当前位置:文档之家› 一、线性空间的基与维数

一、线性空间的基与维数

一、线性空间的基与维数
一、线性空间的基与维数

线性空间-知识点及其注释

第五章 线性空间-知识点及其注释 知识点:n 维数组向量,向量空间,线性空间,线性组合,线性表示,向量组等价,线性相关,线性无关,极大无关组,秩,生成子空间,子空间,基,维数,坐标,基变换,坐标变换,同构,交子空间,和子空间,直和,线性方程组的解空间,基础解系,特解,通解。 #n 维数组向量#简称为n 维向量,是指由数域F 中n 个数n a a a ,,,21 组成的n 元有序数组,常记为12(,,,)T n a a a 或),,,(21n a a a ,又称为n 元(数组)向量。由数域F 上所有n 维数组向量所构成的线性空间称为n 维(元)(数组)向量空间,记为n F 。 #线性组合#表达式1122s s k k k ααα+++称为向量组s ααα,,,21 的系数分别为12,,,()s k k k F ∈的线性组合,s k k k ,,,21 称为线性组合系数。 #线性表示#向量α可由向量组s ααα,,,21 线性表示(出)是指存在数域F 中的数s k k k ,,,21 ,使1122s s k k k αααα=+++。 向量组s ααα,,,21 可由向量组12,,,t βββ线性表示是指每个i α(1,2,...,i s =)都可由向量组12,,,t βββ线性表示。显然,向量组的线性表示具有传递性。 在n F 中,向量α可由向量组s ααα,,,21 线性表示?线性方程组 1122 s s x x x αααα+++=有解? 1212(,, ,,)(,, ,)s s rank rank ααααααα=。 #向量组等价#向量组s ααα,,,21 与向量组12,,,t βββ等价是指向量组 s ααα,,,21 与向量组12,,,t βββ可以相互线性表示。显然,向量组等价是 等价关系,即具有自反性、对称性和传递性。

子空间的基本内容

线性子空间的研究 数学与应用数学专业学生:罗柏平 指导老师:周绍杰 摘要:线性子空间理论是线性代数的核心内容之一,在数学及其它领域中有着广泛的应用.本文讨论了线性子空间及其交、和、直和的定义,并阐述了线性子空间、子空间直和的几个等价性定义,并做了一定的的推广;在此基础上,给出了求两个子空间交的基的一般方法.且对其作了进一步讨论,得到了一些有用的结果. 关键词:线性空间,线性子空间,子空间的交,维数 Abstract: Linear space and subspaces are one of linear algebra,and they have been applied to mathematics or other fields extensively.This paper discussed the linear subspace and pay, and and, and subspace straight.And we discussed the linear subspace, subspace straight and few equivalence definition,and did some promotion; Based upon these, draw subspace of mixed operation is for and included relation and its two subspaces, and further discussion was gived and several important conclusions were given. Keyword: linear space; linear subspace ; intersection of subspaces; dimensions 0引言 线性子空间理论是高等代数中的重要内容,线性子空间是线性空间的子集,线性子空间中的元素满足对原线性空间的加法与数量乘法封闭.要懂得利用定义及其线性子空间的相关定理来判定线性子空间. 线性子空间包括线性子空间的定义,子空间的交与和,直和等等. 它把具体、直观的平面与集合空间推广到抽象的线性空间.线性子空间是线性空间的子集,线性子空间中的元素满足对原线性空间的加法与数量乘法封闭.线性子空间的应用领域越来越广,在数学、物理、通信、化学、甚至医学等各方面有广泛应用.线性空间的概念是n维向量空间概念的抽象和提高,子空间的理论不仅是高等代数的核心,而且广泛渗透到各自然科学、工程技术、经济管理科学中.因而线性子空间在一定意义上值得广泛推广.为了对线性子空问作进一步的研究,先讨论有关线性子空间的一些基本问题,对线性空间有关的概念和部分结论作一回顾,然后再在应用中对线性子空间做更多的探讨.

向量空间的基与维数

向量空间的基与维数 结论1 设,当下述三个条件有两条满足时,{}就是V的一个基. (i)零向量可由唯一地线性表示; (ii)V中每个向量都可由唯一地线性表示; (iii). 结论 2 设,都是F上向量空间V的子空间. 若,,则 ,且. 例 1 设和都是数域,且,则是上的向量空间. 域F是F上向量空间,基是{1},. C是R向量空间,{ 1 , i} 是基,. R是有理数域上的无限维向量空间,这是因为对任意的正整数t,是线性无关的,这里. 令,则F是一个数域,F是Q上的向量空间. 1)1,线性无关: 设,. 则(否则,,矛盾),因此. 2) 1,,线性无关: 设,,i=1,2,3 . ( 1 ) , 两端平方得 , 由于1,线性无关,故

假如,则,且,即. 矛盾. 因而故假如,则得,这与是无理数相矛盾. 因而 将代入(1),便得这说明1,,线性无关. 3) 1,,,线性无关: 设,,i=1,2,3,4 . 则有 . ( 2 ) 假如不全为零,则 得到“1,,线性相关”的结论,矛盾. 所以与应全为零,将代入(2)得 又由1,线性无关得. 这样,我们证得了1,,,线性无关. 故{1,,,}是F的一个基.. 例2 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数}. C[a,b]是R上的向量空间. 对任意的正整数n,可证得线性无关: 设,使( 3 ) 取n+1个实数,使 a b. 由(3)知 . 即 其中

而 . 用左乘(4)两端,得 这说明线性无关. 故C[a,b]是R上无限维向量空间. 引理设V是F上向量空间,是V的子空间,V,i=1,2,…,s. 试证明 证对s作数学归纳. 当s=1 时,结论显然成立. 设,且对个V的不等于V的子空间结论成立. 下考虑V的子空间,,. 由归纳假设知故存在 1) 当时,,故; 2) 当时,由于,因此显然,,…,.且存在, 使(否则,如果,,…,,, , ,使,,所以,即有,这与矛盾).这样 ,故 例3 设.存在集合, 使S含无穷多个向量,且S中任意n个不同的向量都是V 的一个基. 证取V的一个基,令. 对任意从中删 去后剩下的个向量生成的V的子空间记为,则 由引理知, 故存在 令, 中任n个不同的向量线性无关,是V的基. 设,有,且中任意n个不同的向量构成V的一个基. 对任意,有 .

线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交() 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和 x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+;

(3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为

线性空间与子空间

第一讲线性空间 一、线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成的整体 集合的表示:枚举、表达式 集合的运算:并(),交() 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R)和复数域(C)。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1.线性空间的定义: 设V是一个非空集合,其元素用x,y,z等表示;K是一个数域,其元素用k,l,m等表示。如果V满足[如下8条性质,分两类] ∈时,有唯一的和(I)在V中定义一个“加法”运算,即当x,y V +∈(封闭性),且加法运算满足下列性质 x y V (1)结合律()() ++=++; x y z x y z (2)交换律x y y x +=+; (3)零元律存在零元素o,使x+o x =;

(4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为 x y=xy , k k x x =o

线性空间的性质

学院数学与信息科学学院 专业信息与计算科学 年级2011级 姓名魏云 论文题目线性空间的性质 指导教师韩英波职称副教授成绩 2013年3月16日

学年论文成绩评定表

目录 摘要 (1) 关键字 (1) Abstract (1) Key words (1) 前言 (1) 1 线性空间的概念 (2) 2 线性空间的相关理论 (3) 2.1 线性空间的一些简单性质 (3) 2.2 向量的线性关系 (3) 2.3 基、维数、坐标 (6) 3 两个特殊的子空间 (7) 3.1 欧几里得空间的定义与性质 (7) 3.2 酉空间的介绍 (8) 4 线性空间的同构 (8) 4.1 同构映射与线性空间同构的定义 (8) 4.2 同构映射的性质 (9) 参考文献 (10)

线性空间的性质 摘要:本文首先介绍了与线性空间相关的一系列基本概念,然后归纳总结了线性空间的一些相关性质,包括线性空间的维数、基及坐标;同构映射以及性质等,还包括了向量的线性关系,同时介绍了一些特殊的线性空间,以及它们的简单性质. 关键词:线性空间;基;维数;同构 The properties of linear vector space Abstract: In thesis, we introduce a series of basic concepts of the linear vector space firstly, and then summarized some properties of the linear space, including linear vector space definition, linear vector space, the nature of the linear vector space dimension, base and coordinates, isomorphism mapping and judgments. The thesis also includes linear vector space relationship, some special linear spaces and their simple properties. Key words: Linear space; Base ; Dimension; Isomorphism 前言:线性空间是线性代数最基本的数学概念之一,是线性代数的主要研究对象,它用公理化的方法引入了一个代数系统.同时线性空间与线性变换也是学习现代矩阵论时经常用到的两个极其重要的概念,线性空间的理论和方法在自然科学和工程技术领域中都有广泛的应用.下面我们主要研究线性空间及、向量的线性关系、基、维数、坐标、特殊的线性空间以及线性空间的同构问题. 1.线性空间的概念

线性空间--子空间

线性空间子空间 子空间就是线性空间的非空集合对于其中的运算也构成一个空间,而span{ v1,v2...,vn }表示由v1,v2...,vn 张成的子空间,即v1,v2...,vn 所有可能的线性组合构成的子空间。子空间是空间,从而子空间存在着基底,子空间的任何一个基底张成的空间就是这个子空间本身。综上:子空间可以看成一些向量张成的空间,而由一些向量v1,v2...,vn 张成的空间span{ v1,v2...,vn }一定是一个子空间。 2、R3中的一条通过原点的直线是R3的子空间。按照子空间的判断方法,只需要验证对其加法和数乘运算封闭即可。这里的加法是向量加法,数乘是数和向量的数乘。 易知,对于过原点的直线来说,其上任意两点对应的两个向量(原点为起点,直线上的点为终点对应的向量)必共线,从而可知相加之后,起点仍选为原点,终点必落在原来的直线上,因此,对加法封闭。其次,对于数乘,很容易验证也封闭。 故,R3中的一条通过原点的直线是R3的子空间。 对于不过原点的直线,构不成子空间。 3、请用Rn空间为例子解释下子空间的定义或者是说概念。 这里关键是理解子空间的概念以及其判定方法: 只需要所给线性空间的非空子集合对于线性空间本身的两个运算:加法和数乘封闭即可! 比如:向量(0,0,。。。,0)本身构成Rn的一个零维子空间, 因为这个集合只有一个元素0,0+0=0,k0=0,所以对加法和数乘封闭。 向量(1,0,。。。,0)的倍数的全体就构成Rn的一个一维子空间, 因为这个集合的元素都是(1,0,。。。,0),易知 (1,0,。。。,0)的倍数相加仍是它的倍数,且任何一个数k乘以它的倍数仍是它的倍数, 即k*d(1,0,...,0)=kd*(1,0, 0 所以对加法数乘封闭。 向量(1,0,...,0)和(0,1,0,...,0)的所有线性组合构成Rn的一个2维子空间等。 同样道理,可知对加法数乘都封闭。

基与维数的几种求法

线性空间基和维数的求法 方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有 n 个向量n αα,,1 满足: (1)n ααα,2,1 线性无关。 (2)V 中任一向量α总可以由n ααα,,21, 线性表示。 那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称 n ααα,,2,1 为线性空间V 的一组基。 如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。 例1 设{} 0V X AX ==,A 为数域P 上m n ?矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。 解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。 例2 数域P 上全体形如0a a b ?? ?-?? 的二阶方阵, 对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。 解 易证0100,1001???? ? ? -????为线性空间0,a V a b p a b ????=∈?? ?-???? |的一组线性无关的向量组,且对V 中任一元素0a a b ?? ?-??有00100+1001a a b a b ?? ????= ? ? ?? ????? 按定义0100,1001???? ? ????? 为V 的一组基,V 的维数为2。 方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。 例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()() 2 1 1,1,1, ,1n x x x ----构成[]n R x 的基。 证明 考察()() 1 121110n n k k x k x -?+-+ +-= 由1 n x -的系数为0得0n k =,并代入上式可得2n x -的系数10n k -= 依此类推便有110n n k k k -====,

第三章线性方程组与线性子空间

第三章 线性方程组 §1 §2消元法和线性方程组解的情况 1 线性方程组的初等变换 现在讨论一般线性方程组 11112211211222221122,,n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????++ += ? 其中n x x x ,,,21 代表n 个未知量,m 是方程的个数,(1,2,,;1,2,,)ij a i m j n ==称为 线性方程组的系数,(1,2, ,)j b j m =称为常数项.方程组中未知量的个数n 与方程的个数 m 不一定相等.系数ij a 的第一个指标i 表示它在第i 个方程,第二个指标j 表示它是j x 的系 数. 所谓方程组的一个解就是指由n 个数n k k k ,,,21 组成的有序数组),,,(21n k k k ,当 n x x x ,,,21 分别用n k k k ,,,21 代入后,方程组中每个等式都变成恒等式. 方程组解的全 体称为解集合. 解方程组实际上就是找出它全部的解,即:求出它的解集合. 如果两个方程组有相同的解集合,它们就称为同解的. 如果知道了一个线性方程组的全部系数和常数项,那么这个线性方程组就基本上确定了.确切地说,线性方程组(1)可以用下面的矩阵 11121121222212 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ??? 来表示. 例如,解方程组 ??? ??=++=++=+-. 522,4524,132321 321321x x x x x x x x x 第二个方程组减去第一个方程的2倍,第三个方程减去第一个方程,就变成

1-1线性空间

第一专题 线性空间和线性变换 矩阵是研究线性模型最基本的工具之一。根据本书的性质,我们假定读者已具备了这方面的基础知识。本书的目的是对本科《线性代数》教材中没有论及或讨论不够充分,而在线性模型讨论中经常用到的一些矩阵知识,给予系统而扼要地叙述。 §1 线性空间 一、线性空间的概念与性质 线性空间是由具体的几何平面和空间的特征经过抽象提炼出来的一个数学概念。粗略地说,在一个非空集合上定义了线性运算,并且这种运算满足一定的规则,那么这个非空集合就成为一个线性空间。因此,一个线性空间必须有由线性运算规定的代数结构(由集合与满足一定运算规律的一些代数运算合在一起组成的系统),以便于用数学方法对它研究。为了说明它的来源,在引入定义之前,先看几个熟知的例子。 例1 在解析几何中,我们讨论过三维空间中的向量。向量的基本属性是可以按平行四边形规律相加,也可以与实数作数量乘法。我们看到,不少几何和力学对象的性质是可以通过向量的这两种运算来描述的。 例 2 为了解线性方程组,我们讨论过以n 元有序数组)(21n ,a ,,a a 作为元素的n 维向量空间。对于它们,也有加法和数量乘法,那就是: ),()()(22112121n n n n b ,a ,b ,a b a ,b ,,b b ,a ,,a a ).()(2121n n ,ka ,,ka ka ,a ,,a a k 从这些例子中我们可以看到,所考虑的对象虽然不同,但它们有一个共同点,那就是它们都有加法和数量乘法这两种运算。抽取它们的共同点,把它们统一起来加以研究,我们可以引入线

性空间的概念。 在第一个例子中,我们用实数和向量相乘。在第二个例子中用什么数和向量相乘,就要看具体情况。例如,在有理数域中解线性方程组时,用有理数去作数量乘法就足够了,而在复数域中解线性方程组时,就需要用复数去作运算。可见,不同的对象与不同的数域相联系。当我们引入抽象的线性空间的概念时,也必须选定一个确定的数域作为基础。 定义1 设F 是一个数集,其中包含0和1。如果F 中任意两个数(它们可以相同)的和、差、积、商(除数不是0)仍是F 中的数,那么称F 为数域。 显然,全体实数集R 、全体复数集C 、全体有理数集Q 等都是数域。而全体正实数集 R ,全体整数集Z 等都不是数域。 定义2 设V 是一非空集合,F 是数域(本书特指实数域),对V 中任意两个元 ,,定义一个加法运算,记为“+”:V (元 称为 与 的和);定义一个数乘运算:F k V k , (元 k 称为k 与 的数积)。这两种运算(也称为V 的线性运算),满足下列规则,则称V 为数域F 上的线性空间(或向量空间)。 加法满足下面四条规则: (1) ; (2) )()( ; (3) 在V 中存在零元素0;对任何V ,都有 0; (4) 对任何V ,都有 的负元素V ,使0 ,记 ; 数量乘法满足下面两条规则: (5) 1; (6) αα)()( ; 数量乘法与加法满足下面两条规则;

线性空间习题解答

第六章 线性空间习题解答P267 .1设,,M N M N M M N N ?==证明: 证明: 一方面.M N M ? 另一方面, 由于M M ?,,N M ? 得.N M M ? 2 证明: (1))()()(L M N M L N M =. (2))()()(L M N M L N M = 证明: (1) .),(L N x M x L N M x ∈∈∈且则设 即.M x N x M x ∈∈∈或且 L x ∈且. 于是有)()(L M N M x ∈. 另一方面,因为 )(,)(L N M L M L N M N M ??,所以 )()()(L N M L M N M ?. (2) 一方面, ))(,)(L M L N M N M L N M ??,所以 )()()(L M N M L N M ?. 另一方面, .),()(L M x N M x L M N M x ∈∈∈?且则 若).(,L N M x M x ∈∈则 若∈∈∈?x L x N x M x 所以且则.,.L N 总之有 )()()(),(L N M L M N M L N M x ?∈所以. 3. 检查以下的集合对于所指的线性运算是否构成实数域上的线性空间. (1) 次数等于n(n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法. (2) 设A 是n ?n 实矩阵, A 的实系数多项式f (A)的全体, 对于矩阵的加法和数量乘法. (3) 全体n 级实对称(反对称,上三角)矩阵, 对于矩阵的加法和数量乘法. (4) 平面上不平行于某一向量的全体向量所成的集合,对于向量的加法和数量乘法. (5) 全体实数的二元数列,对于下面定义的运算: ),(),(),(2121212211a a b b a a b a b a +++=⊕, )2 )1(,(),(2 11111a k k kb ka b a k -+ = . (6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: k ?α=0. (7) 集合与加法同(6), 数量乘法为

线性空间维数与基的求法

线性空间维数与基的求法 维数与基是线性空间V 的一个基本属性,它的确立对于我们认识线性空间有着很大的作用。因为确定了维数和基以后n 线性空间V 上任意向量的坐标(即n 元数组)也就相应确定了,在学习了线性空间的同构的知识后会知道,任意n 维线性空间V 都与n P 同构,这样,我们可以通过n P 的性质来研究任意n 线性空间V 的性质。 同时对维数与基概念的把握也是我们后面学习线性空间的同构、线性变换、欧氏空间的基础。但是,鉴于它是线性空间的一个基本概念,多数教科书对于该部分的处理往往是泛泛而谈,比如文献1250P 例3更是一笔带过,这对学生深入理解相关概念造成了一定的障碍。虽然它的求法没有统一的方法,但却有着一致的要求,即要符合定义。本文计划从以下两方面对维数与基的求法做进一步的归纳和总结,同时也是对《高等代数》250P 例3的补充说明,希望对初学者认识线性空间以及后续的学习有一定的帮助。 一、数域P 上的线性空间V ——数域P 的作用和角色 凡是涉及数与空间中向量(取自集合V 中的元素)的乘积,即通常所说的数量乘法,其中的数都是取自数域P 。例如:线性变换、同构定义中的第二条保持数量乘法,判别向量的线性相关性等这些问题都是依赖数域P 的。同一线性空间V 指定数域的不同,通常对于我们的结果也会造成很大差别。 1.数域P 对线性空间V 的线性变换判别的影响 例1:把复数域看作复数域上的线性空间,ξξ=A 解:举反例如下,系数k 取自复数域i k =,)())(()(ai b bi a i k +-A =+A =A α ai b --=, 而ai b bi a i bi a i k +=-=+A =A )())(()(α,显然)()(ααA ≠A k k ,故变换A 不是线性的。 例2:把复数域看作实数域上的线性空间,ξξ=A 解:系数k 取自实数域R k ∈,kbi ka kbi ka bi a k k -=+A =+A =A )())(()(α, kbi ka bi a k bi a k k -=-=+A =A )())(()(α,容易验证A 也保持向量的加法,故A 是线性的。 可见,同一线性空间的同一变换在不同数域上有些是线性的,有些不是线性的。 2.数域P 对线性变换特征值及矩阵可否对角化的影响 文献1中关于线性变换特征值的定义是要求符合等式ξλξ0=A 中的0λ是取自线性

线性空间的维数

§3 维数·基与坐标 一、向量的线性相关与线性无关 定义 2 设V 是数域P 上的一个线性空间,r ααα,,,.21 )1(≥r 是V 一组向量,r k k k ,,,21 是数域P 中的数,那么向量 r r k k k αααα+++= 2211. 称为向量组r ααα,,,.21 的一个线性组合,有时也说向量α可以用向量组r ααα,,,.21 线性表出. 定义3 设 r ααα,,,.21 ; (1) s βββ.,,21 (2) 是V 中两个向量组,如果(1)中每个向量都可以用向量组(2)线性表出,那么称向量(1)可以用向量组(2)线性表出.如果(1)与(2)可以互相线性表出,那么向量组(1)与(2)称为等价的. 定义4 线性空间V 中向量r ααα,,,.21 )1(≥r 称为线性相关,如果在数域P 中有r 个不全为零的数r k k k ,,,21 ,使 0.2211=+++r r k k k ααα . (3) 如果向量r ααα,,,.21 不线性相关,就称为线性无关.换句话说,向量组r ααα,,,.21 称为线性无关,如果等式(3)只有在021===r k k k 时才成立. 几个常用的结论: 1. 单个向量α线性相关的充要条件是0=α.两个以上的向量r ααα,,,.21 线性相关的充要条件是其中有一个向量是其余向量的线性组合. 2. 如果向量组r ααα,,,.21 线性无关,而且可以被s βββ.,,21 线性表出,那么s r ≤. 由此推出,两个等价的线性无关的向量组,必含有相同个数的向量.

3. 如果向量组r ααα,,,.21 线性无关,但βααα,,,,.21r 线性相关,那么β可以由被r ααα,,,.21 线性表出,而且表示法是唯一的. 在一个线性空间中究竟最多能有几个线性无关的向量,显然是线性空间的一个重要属性. 定义5 如果在线性空间V 中有n 个线性无关的向量,但是没有更多数目的线性无关的向量,那么V 就称为n 维的;如果在V 中可以找到任意多个线性无关的向量,那么V 就称为无限维的. 定义6 在n 维线性空间V 中,n 个线性无关的向量n εεε,,,21 称为V 的一组基.设α是V 中任一向量,于是αεεε,,,,21n 线性相关,因此α可以被基n εεε,,,21 线性表出: n n a a a εεεα+++= 2211. 其中系数n a a a ,,,21 是被向量α和基n εεε,,,21 唯一确定的,这组数就称为α在基n εεε,,,21 下的坐标,记为),,,(21n a a a . 由以上定义看来,在给出空间V 的一组基之前,必须先确定V 的维数. 定理1 如果在线性空间V 中有n 个线性无关的向量n ααα,,,.21 ,且V 中任一向量都可以用它们线性表出,那么V 是n 维的,而n ααα,,,.21 就是V 的一组基. 例1 在线性空间n x P ][中, 12,,,,1-n x x x 是n 个线性无关的向量,而且每一个次数小于n 的数域P 上的多项式都可以被它们线性表出,所以n x P ][是n 维的,而12,,,,1-n x x x 就是它的一组基. 例2 在n 维的空间n P 中,显然

基与维数的几种求法

基与维数的几种求法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

线性空间基和维数的求法 方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1 满足: (1)n ααα,2,1 线性无关。 (2)V 中任一向量α总可以由n ααα,,21, 线性表示。 那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称n ααα,,2,1 为线性空间V 的一组基。 如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。 例1 设{}0V X AX ==,A 为数域P 上m n ?矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。 解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。 例2 数域P 上全体形如0a a b ?? ?-??的二阶方阵,对矩阵的加法及数与矩阵的 乘法所组成的线性空间,求此空间的维数和一组基。 解 易证0100,1001???? ? ? -????为线性空间0,a V a b p a b ????=∈?? ?-???? |的一组线性无关的向量组,且对V 中任一元素0a a b ?? ?-??有00100+1001a a b a b ?????? = ? ? ??????? 按定义0100,1001???? ? ?????为V 的一组基,V 的维数为2。 方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。

对线性空间的理解

首先说说空间(space),这个概念是现代数学的命根子之一,从拓扑空间开始,一步步往上加定义,可以形成很多空间。线形空间其实还是比较初级的,如果在里面定义了范数,就成了赋范线性空间。赋范线性空间满足完备性,就成了巴那赫空间;赋范线性空间中定义角度,就有了内积空间,内积空间再满足完备性,就得到希尔伯特空间。 总之,空间有很多种。你要是去看某种空间的数学定义,大致都是“存在一个集合,在这个集合上定义某某概念,然后满足某些性质”,就可以被称为空间。这未免有点奇怪,为什么要用“空间”来称呼一些这样的集合呢?大家将会看到,其实这是很有道理的。 我们一般人最熟悉的空间,毫无疑问就是我们生活在其中的(按照牛顿的绝对时空观)的三维空间,从数学上说,这是一个三维的欧几里德空间,我们先不管那么多,先看看我们熟悉的这样一个空间有些什么最基本的特点。仔细想想我们就会知道,这个三维的空间:1. 由很多(实际上是无穷多个)位置点组成;2. 这些点之间存在相对的关系;3. 可以在空间中定义长度、角度;4. 这个空间可以容纳运动,这里我们所说的运动是从一个点到另一个点的移动(变换),而不是微积分意义上的“连续”性的运动, 上面的这些性质中,最最关键的是第4条。第1、2条只能说是空间的基础,不算是空间特有的性质,凡是讨论数学问题,都得有一个集合,大多数还得在这个集合上定义一些结构(关系),并不是说有了这些就算是空间。而第3条太特殊,其他的空间不需要具备,更不是关键的性质。只有第4条是空间的本质,也就是说,容纳运动是空间的本质特征。 认识到了这些,我们就可以把我们关于三维空间的认识扩展到其他的空间。事实上,不管是什么空间,都必须容纳和支持在其中发生的符合规则的运动(变换)。你会发现,在某种空间中往往会存在一种相对应的变换,比如拓扑空间中有拓扑变换,线性空间中有线性变换,仿射空间中有仿射变换,其实这些变换都只不过是对应空间中允许的运动形式而已。 因此只要知道,“空间”是容纳运动的一个对象集合,而变换则规定了对应空间的运动。 下面我们来看看线性空间。线性空间的定义任何一本书上都有,但是既然我们承认线性空间是个空间,那么有两个最基本的问题必须首先得到解决,那就是:1. 空间是一个对象集合,线性空间也是空间,所以也是一个对象集合。那么线性空间是什么样的对象的集合?或者说,线性空间中的对象有什么共同点吗?2. 线性空间中的运动如何表述的?也就是,线性变换是如何表示的? 我们先来回答第一个问题,回答这个问题的时候其实是不用拐弯抹角的,可以直截了当的给出答案。线性空间中的任何一个对象,通过选取基和坐标的办法,都可以表达为向量的形式。通常的向量空间我就不说了,举两个不那么平凡的例子:L1. 最高次项不大于n次的多项式的全体构成一个线性空间,也就是说,这个线性空间中的每一个对象是一个多项式。如果我们以x0, x1, ..., x n为基,那么任何一个这样的多项式都可以表达为一组n+1维向量,其中的每一个分量a i其实就是多项式中x(i-1)项的系数。值得说明的是,基的选取有多种办法,只要所选取的那一组基线性无关就可以。这要用到后面提到的概念了,所以这里先不说,提一下而已。 L2. 闭区间[a, b]上的n阶连续可微函数的全体,构成一个线性空间。也就是说,这个线性空间的每一个对象是一个连续函数。对于其中任何一个连续函数,根据

相关主题
文本预览
相关文档 最新文档