一、芳纶纤维基础知识 (2) 二、芳纶纤维产品市场应用 (2) 1、芳纶1313纤维 (3) 2、芳纶1414纤维 (4) 3、共聚芳纶纤维 (6) 三、芳纶纤维国内外技术研发状况 (6) 1、间位芳纶纤维的制造技术 (6) 2、对位芳纶纤维的制造技术 (7) 3、共聚型芳纶的制造方法 (8) 4、俄罗斯芳纶的制造方法 (8) 5、我国间位芳纶发展状况 (9) 6、我国对位芳纶发展状况 (9) 7、我国共聚芳纶发展状况 (10) 四、国内芳纶纤维项目建设情况 (10) 五、芳纶纤维项目对于我司的重要意义 (10) 1、国家相关政策的支持 (11) 2、为我司步入高新技术产业打开突破口 (11) 3、项目投资小,见效快,产品附加值高 (11) 六、建议下一步技术调研工作计划 (11) 1、考察芳纶纤维国内技术专利商 (11) 2、考察芳纶纤维生产企业 (12)

一、芳纶纤维基础知识 我国将芳香族聚酰胺纤维定名为芳纶纤维。芳纶具有超高强度、高模量、耐高温、耐酸耐碱、质量轻等优良性能,其强度是钢丝的5~6倍、模量为钢丝或玻璃纤维的2~3倍、韧性是钢丝的2倍、而质量仅为钢丝的1/5左右。芳纶纤维最具实用价值的品种有3个:芳纶1313(芳纶Ⅰ)、芳纶1414(芳纶Ⅱ)和共聚芳纶(芳纶Ⅲ)。 芳纶1313即聚间苯二甲酰间苯二胺,是开发最早、产量最大、应用最广的有机耐高温纤维。 芳纶1313(间位芳纶)结构式如下: 芳纶1414即聚对苯二甲酰对苯二胺,具有超高的强度、模量和耐高温性能,以及良好的绝缘性和抗腐蚀性,对位芳纶在高性能纤维中占据了核心地位,并被人们称为“王牌纤维”。 芳纶1414(对位芳纶)结构式如下: 共聚芳纶是日本帝人公司和俄罗斯开发出的具有更高的力学性能的高档纤维,已用于俄罗斯战略战术武器,但目前产量较小,约为3000~4000t /a。 二、芳纶纤维产品市场应用 目前世界芳纶的生产能力约8.2万吨/年(其中,对位芳纶5.5万吨/年、间位芳纶2.3万吨/年)。芳纶产品用于防弹衣、头盔等约占7%~8%,航空

芳纶纤维概述

芳纶纤维 凡聚合物大分子的主链由芳香环和酰胺键构成,且其中至少85%的酰胺基直接键合在芳香环上,每个重复单元的酰胺基中的氮原子和羰基均直接与芳香环中的碳原子相连接并置换其中的一个氢原子的聚合物称为芳香族聚酰胺纤维,我国定名为芳纶纤维。 芳纶纤维有两大类:全芳族聚酰胺纤维和杂环芳族聚酰胺纤维。全芳族聚酰胺纤维主要包括对位的聚对苯二甲酰对苯二胺和聚对苯甲酰胺纤维、间位的聚间苯二甲酰间苯二胺和聚间苯甲酰胺纤维、共聚芳酰胺纤维以及如引入折叠基、巨型侧基的其它芳族聚酰胺纤维。杂环芳族聚酰胺纤维是指含有氮、氧、硫等杂质原子的二胺和二酰氯缩聚而成的芳纶纤维,如有序结构的杂环聚酰胺纤维等。1、聚对苯二甲酰对苯二胺(PPTA)纤维 PPTA纤维是芳纶在复合材料中应用最为普遍的一个品种。中国于80年代中期试生产此纤维,定名为芳纶1414(芳纶II)。芳纶纤维具有优异的力学、化学、热学、电学等性能。PPTA纤维具有高拉伸强度、高拉伸模量、低密度、优良吸能性和减震、耐磨、耐冲击、抗疲劳、尺寸稳定等优异的力学和动态性能;良好的耐化学腐蚀性;高耐热、低膨胀、低导热、不燃、不熔等突出的热性能以及优良的介电性能。

2、聚对苯甲酰胺(PBA)纤维 中国于80年代初期曾试生产此纤维,定名为芳纶14(芳纶I)。芳纶I的拉伸强度比芳纶II低约20%,但拉伸模量却高出50%以上。芳纶I热老化性能好,这些性能用作某些复合材料的增强剂是很有利的。 3、芳纶共聚纤维 采用新的二胺或第三单体合成新的芳纶是提高芳纶纤维性能的重要途径。 (1)对位芳酰胺共聚纤维它是由对苯二甲酰氯与对苯二胺及第三单体3,4'-二氨基二苯醚在N,N'-二甲基乙酰胺等溶剂中低温缩聚而成的。共聚物溶液中和后直接进行湿法纺丝和后处理而得的各种产品。 (2)聚对芳酰胺苯并咪唑纤维一般认为它们是在原PPTA的基础上引入对亚苯基苯并咪唑类杂环二胺,经低温缩聚而成的三元构聚芳酰胺体系,纺丝后再经高温热拉伸而成。 ◆芳纶纤维的应用 1、先进复合材料:(1)航空航天领域;(2)舰船中的应用;(3)汽车工业。 2、防弹制品:(1)硬质防弹装甲板;(2)软质防弹背心。

复合材料研究及其应用

郑州华信学院毕业论文 课题名称:复合材料研究及其应用 系部:机电工程学院 班级:09机电班 姓名: 指导老师: 时间:2012年3月28日

复合材料研究及其应用 摘要 复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、磨擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能。统称为功能复合材料。功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。多元功能体的复合材料、可以具有多种功能。同时,还有可能由于复合效应而产生新的功能。多功能复合材料是功能复合材料的发展方向。 一、全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继

问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料用量到2003年估计可达10.5万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达7.5万吨,汽车等领域的用量仅为2.4万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车

芳纶纤维介绍

芳纶纤维全称为"聚对苯二甲酰对苯二胺",英文为Aramid fiber(杜邦公司的商品名为Kevlar),是一种新型高科技合成纤维,具有超高强度、高模量和耐高温、耐酸耐碱、重量轻等优良性能,其强度是钢丝的5~6倍,模量为钢丝或玻璃纤维的2~3倍,韧性是钢丝的2倍,而重量仅为钢丝的1/5左右,在560度的温度下,不分解,不融化。它具有良好的绝缘性和抗老化性能,具有很长的生命周期。芳纶的发现,被认为是材料界一个非常重要的历史进程。 芳纶纤维是重要的国防军工材料,为了适应现代战争的需要,目前,美、英等发达国家的防弹衣均为芳纶材质,芳纶防弹衣、头盔的轻量化,有效提高了军队的快速反应能力和杀伤力。在海湾战争中,美、法飞机大量使用了芳纶复合材料。除了军事上的应用外,现已作为一种高技术含量的纤维材料被广泛应用于航天航空、机电、建筑、汽车、体育用品等国民经济的各个方面。在航空、航天方面,芳纶由于质量轻而强度高,节省了大量的动力燃料,据国外资料显示,在宇宙飞船的发射过程中,每减轻1公斤的重量,意味着降低100万美元的成本。除此之外,科技的迅猛发展正在为芳纶开辟着更多新的民用空间。据报道,目前,芳纶产品用于防弹衣、头盔等约占7~8%,航空航天材料、体育用材料大约占40%;轮胎骨架材料、传送带材料等方面大约占20%左右,还有高强绳索等方面大约占13%。 芳纶主要分为两种,对位芳酰胺纤维(PPTA)和间位芳酰胺纤维(PMIA),自20世纪60年代由美国杜邦(DuPont)公司成功地开发出芳纶纤维并率先产业化后,在30多年的时间里,芳纶纤维走过了由军用战略物资向民用物资过渡的历程,价格也降低了将近一半。现在国外芳纶无论是研发水平还是规模化生产都日趋成熟。在芳纶纤维生产领域,对位芳酰胺纤维发展最快,产能主要集中在日本和美国、欧洲。如美国杜邦的Kevlar纤维,荷兰阿克苏诺贝尔(Akzo Nobel)公司(已与帝人合并)的Twaron纤维,日本帝人公司的Technora纤维及俄罗斯的Terlon纤维等。间位芳酰胺纤维的品种有Nomex、Conex、Fenelon纤维等。美国的杜邦是芳纶开发的先驱,他们无论在新产品的研发、生产规摸上,还是在市场占有率上都是世界一流水平,仅他们生产的Kevlar纤维,目前就有Kevlar一49、Kevlar-29等十多个牌号,每个牌号又有数十种规格的产品。杜邦公司在去年宣布将扩大Kevlar纤维的生产能力,该扩建项目预计在今年年底完工。帝人、赫斯特等芳纶生产的知名企业也不甘示弱,纷纷扩产或联合,并积极开拓市场,希望成为这个朝阳产业的生力军。 德国Acordis公司近期开发出高性能超细对位芳纶(Twaron)产品,它既不燃,也不会熔融,还有很高强度和极大杭切割能力,主要可用于生产涂层及非涂层织物、针织产品和针剌毡等既耐高温又抗切割的各种纺织服装装备。Twaron超细长丝的细度仅为职业安全服常用对位芳纶的60%,用它织造手套·其抗切割能力提高l0%,用它生产梭织物和针织产品,其手感更柔和,使用更舒适。Twaron防切割手套主要用于汽车制造业、玻璃工业及金属零部件生产厂,还能为森林工业生产护腿用品,为公共运输行业提供防破坏装备等。利用Twaron的阻燃耐热性,可为消防队提供防护套装和毡毯等装备,以及为铸造,炉窑、玻璃厂等高温作业部门提供耐热防火服,以及生产飞机座阻燃防火包覆材料。用这一高性能纤维还能创造汽车轮胎、冷却软管、V

2011年全球芳纶行业发展现状

中国芳纶行业市场现状分析 芳纶纤维诞生于20 世纪60 年代末,最初作为宇宙开发材料和重要的战略物资而鲜为人知。冷战结束后,芳纶作为高技术含量的纤维材料大量用于民用领域,才逐渐露为人所知。芳纶的全称是“芳香族聚酰胺纤维”,是一类新型的特种用途合成纤维。芳纶中最具实用价值的品种有两个:一是分子链排列呈锯齿状的间位芳纶纤维,我国称之为芳纶1313;一是分子链排列呈直线状的对位芳纶纤维,我国称之为芳纶1414。两者化学结构相似,但性能差异却很大,应用领域各有不同。芳纶1313 具有突出的耐高温、阻燃和绝缘性,成为高性能纤维,主要应用于高温防护服、电绝缘和高温过滤等领域。国内主要用作消防服装(全芳纶),国外更多使用在赛车服,石化电力行业服装等。未来可拓展绝缘领域,如变压器绝缘、电机绝缘等。芳纶1414 则具有高强度高模量的特点,素有高分子材料中的“百变金刚”,主要应用于个体防护、防弹装甲、力学橡胶制品、高强缆绳、石棉替代品。 1、间位芳纶 间位芳纶又被称为“防火纤维”,具有很好的耐高温、阻燃以及绝缘特性,是开发最早、产量最大、应用最广,也是最有发展前途的有机耐高温纤维,主要用于高温防护服、电力行业的绝缘服装以及高污染行业中(水泥钢铁等)的高温烟尘过滤袋。 从全球来看,全球间位芳纶(1313)产能3.2 万吨,供需基本平衡。在国内供求关系方面,我国间位芳纶需求约10000 吨,而国内总产能为8600 吨,产能明显不足。 全球间位芳纶生产商及其产能

作为国内间位芳纶市场的主导者,泰和新材目前占据了60%以上的市场份额,毛利率基本稳定在35%以上。未来供不应求局面将继续维持,主要原因如下:首先,在当前低碳经济和节能环保的大背景下,用于制造高温烟尘过滤袋的间位芳纶需求可能出现大幅增长;用于制造防护服的间位芳纶需求增速也超过30%,而且国内间位芳纶市场还有非常大的开发空间,未来间位芳纶的需求将以10%-15%的增速发展,2012 年将达到11000 吨,供给缺口将进一步加大;其次,对位芳纶行业技术/资金壁垒较高,即是在有技术的前提下,投资周期也要三年以上,投资额约10 亿元/万吨,短期内国内并没有有效的新增产能。 2、对位芳纶 对位芳纶又称“芳纶1414”,是当今世界高性能纤维材料的代表,具有超高强度、高模量、耐高温、阻燃性好、耐候性强、耐酸耐碱、重量轻等优良性能,其力学强度是优质钢材的5-6 倍,模量是钢材或玻璃纤维的2-3 倍,韧性是钢材的2 倍,而重量仅为钢材的1/5。用途比间位芳纶更加广泛,其主要应用领域几乎涵盖了高科技领域的各个方面,主要包括防弹衣、防弹头盔、装甲战车等军事领域以及复合材料如汽车轮胎帘子线、摩擦材料如刹车片、航空航天材料、光缆增强材料等民用领域。因此对位芳纶不仅是重要的战略物资,而且也成为具有战略意义的民用物资。“十二五”期间,对位芳纶作为重要的新材料品种有望受到国家政策的重点支持。 对位芳纶的分子结构 对位芳纶的各项指标都远远高于传统的尼龙纤维和涤纶纤维,并且在几种主

芳纶布的种类及特性

芳纶布的种类及特性 芳纶布,即凯芙拉布,芳纶纤维布,芳纶织物。 主要有以下几种 1、芳纶纤维无捻粗纱织物,主要用芳纶1414长丝,无捻粗纱是由平行原丝或平行单丝集束而成的。生产粗纱所用芳纶纤维的单丝直径从5~15μm不等。无捻粗纱的号数从100号到8000号(tex)。无捻粗纱可直接用于某些复合材料工艺成型方法中,如特种纺织、片材预浸、管道缠绕、型材拉挤等工艺,无捻度的纱线因其张力均匀,可织成无捻粗纱布和特种芳纶织物,用于航天、国防、军工等特种行业。 2、芳纶无纺布,毡片,芳纶纸,用于绝缘保温 3、芳纶纤维加捻细纱布,芳纶织物,芳纶面料,主要用芳纶1313或少量1414短纤 (1)芳纶纤维加捻细纱布主要是指用芳纶1313或少量1414短纤维纱线加捻后织造的各种织物。主要用于防火阻燃等领域。织物的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密加上纱结构,就决定了织物的物理性质,如重量、厚度和断裂强度等。有五种基本的织纹:平纹、斜纹、缎纹、罗纹和席纹。 (2)芳纶加捻织带,分为有织边带(光边带)和无织边带(毛边带)主要织法是平纹。用于制造高强度、介电性能好的电气设备零部件以及汽车胶管等。 (3)芳纶帘子布,即加捻的芳纶单向织物浸胶而成,其特点是在经纱0度或者纬纱90度方向上具有高强度。其中经向单向织物是一种粗经纱和细纬纱织成的四经破缎纹或长轴缎纹织物,用于飞机轮胎和高级汽车轮胎。 (4)立体织,立体织物是相对平面织物而言,其结构特征从一维二维发展到了三维,从而使以此为增强体的复合材料具有良好的整体性和仿形性,大大提高了复合材料的层间剪切强度和抗损伤容限。它是随着航天、航空、兵器、船舶等部门的特殊需求发展起来的,目前其应用已拓展至汽车、体育运动器材、医疗器械等部门。主要有五类:机织三维织物、针织三维织物、正交及非正交非织造三维织物、三维编织织物和其它形式的三维织物。立体织物的形状有块状、柱状、管状、空心截锥体及变厚度异形截面等。 (5)异形织物,异形织物的形状和它所要增强的制品的形状非常相似,必须在专用的织机上织造。对称形状的异形织物有:圆盖、锥体、帽、哑铃形织物等,还可以制成箱、船壳等不对称形状。 (6)槽芯织物,槽芯织物是由两层平行的织物,用纵向的竖条连接起来所组成的织物,其横截面形状可以是三角形或矩形。 (7)缝编织物,亦称为针织毡或编织毡,它既不同于普通的织物,也不同于通常意义的毡。最典型的缝编织物是一层经纱与一层纬纱重叠在一起,通过缝编将经纱与纬纱编织在一起成为织物。 3、组合芳纶布 即把芳纶毡、芳纶无捻粗纱织物和芳纶无捻粗纱等,按一定的顺序组合起来的芳纶复合布。 青岛新天成纺织有限公司创立于1976年(原青岛第十三棉纺织厂)至今已有37年历史。公司占地60余亩,职工300多名,拥有纱锭37000枚,倍捻锭2000枚,织布机100台,主要生产各种规格芳纶线,阻燃线,芳纶缝纫线,芳纶布,纱线,丙纶纱线和面料,阻燃缝纫线,芳纶纱线和面料,及其它芳纶类产品下面就由青岛新天成纺织来给大家介绍下苏伦布的特性。 1、良好的机械特性间位芳纶是一种柔性高分子,断裂强度高于普通涤纶、棉、尼龙等,伸长率较大,手感柔软,可纺性好,可生产成不同纤度、长度的短纤维和长丝,在一般纺织机械制成不同纱支织成面料、无纺布,经过后整理,满足不同领域的防护服装的要求。

相关主题
文本预览
相关文档 最新文档