当前位置:文档之家› 螺旋传动设计

螺旋传动设计

螺旋传动设计
螺旋传动设计

螺旋传动设计

滑动螺旋传动的设计计算

设计计算步骤:

1.耐磨性计算

2.螺杆的强度计算

3.螺母螺纹牙的强度计算

4.螺母外径与凸缘的强度计算

5.螺杆的稳定性计算

螺旋传动常用材料见下表:

表:螺旋传动常用的材料

耐磨性计算

滑动螺旋的磨损与螺纹工作面上的压力、滑动速度、螺纹表面粗糙度以及润滑状态等因素有关。其中最主要的是螺纹工作面上的压力,压力越大螺旋副间越容易形成过度磨损。因此,滑动螺旋的耐磨性计算,主要是限制螺纹工作面上的

压力p,使其小于材料的许用压力[p]。

如图5-46所示,假设作用于螺杆的轴向力为Q(N),螺纹的承压面积(指螺纹工作表面投影到垂直于轴向力的平面上的面积)为A(mm2),螺纹中径为小(mm),螺纹工作高度为H(mm),螺纹螺距为 P(mm),螺母高度为 D(mm),螺纹工件圈数为 u=H/P 。则螺纹工作面上的耐磨性条件为

『5-43』

上式可作为校核计算用。为了导出设计计算式,令ф=H/d

2,则H=фd

2

,,

代入式(5-43)引整理后可得

【5-44】

对于矩形和梯形螺纹,h=0.5P,则

【5-46】

对于30o锯齿形螺纹。h=0.75P,则

【5-47】

螺母高度

H=фd2

式中:[P]为材料的许用压力,MPa,见表5-13;ф值一般取1.2~3.5。对于整体螺母,由于磨损后不能凋整间隙,为使受力分布比较均匀,螺纹工作圈数不宜过多,故取ф=1.2~2.5对于剖分螺母和兼作支承的螺母,可取ф=2.5~3.5只有传动精度较高;载荷较大,要求寿命较长时,才允许取ф=4。

根据公式算得螺纹中径d

2

后,应按国家标准选取相应的公称直径d及螺距P。螺纹工作圈数不宜超过10圈。

表:滑动螺旋副材料的许用压力[ P]

注:表中数值适用于ф=2.5~4的情况。当ф<2.5时,[p]值可提高20%;若为剖分螺母时则[p]值应降低15~20%。

螺纹几何参数确定后、对于有自锁性要求的螺旋副,还应校校螺旋副是否满足自锁条件,即

式中; 为螺纹升角;f V为螺旋副的当量摩擦系数;f为摩擦系数.见下表。

表:滑动螺旋副的摩擦系数f

注:起动时取大值.运转中取小值。

螺杆的强度计算

受力较大的螺杆需进行强度计算。螺杆工作时承受轴向压力(或拉力)Q和扭矩T的作用。螺杆危险截面上既有压缩(或拉伸)应力;又有切应力。因此;

,其强度条核核螺杆强度时,应根据第四强度理论求出危险截面的计算应力σ

ca

件为

【5-49】

式中:

A —螺杆螺纹段的危险截面面积。

W T—螺杆螺纹段的抗扭截面系数,

d l—螺杆螺纹小径,mm;

T—螺杆所受的扭矩,

[σ]—螺杆材料的许用应力,MPa,见下表

滑动螺旋副材料的许用应力

为材料屈服极限。

注:1)σ

s

2)载荷稳定时,许用应力取大值。

螺母螺纹牙的强度计算

螺纹牙多发生剪切和挤压破坏,一般螺母的材料强度低于螺杆,故只需校核螺母螺纹牙的强度。

如图5-47所示,如果将一圈螺纹沿螺母的螺纹大径D处展开,则可看作宽度为πD的悬臂梁。假设螺母每圈螺纹所承受的平均压力为Q/u,并作用在以螺纹中径D

为直径的圆周上,则螺纹牙危险截面a-a的剪切强度条件为

2

【5-50】

螺纹牙危险截面a-a的弯曲强度条件为

【5-51】

式中:

b——螺纹牙根部的厚度, mm,对于矩形螺纹,b=0.5P对于梯形螺纹,b一0.65P,对于30o锯齿形螺纹,b=0.75P,P为螺纹螺距;

l——弯曲力臂;mm参看图 , l=(D-D

)/2;

2

[τ]——螺母材料的许用切应力,MPa,见表;

——螺母材料的许用弯曲应力,MPa,见表。

[σ]

b

小于螺母螺纹的大径D,故应校当螺杆和螺母的材料相同时,由于螺杆的小径d

l

核杆螺纹牙的强度。此时,上式中的D应改为d

1

螺母外径与凸缘的强度计算。

在螺旋起重器螺母的设计计算中,除了进行耐磨性计算与螺纹牙的强度计算外,还要进行螺母下段与螺母凸缘的强度计算。如下图所示的螺母结构形式,工作时,在螺母凸缘与底座的接触面上产生挤压应力,凸缘根部受到弯曲及剪切作用。螺母下段悬置,承受拉力和螺纹牙上的摩擦力矩作用。

设悬置部分承受全部外载荷Q,并将Q增加20~30%来代替螺纹牙上摩擦力矩的作用。则螺母悬置部分危险截面b-b内的最大拉伸应力为

式中[σ]为螺母材料的许用拉伸应力,[σ]=0.83[σ]

b ,[σ]

b

为螺母材料的许

用弯曲应力,见表5-15。

螺母凸缘的强度计算包括:

凸缘与底座接触表面的挤压强度计算

式中[σ]

p 为螺母材料的许用挤压应力,可取[σ]

p

=(1.5 1.7)[σ]

b

凸缘根部的弯曲强度计算

式中各尺寸符号的意义见下图。

凸缘根部被剪断的情况极少发生,故强度计算从略。

螺杆的稳定性计算:

对于长径比大的受压螺杆,当轴向压力Q大于某一临界值时,螺杆就会突然发生侧向弯曲而丧失其稳定性。因此,在正常情况下,螺杆承受的轴向力Q必须小于临界载荷Q。。则螺杆的稳定性条件为

S sc=Q c/Q≥S s

式中:S

sc

——螺杆稳定性的计算安全系数;

S

s ——螺杆稳定性安全系数,对于传力螺旋(如起重螺杆等),S

s

=3.5~

5.0对于传导

螺旋,S

s =2.5~4.0;对于精密螺杆或水平螺杆,S

s

>4。

Q

c ——螺杆的临界载荷,N,根据螺杆的柔度λ

S

值的大小选用不同的公式

计算。λ

S

=μl/i,此处,μ为螺杆的长度系数,见表;l为螺杆的工作长度,mm,若螺杆两端支承时,取两支点间的距离作为工作长度l;若螺杆一端以螺母支承时,则以螺母中部到另一端支点的距离,作为工作长度 l; i为螺杆危险截面的惯性半径, mm,若螺杆危险截面面积

当λ

S ≥100时,临界载荷Q

c

可按欧拉公式计算,即

式中:E——螺杆材料的拉压弹性模量,E=2.06X105MPa; I——螺杆危险截面的惯性矩,

当λ

S < 100时,对于强度极限σ

B

≥380MPa的普通碳素钢,如 Q235、Q275

等,取

Q c=(304- 1.12λS)π/4d12

对于强度极限σ

B

>480MPa的优质碳素钢,如35~50号钢等,取

Q c=(461-2.57λS)π/4d12

当λ

S

<40时,可以不必进行稳定性核核。若上述计算结果不满足稳定性条件

时,应适当增加螺杆的小径d

1

表: 螺杆的长度系数μ:

注:判断螺杆端部交承情况的方法:

l)若采用滑动支承时则以轴承长度l

0与直径d

的比值来确定。l

/d0<1.5时,为铰支;

l

/d0=1.5 3.0时,为不完全固定;l0/d0>3.0时,为固定支承。

2)若以整体螺母作为支承时,仍按上述方法确定。此时取l

=H(H为螺母高度)。

3)若以剖分螺母作为支承时,叫作为不完全固定支承。

4)若采用滚动支承已有径向约束时,可作为铰支;有径向和轴向约束时,可作为固定支承。

机械设计实验报告带传动

实验一 带传动性能分析实验 一、实验目的 1、了解带传动试验台的结构和工作原理。 2、掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。 3、观察带传动的弹性滑动及打滑现象。 4、了解改变预紧力对带传动能力的影响。 二、实验内容与要求 1、测试带传动转速n 1、n 2和扭矩T 1、T 2。 2、计算输入功率P 1、输出功率P 2、滑动率ε、效率η。 3、绘制滑动率曲线ε—P 2和效率曲线η—P 2。 三、带传动实验台的结构及工作原理 传动实验台是由机械部分、负载和测量系统三部分组成。如图1-1所示。 1直流电机 2主动带轮 3、7力传感器 4轨道 5砝码 6灯泡 8从动轮 9 直流发电机 10皮带 图1-1 带传动实验台结构图 1、机械部分 带传动实验台是一个装有平带的传动装置。主电机1是直流电动机,装在滑座上,可沿滑座滑动,电机轴上装有主动轮2,通过平带10带动从动轮8,从动轮装在直流发电机9的轴上,在直流发电机的输出电路上,并接了八个灯泡,每个40瓦,作为发电机的负载。砝码通过尼龙绳、定滑轮拉紧滑座,从而使带张紧,并保证一定的预拉力。随着负载增大,带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。当带的有效拉力达到最大有效圆周力时,带开始打滑,当负载继续增加时则完全打滑。 2、测量系统 测量系统由转速测定装置和扭矩测量装置两部分组成。 (1)转速测定装置 用硅整流装置供给电动机电枢以不同的端电压实现无级调速,转动操纵面板上“调速”旋钮,即可实现无级调速,电动机无级调速范围为0~1500r/min ;两电机转速由光电测速装置测出,将转速传感器(红外光电传感器)分别安装在带轮背后的“U ”形糟中,由此可获得转速信号,经电路处理即可得到主、从动轮上的转速n 1、n 2。 (2)扭矩测量装置 电动机输出转矩1T (主动轮转矩)、和发电机输入转矩2T (从动轮转矩)采用平衡电机外壳(定子)的方法来测定。电动机和发电机的外壳支承在支座的滚动轴承中,并可绕转子的轴线摆动。当电动机通过带传动带动发电机转动后,由于受转子转矩的反作用,电动机定子将向转子旋转的相反方向倾倒,发电机的定子将向转子旋转的相同方向倾倒,翻转力的大小可通过力传感器测得,经过计算电路计算可得到作用于电机和发电机定子的转矩,其大小与主、从动轮上的转矩1T 、2T 相等。

机械设计齿轮传动

第十二章齿轮传动 1、图示为两级斜齿圆柱齿轮减速器,已知条件如图所示。试问: (1)画出轴II和轴III的转向。 (2)低速级斜齿轮的螺旋线方向应如何选择才能使中间轴Ⅱ上两齿轮所受的轴向力相反? (3)低速级小齿轮的螺旋角β2应取多大值,才能使轴Ⅱ上轴向力相互抵消? (4)画出各个齿轮所受轴向力。 1 2 3 4 2、今有两对斜齿圆柱齿轮传动,主动轴传递的功率P1=13kW,n1=200r/min,齿轮的法面模数m n=4mm,齿数z1=60均相同,仅螺旋角分别为9°与18°。试求各对齿轮传动轴向力的大小? 3、图所示为二级斜齿圆柱齿轮减速器。已知:齿轮1的螺旋线方向和轴III的转向,齿轮2的参数m n=3mm,z2=57, β2 =14°;齿轮3的参数m n=5mm,z3=21。试求: (1)为使轴Ⅱ所受的轴向力最小,选择各齿轮的螺旋线方向,并在图上标出; (2)在图b上标出齿轮2、3所受各分力的方向; (3)如果使轴Ⅱ的轴承不受轴向力,则齿轮3的螺旋角β3应取多大值(忽略摩擦损失)?

10、分析图中斜齿圆柱齿轮传动的小齿轮受力,忽略摩擦损失。己知:小齿轮齿数221=z ,大齿轮齿数902=z ,法向模数 mm m 2n =,中心距mm a 120=,传递功率KW P 2=,小齿轮转速m in /3201r n =,小齿轮螺旋线方向右旋。求: (1) 大齿轮螺旋角β大小和方向; (2) 小齿轮转矩1T ; (3) 小齿轮和大齿轮受力的大小和方向,并在图上画出。 11、有一齿轮传动如图所示,已知:281=z ,702=z ,1263=z ,模数mm m 4n =,压力角ο20=α,中心距mm a 2001=, mm a 4002=,输入轴功率kW P 101=,转速m in /10001r n =,不计摩擦。 (1) 计算各轴所受的转矩; (2)分析中间齿轮的受力,在图中画出,并计算所受各力的大小。 13、图示二级直齿圆柱齿轮减速器,高速级和低速级的传动比相等,u 1=u 2=3,低速级的齿宽系数为高速级的1.3倍,齿轮材料为45钢,小齿轮均调质处理,大齿轮均正火处理,其许用应力为: 齿轮1:[ H ]1=590MPa ;齿轮 2:[H ] 2=490MPa ;齿轮1:[H ] 3=580MPa ;齿轮1:[H ] 4=480MPa 两级齿轮的载荷系数K 、Z E 、Z H 、Z 均相同,其中高速级已根据接触强度算得d 1=75mm ,若使两对齿轮等接触强度,试问低速级小齿轮的直径d 3应为多少?

螺旋传动设计

螺旋传动设计 滑动螺旋传动的设计计算 设计计算步骤: 1.耐磨性计算 2.螺杆的强度计算 3.螺母螺纹牙的强度计算 4.螺母外径与凸缘的强度计算 5.螺杆的稳定性计算 螺旋传动常用材料见下表: 表:螺旋传动常用的材料 耐磨性计算 滑动螺旋的磨损与螺纹工作面上的压力、滑动速度、螺纹表面粗糙度以及润滑状态等因素有关。其中最主要的是螺纹工作面上的压力,压力越大螺旋副间越容易形成过度磨损。因此,滑动螺旋的耐磨性计算,主要是限制螺纹工作面上的 压力p,使其小于材料的许用压力[p]。

如图5-46所示,假设作用于螺杆的轴向力为Q(N),螺纹的承压面积(指螺纹工作表面投影到垂直于轴向力的平面上的面积)为A(mm2),螺纹中径为小(mm),螺纹工作高度为H(mm),螺纹螺距为 P(mm),螺母高度为 D(mm),螺纹工件圈数为 u=H/P 。则螺纹工作面上的耐磨性条件为 『5-43』 上式可作为校核计算用。为了导出设计计算式,令ф=H/d 2,则H=фd 2 ,, 代入式(5-43)引整理后可得 【5-44】 对于矩形和梯形螺纹,h=0.5P,则 【5-46】 对于30o锯齿形螺纹。h=0.75P,则 【5-47】 螺母高度 H=фd2 式中:[P]为材料的许用压力,MPa,见表5-13;ф值一般取1.2~3.5。对于整体螺母,由于磨损后不能凋整间隙,为使受力分布比较均匀,螺纹工作圈数不宜过多,故取ф=1.2~2.5对于剖分螺母和兼作支承的螺母,可取ф=2.5~3.5只有传动精度较高;载荷较大,要求寿命较长时,才允许取ф=4。 根据公式算得螺纹中径d 2 后,应按国家标准选取相应的公称直径d及螺距P。螺纹工作圈数不宜超过10圈。

机械设计题库06带传动要点

带传动 一选择题 (1) 带传动不能保证精确的传动比,其原因是 A. 带容易变形和磨损 B. 带在带轮上打滑 C. 带的弹性滑动 D. 带的材料不遵守胡克定律 (2) 带传动的设计准则为。 A. 保证带传动时,带不被拉断 B. 保证带传动在不打滑的条件下,带不磨损 C. 保证带在不打滑的条件下,具有足够的疲劳强度 (3) 普通V带轮的槽楔角随带轮直径的减小而 A. 增大 B. 减小 C. 不变 (4) V带轮槽楔角?与V带楔角θ间的关系是 A. ?=θ B. ?>θ C. ?<θ (5) 设计V带传动时发现V带根数过多,最有效的解决方法是。 A. 增大传动比 B. 加大传动中心距 C. 选用更大截面型号的V带 (6) 带传动中紧边拉力为F1,松边拉力为F2,则其传递的有效圆周力为 A. F1+F2 B. (F1-F22 C. (F1+F22 D. F1-F2 (7) 要求单根V带所传递的功率不超过该单根V带允许传递的功率P,这样,带传动就不会产生失效。 A. 弹性滑动 B. 疲劳断裂 C. 打滑和疲劳断裂 D. 打滑 E. 弹性滑动和疲劳断裂 (8) 在普通V带传动中,从动轮的圆周速度低于主动轮的圆周速度,则v2

(11) V带的楔角等于。 A. 40 B. 35 C. 30 D. 20 (12) V带带轮的轮槽角。 A. 大于 B. 等于 C. 小于 D. 小于或等于 (13) 带传动采用张紧轮的目的是。 A. 减轻带的弹性滑动 B. 提高带的寿命 C. 改变带的运动方向 D. 调节带的初拉力 (14) V带的参数中, A. 截面尺寸 B. 长度 C. 楔角 D. 带厚度与小带轮直径的比值 (15) 在各种带传动中, A. 平带传动 B. V带(三角带)传动 C. 多楔带传动 D. 圆带传动 (16) 当带的线速度v 30m/s时,一般采用来制造带轮。 A. 铸铁 B. 优质铸铁 C. 铸钢 D. 铝合金 (17) 为使V带(三角带)传动中各根带受载均匀些,带的根数z一般不宜超过根。 A. 4 B. 6 C. 10 D. 15 (18) 带传动中,两带轮与带的摩擦系数相同,直径不等,如有打滑则先发生轮上。 A. 大 B. 小 C. 两带 D. 不一定哪个 (19) 采用张紧轮调节带传动中带的张紧力时,张紧轮应安装在。 A. 紧边外侧,靠近小带轮处 B. 紧边内侧,靠近小带轮处 C. 松边外侧,靠近大带轮处 D. 松边内侧,靠近大带轮处 C. 轮的转速 D. 链条的速度、载荷性质 (20) 带传动的中心距过大时,会导致。 A. 带的寿命短 B. 带的弹性滑动加剧 C. 带在工作时会产生颤动 D. 小带轮包角减小而易产生打滑 (21) V带传动,最后算出的实际中心距a与初定的中心距a0不一致,这是由于。 A. 传动安装时有误差 B. 带轮加工有尺寸误差 C. 带工作一段时间后会松弛,需预先张紧 D. 选用标准长度的带 (22) 带和带轮间的摩擦系数与初拉一定时,,则带传动不打滑时的最大有效圆周力也愈大。 A. 带轮愈宽 B. 小带轮上的包角愈大 C. 大带轮上的包角愈大 D. 带速愈低

机械设计带传动习题及答案

百分之一叫做丝《对象》里面的《变换》就是相当于word里面的复制 金立GN180,,1499元 4、带传动的弹性滑动现象是不可避免的。(√) 5、正确安装在槽轮中的V带,其底面与轮槽的底面是不接触的。(√) 6、带的弹性滑动现象是可以避免的。(×) 7、所有的带传动都是利用带和带轮之间的摩擦传递运动和动力的。(×) 8、在带传动中,打滑是由于带与带轮之间的摩擦力不够大而造成的。(√) 9、带轮的槽角应小于V带的截面楔角。(√) 10、V带的截型有A、B、C、D、E、F、G七种。(×) 11、V带轮的槽角均小于V带截面的楔角。(√) 12、带传动在工作时产生弹性滑动是由于传动过载。(×) 13、正是由于过载时产生了“弹性滑动”,故带传动对传动系统具有过载保护作用。(×) 14、V带的长度是指其基准长度。(√) 1、V带中,带截面楔角为40°,带轮的轮槽角应为(b)。 A:大于40°B:小于40°C:等于40°; 2、能保证瞬时传动比恒定的传动是(c )。 A:带传动;B:链传动;C:齿轮传动; 3、线绳结构的V带,其线绳位于带的(b)。 A:顶胶层;B:抗拉层;C:底胶层 4、下列图所示的V带传动中,哪个图中的张紧轮位置是最合适的?(a )。 5、带传动中,带每转一周,拉应力是 a 。()。 A:有规律变化的;B:不变的C:无规律变化的; 6、带传动的最大应力发生在 c 。 A:绕入从动轮处;B:绕出从动轮处; C:绕入主动轮处;D:绕出主动轮处; 7、带传动的主要失效形式是带的( d)。 A:磨损和疲劳点蚀;B:磨损和胶合; C:胶合和打滑;D:疲劳破坏和打滑; 8、带传动是依靠(b )来传递运动和动力的。 A:主轴的动力;B:带与带轮之间的摩擦力; C:主动轮上的转矩;D:从动轮上的转矩; 1、带传动中,打滑是怎样产生的?是否可以避免?

齿轮几何参数设计计算

第2章渐开线圆柱齿轮几何参数设计计算 2.1 概述 渐开线圆柱齿轮设计是齿轮传动设计中最常用、最典型的设计,掌握其设计方法是齿轮设计者必须具备的,对于其它类型的传动也有很大的帮助。在此重点讨论渐开线圆柱齿轮设计的设计技术。 2.2 齿轮传动类型选择 直齿(无轴向力) 斜齿(有轴向力,强度高,平稳) 双斜齿(无轴向力,强度高,平稳、加工复杂) 2.3 齿轮设计的主要步骤 多级速比分配 单级中心距估算 齿轮参数设计 齿轮强度校核 齿轮几何精度计算 2.4 齿轮参数设计原则 (1) 模数的选择 模数的选择取决于齿轮的弯曲承载能力,一般在满足弯曲强度的条件下,选择较小的模数,对减少齿轮副的滑动率、増大重合度,提高平稳性有好处。但在制造质量没有保证时,应选择较大的模数,提高可靠性,模数増大对动特性和胶合不利。 模数一般按模数系列标准选取,对动力传动一般不小于2 对于平稳载荷:mn=(0.007-0.01)a 对于中等冲击:mn=(0.01-0.015)a 对于较大冲击:mn=(0.015-0.02)a (2)压力角选择 an=20 大压力角(25、27、28、30)的优缺点:

优点:齿根厚度和渐开线部分的曲率半径增大,对接触弯曲强度有利。齿面滑动速度减小,不易发生胶合。根切的最小齿数减小。缺点:齿的刚度增大,重合度减小,不利于齿轮的动态特性。轴承所受的载荷增大。过渡曲线长度和曲率半径减小,应力集中系数增大。 小压力角(14.5、15、16、17.5、18)的优缺点: 优点:齿的刚度减小,重合度增大,有利于齿轮的动态特性。轴承所受的载荷减小。缺点:齿根厚度和渐开线部分的曲率半径减小,对接触弯曲强度不利。齿面滑动速度增大,易发生胶合。根切的最小齿数增多。 (3)螺旋角选择 斜齿轮螺旋角一般应优先选取整:10-13. 双斜齿轮螺旋角一般应优先选取:26-33. 螺旋角一般优先取整数,高速级取较大,低速级取较小。 考虑加工的可能性。 螺旋角增大的优缺点: 齿面综合曲率半径增大,对齿面接触强度有利。 纵向重合度增大,对传动平稳性有利。 齿根的弯曲强度也有所提高(大于15度后变化不大)。 轴承所受的轴向力增大。 齿面温升将增加,对胶合不利。 断面重合度减小。 (4)齿数的选择 最小齿数要求(与变位有关) 齿数和的要求 齿数互质要求 大于100齿的质数齿加工可能性问题(滚齿差动机构) 高速齿轮齿数齿数要求 增速传动的齿数要求 (5)齿宽和齿宽系数的选择 一般齿轮的齿宽由齿宽系数来确定, φa=b/a φd=b/d1 φm=b/mn φa=(0.2-0.4)

高职《机械设计基础》螺纹联接与螺旋传动习题含答案

高职《机械设计基础》螺纹联接与螺旋传动 习题含答案 机械设计基础 学号:班级:姓名: 螺纹联接与螺旋传动 一、单项选择题 1 普通平键联结的主要用途是使轴与轮毂之间。 A 沿轴向固定并传递轴向力 B 沿轴向可作相对滑动并具有导向作用 C 沿周向固定并传递转矩 D 安装与拆卸方便 2 键的剖面尺寸通常是根据按标准选择。 A 传递转矩的大小 B 传递功率的大小 C 轮毂的长度 D 轴的直径 3 键的长度主要是根据来选择。 A 传递转矩的大小 B 轮毂的长度 C 轴的直径 4 能够构成紧键联结的两种键是。 A 楔键和半圆键 B 平键和切向键 C 半圆键和切向键 D 楔键和切向键 5 楔键和,两者的接触面都具有1:100的斜度。 A 轴上键槽的底面 B 轮毂上键槽的底面 C 键槽的侧面

6 楔键联结的主要缺点是。 A 键的斜面加工困难 B 键安装时易损坏 C 键装入键槽后,在轮毂中产生初应力 D 轴和轴上的零件对中性差 7 切向键联结的斜度是做在上。 A轮毂键槽的底面 B 轴的键槽底面 (3)一对键的接触面(4)键的侧面 8 平键联结如不能满足强度条件要求时,可在轴上安装一对平键,使它们沿圆周相隔。 A 90o B 120o C 135o D 180o 9 半圆键联结的主要优点是。 A 对轴的强度削弱较轻 B 键槽的应力集中较小 C 工艺性好,安装方便 10 当螺纹公称直径、牙型角、螺纹线数相同时,细牙螺纹的自锁性能比粗牙螺纹的自锁性能。 A. 好 B. 差 C. 相同 D. 不一定 11 用于连接的螺纹牙型为三角形,这是因为三角形螺纹。 A. 牙根强度高,自锁性能好 B. 传动效率高 C. 防振性能好 D. 自锁性能差 12 用于薄壁零件连接的螺纹,应采用。 A. 三角形细牙螺纹 B. 梯形螺纹

变速器的设计计算

变速器的设计计算 一 确定变速器的主要参数 一、各挡传动比的确定 不同类型的变速器,其挡位数也不尽相同,本设计为五挡变速器。传动比为已知:i 1=6.02,i 2=3.57, i 3=2.14,i 4=1.35,i 5=1.00, i R =5.49. 二、中心距A 的选取 初选中心距A 时,可根据下述经验公式初选: A=K 式中,A 为变速器中心距(mm);A K 为中心距系数,货车:A K =8.6-9.6;emax T 为发动机最大转矩(emax T =165 N ·m );1i 为变速器一挡传动比(i 1 =6.02);g η为变速 器传动效率,取96%。本设计中,取A K =9.0。 将数值代入公式,算得A=88.5849mm ,故初取A=89mm 。 三、变速器的轴向尺寸 影响变速器壳体轴向尺寸的因素有挡数、换挡机构形式以及齿轮形式。设计时可根据中心距A 的尺寸参照下列经验关系初选: 五挡货车变速器壳体轴向尺寸:(2.7~3.0) A=239.18mm ~265.75mm 。 选用壳体轴向尺寸为260mm 。 四、齿轮参数 (1)齿轮模数 变速器齿轮模数:货车最大总质量在1.8~14.0t 的货车为2.0~3.5mm 。齿轮模数由齿轮的弯曲疲劳强度或最大载荷下的静强度所决定。当增大尺宽而减小模数时将降低变速器的噪声,增大模数并减小尺宽和中心距将减小变速器的质量。 对于斜齿轮 m n =K m 3max e T 式中 m n ——齿轮模数 mm

K m ——为模数系数,一般K m =0.28~0.37。本设计中取K m =0.35。 将数值代入计算得 m n =1.919 mm,取m n =2。 对于直齿轮 m=K 1 m 3 1 T ? 式中 m——一挡齿轮模数 mm K 1 m ——一挡齿轮模数系数,一般K 1 m =0.28~0.37。本设计中取 K 1 m =0.30 T 1——一挡输出转矩,T 1 =T max e *i 1 i 1 ——一挡传动比 当数值代入计算得m=2.993 mm,取m=3 参考国标(GB1357-87)规定的第一系列模数: 一档和倒挡的模数: m=3mm; 二,三,四,五挡的模数:m n =2mm; (2)压力角α 齿轮压力角较小时,重合度较大并降低了轮齿刚度,为此能减少进入啮合和退出啮合时的动载荷,使传动平稳,有利于降低噪声;压力角增大时,可提高齿轮的抗弯强度和表面接触强度。本设计中采用标准压力角α=20°。 (3)螺旋角β 选取斜齿轮的螺旋角,应该注意它对齿轮工作噪声、轮齿的强度和轴向力有影响。选用大些的螺旋角时,会使齿轮啮合的重合度增加,因而工作平稳,噪声降低,齿轮的强度也相应提高。因此从提高低挡齿轮的抗弯强度出发,β不宜过大,以15°~25°为宜;而从提高高挡齿轮的接触强度和增加重合度着眼,应选用较大的螺旋角。 螺旋方向的选择:斜齿轮传递转矩时,要产生轴向力并作用在轴承上。设计时应力求中间轴上同时工作的两对齿轮的轴向力相互抵消,以减少轴荷,提高寿命。为此,中间轴上的全部齿轮一律采用右旋,而一、二轴上的斜齿轮取左旋,其轴向力经轴承盖由壳体承受。 为使工艺简便,中间轴轴向力不大时,可将螺旋角仅取为三种。

哈工大机械设计大作业螺旋传动设计(千斤顶)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械设计大作业说明书 大作业名称:机械设计大作业 设计题目:螺旋传动设计 班级: 设计者: 学号: 指导教师:宋宝玉 设计时间:2014·10·03 哈尔滨工业大学

目录 1设计题目-------------------------------------------------------------------------------------------------------3 2螺母、螺杆选材----------------------------------------------------------------------------------------------3 3耐磨性计算-----------------------------------------------------------------------------------------------------3 4螺杆强度校核-------------------------------------------------------------------------------------------------3 5螺纹牙强度校核----------------------------------------------------------------------------------------------4 6螺纹副自锁条件校核---------------------------------------------------------------------------------------5 7螺杆稳定性校核----------------------------------------------------------------------------------------------5 8螺母外径及凸缘设计---------------------------------------------------------------------------------------6 9手柄设计--------------------------------------------------------------------------------------------------------6 10底座设计-------------------------------------------------------------------------------------------------------7 11各部分尺寸及参数-----------------------------------------------------------------------------------7 12参考资料-------------------------------------------------------------------------------------------------------8

《机械设计基础》精彩试题库_V带传动

第13章带传动和链传动 习题与参考答案 一、判断题: 1.限制带轮最小直径的目的是限制带的弯曲应力。 A.正确 B. 错误 2.同规格的窄V带的截面宽度小于普通V带。 A.正确 B. 错误 3.带传动接近水平布置时,应将松边放在下边。 A.正确 B. 错误 4.若设计合理,带传动的打滑是可以避免的,但弹性滑动却无法避免。 A.正确 B. 错误 5.在相同的预紧力作用下,V带的传动能力高于平带的传动能力。 A.正确 B. 错误 6.带传动中,实际有效拉力的数值取决于预紧力、包角和摩擦系数。 A.正确 B. 错误 7.带传动的最大有效拉力与预紧力、包角和摩擦系数成正比。 A.正确 B. 错误 8.适当增加带长,可以延长带的使用寿命。 A.正确 B. 错误 9.在链传动中,如果链条中有过渡链节,则极限拉伸载荷将降低。

A.正确 B. 错误 10.链轮齿数越少,越容易发生跳齿和脱链。 A.正确 B. 错误 11.在链传动中,链条的磨损伸长量不应超过1%。 A.正确 B. 错误 12.为了使各排链受力均匀,因此链的排数不宜过多。 A.正确 B. 错误 13.齿形链上设有导扳,导板齿形链的导向性好。。 A.正确 B. 错误 二、选择题: 1.选取V带型号,主要取决于()。 A.带传动的功率和小带轮转速 B.带的线速度 C.带的紧边拉力 2.设计带传动时,考虑工作情况系数K A的目的是()。 A.传动带受到交变应力的作用 B.多根带同时工作时的受力不均 C.工作负荷的波动 3.V带的楔角为40°,为使带绕在带轮上能与轮槽侧面贴合更好,设计时应使轮槽楔角()。 A.小于40° B.等于40° C.大于40°

皮带传动系统机械设计

目录 一设计任务 (2) 二电动机选择 (3) 三各级传动比分配 (5) 四V带设计 (7) 五齿轮设计 (10) 六传动轴设计 (14) 6.1输出轴的计算 (14) 6.2输入轴的计算 (18) 七轴承的校核 (22) 八键连接收割机 (22) 九联轴器设计 (23) 十箱体结构的设计 (23) 十一设计小结 (25) 参考文献 (26)

一设计任务 设计带式输送机的传动系统。要求传动系统含有单级圆柱齿轮减速器以及V 带传动。 1 、传动系统方案 带式输送机有电动机驱动,电动机1通过V带传动2将动力传入单机圆柱 齿轮减速器3,再通过联轴器4,将动力传至输送机滚筒5,带式输送带6工作。 2 、原始数据 设输送带最大有效拉力F=2800N,输送带工作速度v=10.5m/s,输送机滚筒 直径为D=450mm。 3 、工作条件 带式输送机在常温下连续工作、单向运转;空载起动,工作载荷较平稳; 两班制(每班工作8h)要求减速器设计寿命为8年,大修期为2~3年,中批量 生产;输送带工作速度v的允许误差为±5%,三相交流电源的电压为380/220V。

二 电动机选择 1、电动机类型和结构的选择: 选择Y 系列三相异步电动机,此系列电动机属于一般用途的全封闭自扇冷电动机,其结构简单,工作可靠,价格低廉,维护方便,适用于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。 2、电动机容量的选择: 根据已知条件,工作机所需要的有效功率为 KW Fv P w 76.41000 7 .128001000=?== 由电动机至运输带的传动总效率为: η=η23ηa 33η33η43η5 式中:ηa 、η2、η3、η4、η5分别为带传动、轴承、齿轮传动、联轴器和卷 筒的传动效率。 取η a =0.98、η2=0.95、η3=0.98、η4=0.99、η5=0.96 则: η=0.83279 工作时,电动机所需功率为 kW P P w d 716.583279 .076 .4== = η 由《课程设计》表12-1可知,满足P e ≥P d 条件的Y 系列三相异步电动机额定功率P e 应取为7.5KW 。 3、电动机转速的选择: 根据已知条件,可知输送机滚筒的工作转速 nw=60000v/πD=(6000031.7)/(3.143450)=72.1868r/min 初选同步转速为1500 r/min 和1000 r/min 的电动机,对应与额定功率P e 为7.5KW ,电动机型号分别为Y132M-4型和Y160M-6型。 表1

机械设计齿轮传动设计答案

题10-6 图示为二级斜齿圆柱齿轮减速器,第一级斜齿轮的螺旋角1β的旋向已给出。 (1)为使Ⅱ轴轴承所受轴向力较小,试确定第二级斜齿轮螺旋角β的旋向,并画出各轮轴向力 、径向力及圆周力的方向。 (2) 若已知第一级齿轮的参数为:Z 1=19,Z 2=85,m n =5mm,020=n α,a=265mm, 轮1的传动功率P=6.25kW,n 1=275 r/min 。试求轮1上所受各力的大小。 解答: 1.各力方向:见题解10-6图。 2.各力的大小:m N 045.217m N 27525.69550 95501 11?=??=?=n P T 148.11,9811.0265 2) 8519(52)(cos 211==?+?=+=ββa z z n m ; mm 83.96cos 1 1== β z n m d ; N 883tan ,N 1663cos tan ,N 448320********* 1 1======ββαt a t r t F F n F F d T F ; 题10-7 图示为直齿圆锥齿轮-斜齿圆柱齿轮减速器,为使Ⅱ轴上的轴向力抵消一部分,试确定一对斜齿圆柱齿轮螺旋线的方向;并画出各齿轮轴向力、径向力及圆周力的方向。 解答:齿轮3为右旋,齿轮4为左旋; 力的方向见题解10-7图。 题解10-6图 题10-6图

题10-9 设计一冶金机械上用的电动机驱动的闭式斜齿圆柱齿轮传动, 已知:P = 15 kW,n 1 =730 r/min,n 2 =130 r/min,齿轮按8级精度加工,载荷有严重冲击,工作时间t =10000h,齿轮相对于轴承为非对称布置,但轴的刚度较大,设备可靠度要求较高,体积要求较小。(建议两轮材料都选用硬齿面) 解题分析:选材料→确定许用应力→硬齿面,按轮齿的弯曲疲劳强度确定齿轮的模数→确定齿轮的参数和几何尺寸→校核齿轮的接触疲劳强度→校核齿轮的圆周速度 解答:根据题意,该对齿轮应该选用硬齿面,其失效形式以轮齿弯曲疲劳折断为主。 1. 选材料 大、小齿轮均选用20CrMnTi 钢渗碳淬火([1]表11-2),硬度为56~62HRC ,由[1]图 11-12 和[1]图11-13查得:MPa 1500,MPa 430lim lim ==H F σσ 题解10-7图 题10-7图

机械设计带传动思考题答案

《带传动》课堂练习题 一、填空题 1、普通V带传动中,已知预紧力F0=2500 N,传递圆周力为800 N,若不计带的离心力,则工作时的紧边拉力F1为2900 ,松边拉力F2为2100 。 2、当带有打滑趋势时,带传动的有效拉力达到最大,而带传动的最大有效拉力决定于F0、?、 f 三个因素。 3、带传动的设计准则是保证带疲劳强度,并具有一定的寿命。 4、在同样条件下,V带传动产生的摩擦力比平带传动大得多,原因是V带在接触面上所受的正压力大于平带。 5、V带传动的主要失效形式是疲劳断裂和打滑。 6、皮带传动中,带横截面内的最大拉应力发生在紧边开始绕上小带轮处;皮带传动的打滑总是发生在皮带与小带轮之间。 7、皮带传动中,预紧力F0过小,则带与带轮间的摩擦力减小,皮带传动易出现打滑现象而导致传动失效。 8、在V带传动中,选取小带轮直径D1≥D1lim。的主要目的是防止带的弯曲应力过大。 9、在设计V带传动时,V带的型号可根据计算功率Pca 和小带轮转速n1 查选型图确定。 10、带传动中,打滑是指带与带轮之间发生显着的相对滑动,多发生在小带轮上。刚开始打滑时紧边拉力F1与松边拉力F2的关系为F1=F2e f?。 11、带传动中的弹性滑动是由松紧边的变形不同产生的,可引起速度损失,传动效率下降、带磨损等后果,可以通过减小松紧边的拉力差即有效拉力来降低。 12、带传动设计中,应使小带轮直径d≥d rnin,这是因为直径越小,带的弯曲应力越大;应使传动比i ≤7,这是因为中心距一定时传动比越大,小带轮的包角越小,将降低带的传动性能。 13、带传动中,带上受的三种应力是拉应力,弯曲应力和离心应力。最大应力等于?1+?b1+?c ,它发生在紧边开始绕上小带轮处处,若带的许用应力小于它,将导致带的疲劳失效。 14、皮带传动应设置在机械传动系统的高速级,否则容易产生打滑。

机械设计考研练习题-螺纹联接和螺旋传动

螺纹联接和螺旋传动 一 选择题 (1) 在常用螺纹中,效率最低、自锁性最好的是 C ,效率较高,牙根强度较大、制造方便的是 B ;螺纹联接常用 C ,传动螺纹常用 B 。 A. 矩形螺纹 B. 梯形螺纹 C. 三角螺纹 (2) 螺纹副在摩擦因数一定时,螺纹的牙型角越大,则 D 。 A. 当量摩擦因数越小,自锁性能越好 B. 当量摩擦因数越小,自锁性能越差 C. 当量摩擦因数越大,自锁性能越差 D. 当量摩擦因数越大,自锁性能越好 (3) 当轴上安装的零件要承受轴向力时,采用 A 来轴向定位,所能承受的轴向力较大。 A. 圆螺母 B. 紧定螺钉 C. 弹性挡圈 (4) 一箱体与箱盖用螺纹联接,箱体被联接处厚度较大,且材料较软,强度较低,需要经常装拆箱盖进行修理,则一般宜采用 A 联接。 A. 双头螺柱联接 B. 螺栓联接 C. 螺钉联接 (5) 在铰制孔用螺栓联接中,螺栓杆与孔的配合为 B 。 A. 间隙配合 B. 过渡配合 C. 过盈配合 (6) 紧螺栓联接受轴向外载荷,假定螺栓的刚度b C 与被联接件的刚度m C 相等,联接的预紧力为0F ,要求受载后结合面不分离,当外载荷F 等于预紧力0F 时,则 D 。 A. 被联接件分离,联接失效 B. 被联接件即将分离,联接不可靠 C. 联接可靠,但不能继续再加载 D. 联接可靠,只要螺栓强度足够,还可以继续加大外载荷F (7) 受轴向载荷的紧螺栓联接,为保证被联接件不出现缝隙,因此 B A. 残余预紧力1F 应小于零 B. 残余预紧力1F 应大于零 C. 残余预紧力1F 应等于零 D. 预紧力0F 应大于零 (8) 图5-1所示钢板用普通螺栓联接。已知横向工作载荷为F 结合面之间的摩擦因数15.0=f ,为使联接可靠,取防滑系数2.1s =K ,则每个螺栓需要的预紧力0F 为 B 。

机械设计——齿轮传动(1)

第十二章 齿轮传动 1、图示为两级斜齿圆柱齿轮减速器,已知条件如图所示。试问: (1)画出轴II 和轴III 的转向。 (2)低速级斜齿轮的螺旋线方向应如何选择才能使中间轴Ⅱ上两齿轮所受的轴向力相反? (3)低速级小齿轮的螺旋角β2应取多大值,才能使轴Ⅱ上轴向力相互抵消? (4)画出各个齿轮所受轴向力。 2、今有两对斜齿圆柱齿轮传动,主动轴传递的功率P 1=13kW ,n 1=200r/min ,齿轮的法面模数m n =4mm ,齿数z 1=60均相同,仅螺旋角分别为9°与18°。试求各对齿轮传动轴向力的大小? 3、图所示为二级斜齿圆柱齿轮减速器。已知:齿轮1的螺旋线方向和轴III 的转向,齿轮2的参数m n =3mm ,z 2=57, β2 =14°;齿轮3的参数m n =5mm ,z 3=21。试求: (1)为使轴Ⅱ所受的轴向力最小,选择各齿轮的螺旋线方向,并在图上标出; (2)在图b 上标出齿轮2、3所受各分力的方向; (3)如果使轴Ⅱ的轴承不受轴向力,则齿轮3的螺旋角β3应取多大值(忽略摩擦损失)? 10、分析图中斜齿圆柱齿轮传动的小齿轮受力,忽略摩擦损失。己知:小齿轮齿数221=z ,大齿轮齿数902=z ,法向模数 mm m 2n =,中心距mm a 120=,传递功率KW P 2=,小齿轮转速m in /3201r n =,小齿轮螺旋线方向右旋。求: (1) 大齿轮螺旋角β大小和方向; 1 2 3 4

(2) 小齿轮转矩1T ; (3) 小齿轮和大齿轮受力的大小和方向,并在图上画出。 11、有一齿轮传动如图所示,已知:281=z ,702=z ,1263=z ,模数mm m 4n =,压力角 20=α,中心距mm a 2001=, mm a 4002=,输入轴功率kW P 101=,转速m in /10001r n =,不计摩擦。 (1) 计算各轴所受的转矩; (2)分析中间齿轮的受力,在图中画出,并计算所受各力的大小。 13、图示二级直齿圆柱齿轮减速器,高速级和低速级的传动比相等,u 1=u 2=3,低速级的齿宽系数为高速级的1.3倍,齿轮材料为45钢,小齿轮均调质处理,大齿轮均正火处理,其许用应力为: 齿轮1:[ H ]1 =590MPa ;齿轮2:[ H ] 2 =490MPa ;齿轮1:[ H ] 3 =580MPa ;齿轮1:[ H ] 4 =480MPa 两级齿轮的载荷系数K 、Z E 、Z H 、Z 均相同,其中高速级已根据接触强度算得d 1=75mm ,若使两对齿轮等接触强度,试问低速级小齿轮的直径d 3应为多少? 附:[]H u u bd KT Z Z Z σσε ≤+?=1 22 11E H H 14、一对闭式直齿圆柱齿轮,已知:z 1=20,z 2=60,m =3mm ,d =1,小齿轮转速n 1=950r/min ,主从动轮的许用应力[ H 1 ]=700MPa , [ H 2 ]=650MPa ,载荷系数K=1.6,节点区域系数Z H =2.5,弹性系数Z E =189.9MPa ,重合度系数Z =0.9。按接触疲劳强度, 求该对齿轮所能传递的功率。 附:[]H u u bd KT Z Z Z σσε ≤+?=122 11E H H

螺旋齿轮传动设计计算

% 螺旋齿轮传动设计计算 % 已知条件:齿数、法面压力角、法面模数、齿顶高系数、顶隙系数、轴交角 z1=17;z2=50;alpha_n=20;m_n=2;ha=1;C=0.25;Sigma=60;hd=pi/180; % 计算齿轮的分度圆柱压力角、基圆柱和节圆柱螺旋角、法面和端面节圆压力角 beta_1=0.5*(Sigma-1);beta_2=beta_1; fprintf(' 两齿轮螺旋角 beta_1 = %3.4f °\n',beta_1); alpha_t1=atan(tan(alpha_n*hd)/cos(beta_1*hd));alpha_t2=alpha_t1; fprintf(' 两齿轮分度圆柱螺旋角 alpha_t1 = %3.4f °\n',alpha_t1/hd); beta_b1=atan(tan(beta_1*hd)*cos(alpha_t1));beta_b2=beta_b1; fprintf(' 两齿轮基圆柱螺旋角 beta_b1 = %3.4f °\n',beta_b1/hd); k=sin(beta_b1)/sin(beta_b1); beta_1p=atan(k*sin(Sigma*hd)/(1+k*cos(Sigma*hd)));beta_2p=beta_1p; fprintf(' 两齿轮节圆柱螺旋角 beta_1p = %3.4f °\n',beta_1p/hd); alpha_np=acos(sin(beta_b1)/sin(beta_1p)); fprintf(' 两齿轮法面节圆压力角 alpha_np = %3.4f °\n',alpha_np/hd); alpha_t1p=acos(tan(beta_b1)/tan(beta_1p));alpha_t2p=alpha_t1p; fprintf(' 两齿轮端面节圆压力角 alpha_t1p = %3.4f °\n',alpha_t1p/hd); % 确定两齿轮的变位系数 inv_t1p=tan(alpha_t1p)-alpha_t1p;inv_t1=tan(alpha_t1)-alpha_t1; inv_t2p=tan(alpha_t2p)-alpha_t2p;inv_t2=tan(alpha_t2)-alpha_t2; xc=(z1*(inv_t1p-inv_t1)+z2*(inv_t2p-inv_t2))/(2*tan(alpha_n*hd)) x_n1=input(' 选择小齿轮法面变位系数 x_n1 = '); x_n2=xc-x_n1; fprintf(' 大齿轮法面变位系数 x_n2 = %3.4f \n',x_n2); % 计算齿轮的几何尺寸 m_np=m_n*cos(alpha_n*hd)/cos(alpha_np); fprintf(' 公共齿条的法面模数 m_np = %3.4f mm \n',m_np); r_1p=m_np*z1/(2*cos(beta_1*hd)); r_2p=m_np*z2/(2*cos(beta_2*hd)); fprintf(' 小齿轮节圆柱半径 r_1p = %3.4f mm \n',r_1p); fprintf(' 大齿轮节圆柱半径 r_2p = %3.4f mm \n',r_2p); a=(r_1p+r_2p); fprintf(' 两齿轮最小中心距 a = %3.4f mm \n',a); r_1=m_n*z1/(2*cos(beta_1*hd)); r_2=m_n*z2/(2*cos(beta_2*hd));

机械设计计算题及答案

《机械设计计算题》试题库 29001单级齿轮减速器由电动机直接驱动,减速器输入功率P=7.5kW,电动机转速n=1450r/min,齿轮齿数z 1 =20,z2=50,减速器效率?=0.9。试求减速器输出轴的功率和转矩。 所以, 29002带式输送机的传动简图如下图所示,已知输送带输出功率为 2.51kW,现有 Y100L 2-4型电动机一台,电动机额定功率P ed =3kW,满载转速n m=1420r/min,试问此电动机 能否使用。各效率如下:?联轴器=0.99,?齿轮=0.97,?轴承=0.99。 验算此电动机能否使用 P 输入 =P输出/?总=2.51/0.895=2.805kW P ed (=3kW)>P输入(=2.805kW) 此电动机能用。 29003带式输送机的传动简图如下图所示,已知输送带的工作拉力F=2300N(F中已考虑输送带与卷筒、卷筒轴承的摩擦损耗的影响),输送带的速度v=1.1m/s,卷筒直径D=400mm,齿轮的齿数为z1=17,z2=102,z3=24,z4=109,试求传动装置的输出功率、总效率、总传动比和输入功率。各效率如下:?联轴器=0.99、?齿轮=0.97、?轴承=0.99。 1)输出功率: 2)总效率: 3)总传动比:

4)输入功率 29004一蜗杆减速器,蜗杆轴功率,传动总效率,三班制工作,如工业用电为每度0.12元,试计算五年(每年按260天计算)中用于功率损耗的费用。 功率损耗 五年中损耗能量 损耗费用元 五年中用于功率损耗的费用为74880元。 29005下图为一卷扬机传动系统简图,已知:被提升的重物W=5000N,卷筒直径D=300mm,卷筒转速n G=25r/min,电动机转速n E=720r/min,试求: 1)重物W的上升速度v; 2)卷筒的转矩T; 3)匀速提升重物时卷筒的功率P; 4)电动机所需功率P E(传动总效率?=0.886); 5)减速器总传动比?i总。 1) 2) 3)

设计带式输送机传动装置-机械设计说明书

机械设计基础课程设计 计算说明书 设计题目带式运输机上的单级圆柱齿轮减速器系机电工程系专业数控技术 班级 设计者 指导教师 2011年07 月12 日

目录 一、设计任务书 0 二、带式运输送机传动装置设计 (1) 三、普通V带传动的设计 (5) 四、直齿圆柱齿轮传动设计 (6) 五、低速轴系的结构设计和校核 (9) 六、高速轴结构设计 (16) 七、低速轴轴承的选择计算 (18) 八、低速轴键的设计 (19) 九、联轴器的设计 (20) 十、润滑和密封 (20) 十一﹑设计小结 (21) 参考资料 (22)

一.设计任务书 一.设计题目 设计带式输送机传动装置。 二.工作条件及设计要求 1.设计用于带式运输机的传动装置。 2.该机室内工作,连续单向运转,载荷较平稳,空载启动。运输带速 允许误差为 5%。 3.在中小型机械厂小批量生产,两班制工作。要求试用期为十年,大 修期为3年。 三.原始数据 第三组选用原始数据:运输带工作拉力F=1250N 运输带工作速度 V=1.5m/s 卷筒直径D=240mm 四.设计任务 1.完成传动装置的结构设计。 2.完成减速器装备草图一张(A1)。 3.完成设计说明书一份。 二.带式运输送机传动装置设计 电动机的选择 1.电动机类型的选择:按已知的工作要求和条件,选用Y型全封闭笼 型三相异步电动机 2.电动机功率的选择: P=Fv/1000=1250*1.5/1000=1.875kw E

3.确定电动机的转速:卷筒工作的转速 W n =60*1000/(π*D)=60*1000*1.5/(3.14*240)=119.43r/min 4.初步估算传动比: 总i =电动机n /卷筒n =d n /w n =43 .1191000或43 .1191500=8.37~12.55 因为根据带式运输机的工作要求可知,电动机选1000r/min 或 1500r/min 的比较合适。 5.分析传动比,并确定传动方案 (1)机器一般是由原动机,传动装置和工作装置组成。传动装置是 用来传递原动机的运动和动力,变换其运动形式以满足工作装置的需 要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工 作的性能、重量和成本。合理的传动方案除满足工作装置的功能外, 还要结构简单,制造方便,成本低廉,传动效率高和使用维护方便。 本设计中原动机为电动机、工作机为皮带输送机。传动方案采用 两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减 速器(由《机械设计基础课程设计指导书》表2.2V 带传动比在2~4 比较合适,圆柱齿轮传动比在3~5比较合适,=6~20在8.37~12.55范 围内) 选用V 带传动是V 带传动承载能力较低,在传递相同转矩时, 结构尺寸较其他形式大,但有过载保护的优点,还可以缓和和冲击振 动。

相关主题
文本预览
相关文档 最新文档