当前位置:文档之家› 绿碳化硅的用途

绿碳化硅的用途

绿碳化硅的用途
绿碳化硅的用途

绿碳化硅含SiC99%以上,自锐性好,大多用于加工硬质合金、钛合金和光学玻璃,也用于珩磨汽缸套和精磨高速钢刀具。

(1)作为磨料,可用来做磨具,如砂轮、油石、磨头、砂瓦类等。

(2)作为冶金脱氧剂和耐高温材料。

(3)高纯度的单晶,可用于制造半导体、制造碳化硅纤维。

碳化硅由于化学性能稳定、导热系数高、热膨胀系数小、耐磨性能好,除作磨料用外,还有很多其他用途,例如:以特殊工艺把碳化硅粉末涂布于水轮机叶轮或汽缸体的内壁,可提高其耐磨性而延长使用寿命1~2倍;用以制成的高级耐火材料,耐热震、体积小、重量轻而强度高,节能效果好。低品级碳化硅(含SiC约85%)是极好的脱氧剂,用它可加快炼钢速度,并便于控制化学成分,提高钢的质量。此外,碳化硅还大量用于制作电热元件硅碳棒。

碳化硅晶体是目前碳化硅应用的最新技术产品,是继第一代半导体材料和第二代半导体材料后发展起来的第三代半导体材料。又称为宽禁带半导体材料、高半导体材料等,是目前国际上的研究热点。与硅和砷化镓为代表的传统半导体材料相比,具有宽带隙、高临界击穿电场、高热导率、低介电常数,高载流子饱和浓度等特点,成为耐高温、大功率、耐高压、抗辐照的半导体器件的优选材料,可以满足现代电子器件对高温、高频、高工、高压以及抗辐射的新要求,使得它军用和航天领域的高温、高频、大功率光电器件方面具有优越的应用价值,

并逐步取代现有的硅和砷化镓基光电器件。是半导体材料领域最有前景的材料之一,可应用于航空、航天探测,核能探测及开发,卫星、汽车发动机等高温及抗辐射领域。

碳化硅的应用

碳化硅 碳化硅,又称为金钢砂或耐火砂,英文名Silicon Carbide,分子式SiC。 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。绿色至蓝黑色。介电常数7。硬度9Mobs。A-是半导体。迁移率(300 K), cm2 / (VS),400电子和50空穴,谱带间隙eV,303(0 K)和2.996(300 K);有效质量0.60电子和1.00空穴,电导性,耐高温氧化性能。相对密度3.16。熔点2830℃。导热系数(500℃)22. 5 , (1000℃)23.7 W / (m2K)。热膨胀系数:线性至100℃:5.2×10-6/ ℃,不溶于水、醇;溶于熔融碱金属氢氧化物。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。碳化硅为晶体,硬度高,切削能力较强,化学性能力稳定,导热性能好。 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 碳化硅的用途是十分广泛的,目前主要是用作磨料和耐火材料,这两项用途占了碳化硅产量中的大部分。通常磨料用的颗粒粒级很窄,反之耐火材料不同。下面分几个方面介绍碳化处的主要用途。 一、磨料 由于碳化硅具有很高的硬度、化学稳定性和一定的韧性,所以是一种用途很广的磨料,可用以制造砂轮、油石、涂附磨具或自由研磨。它主要是用于研磨玻璃、陶瓷、石材等非金属材料、铸铁及某些非铁金属,它与这些材料之间的反应性很弱。由于它是普通废料中硬度最高的材料,所以包常用以加工硬质合金、钛合金、高速钢刀具等难磨材料及修正砂轮用。碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁、橡胶使用寿命的5~20倍,也是航空飞行跑道的理想材料之一。 其中黑色碳化硅和绿色碳化硅的应用也有所差别。黑碳化硅制成的磨具,多用于切割和研磨抗张强度低的材队如玻璃、陶瓷、石料和耐火物氯同时也用于铸铁零件和有色金属材料的磨削。绿碳化硅制成的磨具,多用于硬质合金、钦合金、光学玻璃的磨削,同时也用于缸缸和高速钢刀具的精磨。 由于其优良的耐磨性,碳化硅在冶金选矿行业中也有应用。参见《碳化硅在选矿工艺中的应用》。 二、耐火材料和耐腐蚀材料 这一用途是由于它的高熔点(分解温度)、化学惰性和抗热震性。日前生产碳化硅耐火材料的主要方法包括压制和烧结碳化硅、压制和再结晶碳化硅、浇注和再结晶碳化硅、碳化硅

碳化硅的用途

碳化硅的用途 碳化硅是典型的多晶型化合物,按大类来分,有α-碳化硅和β-碳化硅两种。α-碳化硅做为磨料有黑、绿两种品种。β-碳化硅是制备碳化硅类陶瓷的主要原料。碳化硅的用途十分广泛,如:冶金、机械、化工、建材、轻工、电子、发热体。磨料可作为冶金工业的净化剂、脱氧剂和改良剂。在机械加工方面可作为合成硬质合金刀具;加工后的硅碳板可作为耐火材料用于陶瓷烧制的棚板。通过精加工后生产的微粉,可用于高科技电子元器件和远红外线辐射材料的涂料。高纯度精微粉可供国防工业航空航天器皿的涂层。对国际国内各经济领域的用途十分广阔。 碳化硅半导体能应对“极端环境”,据称,碳化硅晶片甚至可以经受住金星或太阳附近的热度。前期的研究表明,即使在560摄氏度的高温中,碳化硅晶片在没有冷却装置的情况下仍能正常运作。碳化硅晶片在通讯领域具有广阔的运用前景,能让高清晰电视发射器提供更清晰的信号和图像;也可以用在喷气和汽车引擎中,监测电机运转。同时,它还可运用于太空探索领域,帮助核动力飞船执行更繁杂的任务。法国物理学家预言,在芯片制造领域,碳化硅取代硅已为时不远。 1、磨料--主要因为碳化硅具有很高硬度,化学稳定性和一定韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自由研磨,从而来加工玻璃、陶瓷、石材、铸铁及某些非铁金属、硬质合金、钛合金、高速钢刀具和砂轮等。

2、耐火材料和耐腐蚀材料---主要因为碳化硅具有高熔点(分解度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用棚板和匣钵、炼锌工业竖缸蒸馏炉用碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 3、化工用途--因为碳化硅可在溶融钢水中分解并和钢水中离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁净化剂,即用作炼钢脱氧剂和铸铁组织改良剂。这一般使用低纯度碳化硅,以降低成本。同时还可以作为制造四氯化硅原料。 4、电工用途--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作各种电炉),非线性电阻元件,各式避雷阀片。 5、其它配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。 碳化硅用途细分: 1、有色金属冶炼工业的应用 利用碳化硅具有耐高,强度大,导热性能良好,抗冲击,作高间接加热材料,如坚罐蒸馏炉,精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等。 2、钢铁行业方面的应用 利用碳化硅的耐腐蚀,抗热冲击耐磨损,导热好的特点,用于大型高炉内衬提高了使用寿命。 3、冶金选矿行业的应用

电线种类

RVVP:铜芯聚氯乙烯绝缘屏蔽聚氯乙烯护套软电缆电压300V/300V 2-24芯[1] RG:物理发泡聚乙烯绝缘接入网电缆用于同轴光纤混合网(HFC)中传输数据模拟信号 UTP:局域网电缆用途:传输电话、计算机数据、防火、防盗保安系统、智能楼宇信息网 KVVP:聚氯乙烯护套编织屏蔽电缆用途:电器、仪表、配电装置的信号传输、控制、测量 SYWV(Y)、SYKV 有线电视、宽带网专用电缆结构:(同轴电缆)单根无氧圆铜线+物理发泡聚乙烯(绝缘)+(锡丝+铝)+聚氯乙烯(聚乙烯)[1] RVV(227IEC52/53)聚氯乙烯绝缘软电缆用途:家用电器、小型电动工具、仪表及动力照明 AVVR 聚氯乙烯护套安装用软电缆 SBVV HYA 数据通信电缆(室内、外)用于电话通信及无线电设备的连接以及电话配线网的分线盒接线用 RV、RVP 聚氯乙烯绝缘电缆[1] BV、BVR 聚氯乙烯绝缘电线用途:适用于电器仪表设备及动力照明固定布线用 RIB 音箱连接线(发烧线) KVV 聚氯乙烯绝缘控制电缆用途:电器、仪表、配电装置信号传输、控制、测量 SFTP 双绞线传输电话、数据及信息网[1] UL2464 电脑连接线 VGA 显示器线 SYV 同轴电缆无线通讯、广播、监控系统工程和有关电子设备中传输射频信号(含综合用同轴电缆) SDFAVP、SDFAVVP、SYFPY 同轴电缆,电梯专用[1]

JVPV、JVPVP、JVVP 铜芯聚氯乙烯绝缘及护套铜丝编织电子计算机控制电缆[1] 电缆规格规格表示 编辑 电缆规格通常表示法 ①单芯分支电缆规格表示法:同一回路电缆根数*(1*标称截面),0.6/1KV,[1] 如:4*(1*185)+1*95 0.6/1KV ②多芯同护套型分支电缆规格表示法:电缆芯数×标称截面-T,如:4×25-T [1] 电缆规格详细表示法 因为分支电缆包含主干电缆和支线电缆。而且两者规格结构不同,因此有两种表示方法: [1] ①将主干电缆和支线电缆分别表示, 如:干线电缆:FD-YJV-4*(1*185)+1*95 0.6/1KV [1] 支线电缆:FD-YJV-4*(1*25)+1*16 0.6/1KV 这种方法在设计时尤为简明,可以方便地表示出支线规格的不同 ②将主干电缆和支线电缆连同表示,如:FD-YJV-4 电线电缆规格 *(1*185/25)+1*95/16 0.6/1KV [1] 这种方法比较直观,但仅限于支线电缆为同一种规格的情况,无法表示支线的不同规格:

碳化硅行业发展前景简析

碳化硅行业发展前景简析 【引言】近年来,在低碳经济大潮的带动下,太阳能光伏产业迅猛发展,作为光伏产业用的材料,碳化硅特别是绿碳化硅的销售市场异常火爆,使得众多磨料磨具业界人士开始格外关注碳化硅行业。在2010年秋季全国磨料磨具行业信息交流暨第52届中国刚玉碳化硅交易会的小组分会中,碳化硅分会场一改往届与其它分会场相比人气不足的常态,势压刚玉、磨具分会场成为人气最高、讨论最激烈的会场。会上中平能化集团易成新材料有限公司董事长孙毅就碳化硅行业的发展前景作了系统的分析。 一、碳化硅行业发展现状 总量大 中国是碳化硅的生产大国和出口大国,2009年碳化硅总产量达53.5万吨左右,占全球总数的56.3%,居世界第一。我们预计,2010年截止9月份仅绿碳化硅产量就将达到80万吨。 附加值低 碳化硅行业产量大,但缺乏竞争力。尽管产量足够供应,中国制造的碳化硅产品大部分是低端和初步加工,对于某些需求供应高附加值的成品和深加工产品存在很大的差距。尤其是高性能工程陶瓷、用以高端的研磨粉等产品的供应还远远没有满足,核心技术大多仍由日本控制。主要还是靠进口弥补国内市场的不足。 光伏行业带动出现机会 随着传统矿物质能源日益枯竭,以太阳能电池为代表的光伏产业得到迅速发展。据我国正在制定的《新兴能源产业发展规划》显示,到2020年可再生能源消费占一次能源消费中的比例要达到15%,光伏产业发展趋势总体呈现稳中有升。 碳化硅是光伏产业链上游环节——晶硅片生产过程中的专用材料,受光伏行业发展的带动,碳化硅行业通过产品结构升级和下游需求的扩展带来了一些机会。 不确定性 尽管如此,由于碳化硅生产属于高耗能、高污染,受到能源短缺的阻碍和国家能源节约的政策影响,还有一些具体审查和批准新项目受到闲置,比如低电价优惠的有关政策已经被取消;目前国家严格控制新项目,原有6300KV A以下规模的碳化硅冶炼要求强制关停。所以碳化硅行业的未来发展将面临很多不确定性 二、碳化硅行业竞争格局分析 1.外部经济环境

线材基础知识

线材基础知识编制:王志权 2006-07-01 目录线材的分类线材的结构 MARKER(印字)安规常识国标线命名规则一、线材的分类线材的分类按使用性能分类: 1、电子线 2、电源线 3、数据传输线 4、电话线 5、光纤 6、大功率电源二、线材的结构线材的结构电子线 1、电子线结构简单,只有导体和绝缘两部分组成。线材的结构电源线电源线的结构较电子线要复杂,出现了护套和充麻。在线材结构中,一般将不与导体直接接触的绝缘叫护套。充麻(PP):辅助成型,提高线材抗拉强度。线材采用充实成型时可不使用充麻,但芯线必须经过过粉工艺处理。线材的结构数据传输线数据传输线的结构比较复杂,出现了地线、编织、铝箔和麦拉(PET 等。这些结构部分都是起到屏蔽的作用。线材的结构 RGB线缆红、绿、蓝三色同轴,常用3+4和3+5线的说法即:RGB+4芯和RGB+5芯USB线缆现阶段最常用的数据传输线,接口有A型(扁平)和B型(方口),USB版本有1.0、1.1、2.0、2.1等。版区别是传输速率从10M/SEC到480M/SEC IEEE线缆常见为1394标准线缆,传输速率可达400M/SEC DVI线缆是比较高级的数据传输线,传输速率可达1.5G/SEC 网络线最常见的局域网连接线缆,现常用的为CAT5、CAT5e、CAT6和CAT6e等。主要区别是绞距不同,还有单股和多股的区别,单股比多股传输速率高同轴线见下页详细介绍光纤略线材的结构同轴线同轴线的结构比较统一,为增强屏蔽效果会增加一层编织和护套以或增加地线。线

材的结构电话线电话线的结构比较统一,常见为导体、绝缘加护套的结构。线材的结构光纤我们公司暂没有加工光纤的能力,暂不做介绍。三、MARKER 印字)线材的印字在线材的生产过程中,很多时候要求在线材表面印字说明线材的特性,这些特性通常包括以下几个方面:线材符合的安规信息、线径、使用环境、机械性能、阻燃等级、生产商等。线材的印字 E148000 线材的印字 I/II 线材的印字 A/B 四、安规常识安规常识中国标准安规常识IEC――国际电工委员会安规常识 JIS――日本工业标准调查会安规常识安规常识安规常识五、国标线命名规则国标线命名规则* * 忠佑电子(杭州)有限公司绝缘芯线电子线结构示意图电子线的材质 1、导体:主要是裸铜(copper ,也有部分线材使用镀锡铜; 2、绝缘:主要是聚氯乙烯(PVC 电子线的区别 600V 300V 300V 300V 耐压等级 PVC PVC PVC SR-PVC 绝缘材质 0.82mm 0.70mm 0.41mm 0.23mm 绝缘厚度 105℃105℃ 80℃ 80℃耐温等级 1015 1672 1007 1061 类别电源线结构示意图电源线的芯线电源线的芯线可以有二芯和三芯等。电源线的材质 1、导体使用裸铜; 2、绝缘和护套采用PVC。数据传输线的芯线数据传输线的芯线之间可以采用平行和对绞等方式。数据传输线的材质 1、导体使用裸铜、镀锡铜、镀银铜等; 2、绝缘多使用PE,护套多采用PVC。数据传输线的屏蔽屏蔽主要是指数据传输过程中,信号之间的相互干扰。数据传输是以电流的形式在线材中进行。

碳化硅项目年终总结报告

碳化硅项目年终总结报告 一、碳化硅宏观环境分析 二、2018年度经营情况总结 三、存在的问题及改进措施 四、2019主要经营目标 五、重点工作安排 六、总结及展望

尊敬的xxx投资公司领导: 近年来,公司牢固树立“创新、协调、绿色、开放、共享”的发 展理念,以提高发展质量和效益为中心,加快形成引领经济发展新常 态的体制机制和发展方式,统筹推进企业可持续发展,全面推进开放 内涵式发展,加快现代化、国际化进程,建设行业领先标杆。 初步统计,2018年xxx投资公司实现营业收入5564.24万元,同 比增长33.69%。其中,主营业业务碳化硅生产及销售收入为4676.68 万元,占营业总收入的84.05%。 一、碳化硅宏观环境分析 (一)中国制造2025 高质量发展是投入产出效率和经济效益不断提高的发展。高质量 发展的重要标志,是不断提高劳动、资本、土地、资源、环境等要素 的投入产出效率和微观主体的经济效益,并表现为企业利润、职工收入、国家税收的持续增加和劳动就业不断扩大。对照经济高质量发展 要求,关键在于推动工业高质量发展,而解决我市工业发展现状问题,根本出路也在于推动工业高质量发展。我市如何发挥得天独厚的区位 优势、丰富多样的资源优势、多重叠加的政策优势、互联互通的交通

优势、山清水秀的生态优势,在民族团结、社会安定的发展环境中, 在多年以来工业发展积累的良好基础上,进一步满足广阔的市场需求,推动工业高质量发展,成为摆在我们面前的重大课题和历史使命。 (二)工业绿色发展规划 发展循环经济是我国的一项重大战略决策,是落实推进生态文明 建设战略部署的重大举措,是加快转变经济发展方式,建设资源节约型、环境友好型社会,实现可持续发展的必然选择。近年来,我市大 力推动循环经济发展,循环经济理念进一步确立,产业体系逐步完善,发展水平不断提高,经济、社会和环境效益进一步显现。“十三五” 时期,是我市全面贯彻落实党的十八大和十八届五中全会关于生态文 明建设的战略部署,建设经济强、百姓富、环境美、社会文明程度高 新我的重要时期,是高水平全面建成小康社会的决胜阶段,随着工业化、城镇化和农业现代化持续推进,发展循环经济的要求更为迫切。 (三)xxx十三五发展规划 新兴产业继续保持全球产业的增长极优势,增速保持在7.5%以上。发达国家新兴产业间的竞争由传统的主导行业及其产品的规模与市场 竞争,转变为细分领域的技术突破挖掘与掌控发展主导权的争夺,世 界各国选择符合本国产业基础条件且具有全球产业引领效应的新兴产

碳化硅用途

碳化硅用途 碳化硅又称金钢砂或耐火砂。碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。黑碳化硅是什么,他是怎么制作出来的 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。 绿碳化硅是什么,他是怎么制作出来的 绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。 碳化硅(SiC)由于其独特的物理及电子特性, 在一些应用上成为最佳的半导体材料: 短波长光电器件, 高温, 抗幅射以及高频大功率器件. 其主要特性及与硅(Si)和砷化镓(GaAs)的对比. 宽能级(eV) 4H-SiC: 3.26 6H-Sic: 3.03 GaAs: 1.43 Si: 1.12 由于碳化硅的宽能级, 以其制成的电子器件可在极高温下工作. 这一特性也使碳化硅可以发射或检测短波长的光, 用以制作蓝色发光二极管或几乎不受太阳光影响的紫外线探测器. 高击穿电场(V/cm) 4H-SiC: 2.2x106 6H-SiC: 2.4x106 GaAs: 3x105 Si: 2.5x105 碳化硅可以抵受的电压或电场八倍于硅或砷化镓, 特别适用于制造高压大功率器件如高压二极管,功率三极管, 可控硅以及大功率微波器件. 另外, 此一特性可让碳化硅器件紧密排列, 有利于提高封装密度. 高热传导率(W/cm?K@RT) 4H-SiC: 3.0-3.8 6H-SiC: 3.0-3.8 GaAs: 0.5 Si: 1.5 碳化硅是热的良导体, 导热特性优于任何其它半导体材料. 事实上, 在室温条件下, 其热传导率高于任何其它金属. 这使得碳化硅器件可在高温下正常工作. 高饱和电子迁移速度(cm/sec @E 2x105V/cm) 4H-SiC: 2.0x107 6H-SiC: 2.0x107 GaAs: 1.0x10 Si: 1.0x107 由于这一特性, 碳化硅可制成各种高频器件(射频及微波). 碳化硅的5大主要用途 1?有色金属冶炼工业的应用 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉?精馏炉塔盘,铝电解槽,铜熔化炉内衬,锌粉炉用弧型板,热电偶保护管等? 2?钢铁行业方面的应用 利用碳化硅的耐腐蚀?抗热冲击耐磨损?导热好的特点,用于大型高炉内衬提高了使用寿命? 3?冶金选矿行业的应用 碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道?叶轮?泵室?旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁.橡胶使用寿命的5—20倍,也是航空飞行跑道的理想材料之一? 4?建材陶瓷,砂轮工业方面的应用 利用其导热系数?热辐射,高热强度大的特性,制造薄板窑具,不仅能减少窑具容量,还提高了窑炉的装容量和产品质量,缩短了生产周期,是陶瓷釉面烘烤烧结理想的间接材料?

外科针线分类及使用

外科针线分类及使用 一般按针尖形状分圆形及三角形两种,按针身弯曲度分为1/4弯形、1/2弯形、3/8及直形等。手术选用缝针时,依身体组织、脏器及血管等的脆弱度,选用时必须注意针尖的锐利度及针眼的大小避免造成组织的创伤;依组织脏器部位的深浅,选用时注意缝针的弯曲角度。三角形缝针穿过组织时易撕裂组织,故多用在坚韧的结缔组织和皮肤。现在用的缝针种类很多,将目前常用的几种介绍如下: 1.圆形缝针:主要用于柔软容易穿透的组织,如腹膜、胃肠道及心脏组织,穿过时损伤小。 2.三角形缝针:适用于坚韧的组织,其尖端是三角形的,针身部分是圆形的。 3.三角形角针:针尖至带线的部位皆为三角形,用于穿透坚韧难穿透的组织,如筋膜及皮肤等。 4.金属皮夹:这种金属皮夹,装人特制钉匣内,用特制持夹钳夹住金属皮夹,多用于缝合皮肤及矫形外科。 5.无损伤缝针:这一类型的针附于缝线的两端,多用于血管吻合及管状或环形构造时,亦用于连续缝合,如肠道吻合和心脏手术时,有弯形和直形两种。 6.引线针:有手把,前端为扁圆钝弯形针尖及针身,深部组织结扎血管时使用,不易割伤,便于操作,常用于肝脏手术时。 手术缝针的型号有 5 X 12、 6 X 14、7 X 17、8 X 20、9 X 24、9 X 34、10 X 28、11X 24等。 选用以上各种类、各型号的缝针时,应选用大小不同的持针钳配搭,避免配搭不当造成针体弯曲或折断,影响手术进行。 缝线: 各种缝线在手术中为缝合各类组织和脏器,直到手术伤口愈合为止,又可结扎缝合血管,起止血作用。所有的缝线在人体组织内均为异物,都可起不良反应,只是反应大小不同而已。选用缝线最基本的原则为:尽量使用细而拉力大、对组织反应最小的缝线。各种缝线的粗细以号数与零数表明,号数越大表示缝线越粗,常用的有1#、4#、7#、10#;零数越多表示缝线越细,常用的有1/0~10/0。 1.医用丝线:分板线和团线两种。是外科广泛、基本使用的缝线。柔软强韧,容易操作。多用于缝合体内各种组织、脏器及血管等。在组织内反应小,但在体内不吸收而形成异

碳化硅性能与碳化硅生产工艺

碳化硅性能与碳化硅生产工艺 天然的碳化硅很少,工业上使用的为人工合成原料,俗称金刚砂,是一种典型的共价键结合的化合物。碳化硅是耐火材料领域中最常用的非氧化物耐火原料之一。 (1)碳化硅的性质: 碳化硅主要有两种结晶形态:b-SiC 和 a-SiC。b-SiC 为面心立方闪锌矿型结构,晶格常 数 a=0.4359nm。a-SiC 是 SiC 的高温型结构,属六方晶系,它存在着许多变体。 碳化硅的折射率非常高,在普通光线下为 2.6767~2.6480.各种晶型的碳化硅的密度接近, a-SiC 一般为3.217g/cm3,b-SiC 为 3.215g/cm3.纯碳化硅是无色透明的,工业 SiC 由于含有游离 Fe、Si、C 等杂质而成浅绿色或黑色。绿碳化硅和黑碳化硅的硬度在常温和高温下基本相同。SiC 热膨胀系数不大,在25~1400℃平均热膨胀系数为 4.5×10-6/℃。碳化硅具有很高的热导率,500℃时为 64.4W/ (m·K)。常温下SiC 是一种半导体。 碳化硅具有耐高温、耐磨、抗冲刷、耐腐蚀和质量轻的特点。碳化硅在高温下的氧化是其损害的主要原因。 (2)碳化硅的合成: ①碳化硅的冶炼方法,合成碳化硅所用的原料主要是以 SiO2 为主要成分的脉石低档次的碳化硅可用低灰分的无烟煤为原料。辅助原料为木屑和食盐。 碳化硅有黑、绿两种。冶炼绿碳化硅时要求硅质原料中 SiO2 含量尽可能高,杂质含量尽量低。生产黑碳化硅时,硅质原料中的 SiO2 可稍低些。对石油焦的要求是固定碳含量尽可能高,灰分含量小于 1.2%,挥发分小于 12.0%,石油焦的粒度通常在 2mm 或 1.5mm 以下。木屑用于调整炉料的透气性能,通常的加入量为 3% ~5%(体积)。食盐仅在冶炼绿碳化硅时使用。 硅质原料与石油焦在 2000~2500℃的电阻炉内通过以下反应生成碳化 硅:SiO2+3C→SiC+2CO↑-526.09Kj CO 通过炉料排出。加入食盐可与 Fe、Al 等杂质生成氯化物而挥发掉。木屑使物料形成多孔烧结体,便于CO 气体排出。 碳化硅形成的特点是不通过液相,其过程如下:约从 1700℃开始,硅质原料由砂粒变为熔体,进而变为蒸汽(白烟);SiO2 熔体和蒸汽钻进碳质材料的气孔,渗入碳的颗粒,发生生成 Sic 的反应;温度升高至1700~1900℃时,生成 b-SiC;温度进一步升高至 1900~2000℃时,细小的 b-SiC 转变为 a-SiC,a-SiC 晶粒逐渐长大和密实;炉温再升至 2500℃左右,SiC 开始分解变为硅蒸汽和石墨。 大规模生产碳化硅所用的方法有艾奇逊法和ESK 法。 艾奇逊法:传统的艾奇逊法电阻炉的外形像一个长方形的槽子,它是有耐火砖砌成的炉床。两组电极穿过炉墙深入炉床之中,专用的石墨粉炉芯体配置在电极之间,提供一条导电通道,

碳化硅主要用途__碳化硅用于耐火材料时特性

碳化硅主要用途__碳化硅用于耐火材料时特性 碳化硅主要用途是什么呢?碳化硅用于耐火材料时有哪些特性呢?碳化硅又名金刚砂,包括黑碳化硅和绿碳化硅,其中:黑碳化硅是以石英砂,石油焦和硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。那么碳化硅的主要用途有哪些? 【碳化硅主要用途】 一、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自 由研磨,从而来加工玻 璃、陶瓷、石材、铸铁 及某些非铁金属、硬质 合金、钛合金、高速钢 刀具和砂轮等。 二、耐火材料和耐腐蚀 材料---主要是因为碳 化硅具有高熔点(分解 度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。 三、化工--因为碳化硅可在溶融钢水中分解并和钢水中的离氧、金属氧化物反应生成一氧化碳和含硅炉渣。所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂。这一般使用低纯度的碳化硅,以降低成本。同时还可以作为制造四氯化硅的原料。 四、电工--用作加热元件、非线性电阻元件和高半导体材料。加热元件如硅碳棒(适用于1100~1500℃工作的各种电炉),非线性电阻元件,各式的避雷阀片。

五、其它--配制成远红外辐射涂料或制成碳化硅硅板用远红外辐射干燥器中。【碳化硅用于耐火材料时特性】 1、还原气氛下使用温度一般可达1760℃; 2、抗热震性能好,能承受温度急剧变化,防止炉衬出现裂纹或断裂 3、因热态强度高,中高温条件时可承受一定应力,可作为结构材料 4、耐磨性能好,在一定温度下,可作为耐磨衬体 5、能耐受一定熔渣或热态金属,包括碱金属熔液的侵蚀和渗透 6、可承受一些炉气的作用,能用于气氛炉。 其中,碳化硅应用于耐火材料的关键技术有以下四种方式: 1、氧化物结合:以硅酸铝、二氧化硅等为结合剂; 2、氮化物结合:氮化硅、氧氮化硅和赛隆结合; 3、自结合:按碳化硅的当量比例加入石墨和金属硅,高温下反应生成;

碳化硅生产线改造新建立方碳化硅生产线项目建议书

“四高”碳化硅生产线改造新建立方碳化硅生产线 项 目 建 议 书 青海中瑞碳化硅有限公司 二零一三年三月

“四高”碳化硅生产线改造和新建立方碳化硅生产线 项目建议书 一、项目背景 青海中瑞碳化硅有限公司碳化硅冶炼项目是2008年青洽会的招商引资项目,截止目前我公司累计已完成固定资产投资3772万元,建成两条12500KVA 冶炼生产线,达产情况下年可冶炼黑碳化硅原块2.5-3万吨,但因生产技术落后,产品结构单一,已不能适应市场的需要,企业的生存和发展面临巨大压力。为此,我公司积极响应青海省关于“调结构、转方式、保增长、促发展”号召,并根据对市场的全面了解,经多方努力,我们寻求同对碳化硅生产应用有着近20年研究历史且拥有近十项碳化硅产业相关发明专利的西安科技大学博尔科技有限公司合作,引进其先进的生产技术,投资改造现有的碳化硅生产线,改变传统碳化硅生产方式,兴建更高效节能、无三废排放的四高(高纯度、高密度、高结晶性和高均匀性)碳化硅生产线以及具有世界领先技术的立方碳化硅生产线项目。该项目以公司原冶炼生产线为基础,将两条生产线的主设备进行集并整合,建成一条25000KVA的大型碳化硅生产线,该生产线同时也将气体回收及余热利用技术整合起来,以达到节能减排的效果。在改造传统碳化硅生产线的同时新建一条具有世界先进水平的年产500-1000吨立方碳化硅的生产线。 四高SiC简介:碳化硅(SiC)材料自诞生之日起就承担了人类社会发展进步的重大使命,被美誉为工业牙齿的碳化硅经过近几十年的发展,已经被广泛应用到冶金、机械、石油、化工、建筑、电子、能源、国防、航空、航天等领域。碳化硅材料的产品类型有:由天然石英和石油焦或煤炭制成的碳化硅结晶块;由结晶块加工而成的各种碳化硅砂;由碳化硅砂加工而成的各种碳化硅微粉;由碳化硅砂或微粉加工而成的各种碳化硅陶瓷制品(包括各种耐火材料)。 SiC具有抗氧化性强,硬度高,耐磨性好,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震、耐化学腐蚀、半导电特性等优良性能。碳化硅砂被用作各种研磨、切削和抛光材料或普通耐火材料的原料。碳化硅微粉被用于各种精细研磨、抛光、涂层、填料

碳化硅主要的四大应用领域

碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器、矿斗内衬的理想材料,具耐磨性能是铸铁,橡胶使用寿命的5-20倍,也是航空飞行跑道的理想材料之一。碳化硅主要有四大应用领域,即:功能陶瓷、耐火材料、磨料及冶金原料。碳化硅粗料已能大量供应,不能算高新技术产品,而技术含量极高的纳米级碳化硅粉体的应用短时间不可能形成规模经济。 (碳化硅-图片) 1、作为磨料,可用来做磨具,如油石、磨头、砂瓦类等。 2、作为冶金脱氧剂和耐高温材料。 3、高纯度的单晶,可用于制造半导体、制造碳化硅纤维。 主要用途:用于3-12英寸单晶硅、多晶硅、砷化钾、石英晶体等线切割。太阳能光伏产业、半导体产业、压电晶体产业工程性加工材料。 用于半导体、避雷针、电路元件、高温应用、紫外光侦检器、结构材料、天文、碟刹、离合器、柴油微粒滤清器、细丝高温计、陶瓷薄膜、裁切工具、加热元件、核燃料、珠宝、钢、护具、触媒担体等领域。 折叠磨料磨具

主要用于制作砂轮、砂纸、砂带、油石、磨块、磨头、研磨膏及光伏产品中单晶硅、多晶硅和电子行业的压电晶体等方面的研磨、抛光等。 折叠化工 折叠"三耐"材料 利用碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,碳化硅一方面可用于各种冶炼炉衬、高温炉窑构件、碳化硅板、衬板、支撑件、匣钵、碳化硅坩埚等。 另一方面可用于有色金属冶炼工业的高温间接加热材料,如竖罐蒸馏炉、精馏炉塔盘、铝电解槽、铜熔化炉内衬、锌粉炉用弧型板、热电偶保护管等;用于制作耐磨、耐蚀、耐高温等碳化硅陶瓷材料;还可以制做火箭喷管、燃气轮机叶片等。此外,碳化硅也是高速公路、##飞机跑道太阳能热水器等的理想材料之一。 (碳化硅-图片) 折叠有色金属 利用碳化硅具有耐高温,强度大,导热性能良好,抗冲击,作高温间接加热材料,如坚罐蒸馏炉,精

外科针线分类及使用

外科针线分类及使用 般按针尖形状分圆形及三角形两种,按针身弯曲度分为 1/4弯形、1/2弯形、3/8及 依组织脏器部位的深浅, 选用时注意缝针的弯曲角 故多用在坚韧的结缔组织和皮肤。现在用的缝针种 1 ?圆形缝针:主要用于柔软容易穿透的组织,如 腹膜、胃肠道及心脏组织,穿过时损 伤小。 2?三角形缝针:适用于坚韧的组织,其尖端是三角形的,针身部分是圆形的。 3?三角形角针:针尖至带线的部位皆为三角形,用于穿透坚韧难穿透的组织,如筋膜 及皮肤等。 4. 金属皮夹:这种金属皮夹,装人特制钉匣内,用特制持 夹钳夹住金属皮夹,多用于 缝合皮肤及矫形外科。 5?无损伤缝针:这一类型的针附于缝线的两端,多用于血管吻合及管状或环形构造时, 亦用于连续缝合,如肠道吻合和心脏手术时,有弯形和直形两种。 6?弓I 线针:有手把,前端为扁圆钝弯形针尖及针身,深部组织 结扎血管时使用,不易 割伤,便于操作,常用于肝脏手术时。 手术缝针的型号有 5 X 12、6 X 14、7 X 17、8 X 20、9 X 24、9 X 34、10 X 28、 11X 24 等。 选用以上各种类、各型号的缝针时,应选用大小不同的持针钳配搭, 避免配搭不当造成针体 弯曲或折断,影响手术进行。 缝线: 各种缝线在手术中为缝合各类组织和脏器, 直到手术伤口愈合为止,又可结扎缝合血管, 起止血作 用。所有的缝线在人体组织内均为异物, 都可起不良反应,只是反应大小不同而已。 选用缝线最基本的原则为:尽量使用细而拉力大、对组织反应最小的缝线。各种缝线的粗细 以号数与零数表明,号数越大表示缝线越粗,常用的有 1#、4#、7#、10# ;零数越多表示缝 线越细,常用的有 1/0?10/0。 1 ?医用丝线:分板线和团线两种。是外科广泛、基本使用的缝线。柔软强韧,容易操 直形等。手术选用缝针时,依身体组织、 脏器及血管等的脆弱度, 选用时必须注意针尖的锐 利度及针眼的大小避免造成组织的创伤; 度。三角形缝针穿过组织时易撕裂组织, 类很多,将目前常用的几种介绍如下:

碳化硅陶瓷

太原工业学院 2015/2016学年第一学期 《特种陶瓷》课程论文 题目:碳化硅陶瓷的工艺与发展方向 班级: 122073219 姓名:刘鑫泽 学号: 19

1 前言 随着科技的发展,人们迫切需要开发各种新型高性能结构材料。碳化硅陶瓷由于具有多种良好的的性能,已经在许多领域大显身手,并且已经收到人们的高度重视。 2 晶体结构 SiC是共价键很强的化合物,SiC中 Si-C键的离子性仅12%左右。 SiC具有α和β两种晶型。β- SiC的晶体结构为闪锌矿晶体结构立方晶系,Si和 C 分别组成面心立方晶格;α-SiC纤锌矿型结构,六方晶系。存在着4H、15R和6H等100余种多型体,其中, 6H多型体为工业应用上最为普遍的一种。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β- SiC缓慢转変成α-SiC的各种多型体。4H- SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H- SiC,即使温度.超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。[1] 3 性能与应用 3.1 性能 (1)SiC陶瓷化学稳定性好、抗氧化性强。 (2)硬度高,耐磨性能好。 (3)SiC具有宽的能带间隙。 (4)优良的导电性。 (5)热稳定性好,高温强度大。 (6)热膨胀系数小、热导率大以及抗热振和耐化学腐蚀等。[4] 3.2 应用 碳化硅的最大特点是高温强度高,有很好的耐磨损、耐腐蚀、抗蠕变性能,其热传导能力很强,仅次子氧化铍陶瓷。碳化硅陶瓷用于制造火箭喷嘴、浇注金属的喉管、热电偶套管、炉管、燃气轮机叶片及轴承、泵的密封圈、拉丝成型模

碳化硅陶瓷的发展与应用

碳化硅陶瓷的发展与应用 1073112 王苗 摘要:碳化硅陶瓷以其优异的抗热震、耐高温、抗氧化和耐化学腐蚀等特性而广泛地应用于石油、化学、汽车、机械和宇航等工业领域中,并日益引起人们的重视。本文对各种SiC 陶瓷的制备方法、性能特点及其应用现状进行了综合评述。 关键词:碳化硅陶瓷发展与应用 Abstract: Silicon carbide ceramics have been widely used in petroleum, chemical, automotive,mechanical and aerospace industries because of their excellent resistance to thermal shock, high temperatures, oxidation and chemical corrosion. In this paper, the fabricating methods, mechanical properties and current applications of various SiC ceramics are revicwed. Key Words: SiC Ceramics Development and Application 1 前言 现代国防、核能和空间技术以及汽车工业、海洋工程的迅速发展, 对火箭燃烧室内衬、飞机涡轮发动机叶片、核反应堆结构部件、高速气动轴承和机械密封零件等材料的要求愈来愈高, 迫切需要开发各种新型高性能结构材料。碳化硅陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性, 因此, 已经在许多领域大显身手, 并日益受到人们的重视。例如, SiC陶瓷在石油化学工业中已被广泛地用作各种耐腐蚀用容器及管道在机械工业中已被成功地用作各种轴承、切削刀具和机械密封部件在宇航和汽车工业中也被认为是未来制造燃气轮机、火箭喷嘴和发动机部件的最有希望的候选材料。 本文首先对SiC 的基本性质及SiC粉末的合成方法进行了简单介绍, 接着重点综述了SiC陶瓷的性能特点, 最后对SiC陶瓷的应用现状与未来发展进行了概括和分析。 2 碳化硅的基本特性 2.1、化学属性 抗化合性:碳化硅材料在氧气中反应温度达到1300℃时,在其碳化硅晶体表层已经生成二氧化硅保护层。随着保护层的加厚,抵制了里面碳化硅继续被化合,这使碳化硅有较好的抗化合性。当气温达到1900K(1627℃)以上时,二氧化硅保护膜已经被破坏,碳化硅化合效应加重,从而1900K是碳化硅在氧化剂氛围下的最高工作气温。 耐酸碱性:在耐酸、碱及化合物的效用方面,因为二氧化硅保护膜的效用,碳化硅的抗酸能力非常非常强,抗碱性稍差。 2.2、物理性能 密度:各样碳化硅晶形的颗粒密度十分相近,通常情况下,应该是3.20 g/ m m3,其碳化硅磨料的堆砌密度在1.2--1.6 g/ m m3之间,其高矮取决于其粒度号、粒度合成和颗粒形状的大小。 硬度:碳化硅的硬度为:莫氏9.5级。单晶硅的硬度为:莫氏7级。多晶硅的硬度为:莫氏7级。都是硬度相对较高的物料。努普硬度为2670—2815公斤/毫米,在磨料中高于刚玉而仅次于金刚石、立方氮化硼和碳化硼。 导热率:碳化硅制品的导热率非常高,热膨胀参数小,抗热震性非常高,是优质的耐火材料。 2.3、电学属性 恒温下工业碳化硅是一种半导体,属杂质导电性。高纯度碳化硅随着气温的升高内阻率降低,含杂质碳化硅按照其含杂质不一样,导电性能也不一样。

常见的电缆电线种类及工程知识

常见的电缆电线种类及工程知识 1、常用的电线、电缆按用途分有哪些种类? 答:按用途可分为裸导线、绝缘电线、耐热电线、屏蔽电线、电力电缆、控制电缆、通信电缆、射频电缆等。 2、绝缘电线有哪几种? 答:常有的绝缘电线有以下几种:聚氯乙烯绝缘电线、聚氯乙烯绝缘软线、丁腈聚氯乙烯混合物绝缘软线、橡皮绝缘电线、农用地下直埋铝芯塑料绝缘电线、橡皮绝缘棉纱纺织软线、聚氯乙烯绝缘尼龙护套电线、电力和照明用聚氯乙烯绝缘软线等。 3、电缆桥架适合于何种场合? 答:电缆桥架适用于一般工矿企业室内外架空敷设电力电缆、控制电缆,亦可用于电信、广播电视等部门在室内外架设。 4、电缆附件有哪些? 答:常用的电附件有电缆终端接线盒、电缆中间接线盒、连接管及接线端子、钢板接线槽、电缆桥架等。 5、什么叫电缆中间接头? 答:连接电缆与电缆的导体、绝缘屏蔽层和保护层,以使电缆线路连接的装置,称为电缆中间接头。

电缆的型号由八部分组成: 一、用途代码-不标为电力电缆,K为控制缆,P为信号缆; 二、绝缘代码-Z油浸纸,X橡胶,V聚氯乙稀,YJ交联聚乙烯 三、导体材料代码-不标为铜,L为铝; 四、内护层代码-Q铅包,L铝包,H橡套,V聚氯乙稀护套 五、派生代码-D不滴流,P干绝缘; 六、外护层代码 七、特殊产品代码-TH湿热带,TA干热带; 八、额定电压-单位KV 有关电缆型号的问题 1、SYV:实心聚乙烯绝缘射频同轴电缆 2、SYWV(Y):物理发泡聚乙绝缘有线电视系统电缆,视频(射频)同轴电缆(SYV、SYWV、SYFV)适用于闭路监控及有线电视工程 SYWV(Y)、SYKV 有线电视、宽带网专用电缆结构:(同轴电缆)单根无氧圆铜线+物理发泡聚乙烯(绝缘)+(锡丝+铝)+聚氯乙烯(聚乙烯) 3、RVV护套线、RVVP屏蔽线信号控制电缆适用于楼宇对讲、防盗报警、消防、自动抄表等工程 RVVP:铜芯聚氯乙烯绝缘屏蔽聚氯乙烯护套软电缆电压300V/300V 2-24芯 用途:仪器、仪表、对讲、监控、控制安装 4、RG:物理发泡聚乙烯绝缘接入网电缆用于同轴光纤混合网(HFC)中传输数据模拟信号 5、KVVP:聚氯乙烯护套编织屏蔽电缆用途:电器、仪表、配电装置的信号传输、控制、测量 6、RVV(227IEC52/53)聚氯乙烯绝缘软电缆用途:家用电器、小型电动工具、仪表及动力照明 7、AVVR聚氯乙烯护套安装用软电缆

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

相关主题
文本预览
相关文档 最新文档