当前位置:文档之家› 数学物理方法第八章

数学物理方法第八章

数学物理方法第三章答案完整版

第三章答案 1. (6分)已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其逆矩阵)(1 t -Φ和系统矩阵A 。 ??? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解: ??????+-+---=-Φ=Φ-2t t 2t t 2t t 2t t 1 3e 2e 3e 3e 2e 2e 2e 3e )t ()t ( (3分) ? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 2. (8分)求定常控制系统的状态响应。 ()()()()()()0101,0,0,11210x t x t u t t x u t t ??????=+≥== ? ? ?--?????? & 解:11t t t At t t t t t t e te te e e t t te e te -------+??+??== ? ?----?? ?? (4分) 0()()(0)()()10t t t t t x t t x Bu t d e te e d te e e ττττττ τττ------=Φ+Φ-????+??=+=??????--?????? ?? (4分) 3.(3分) 已知齐次状态方程Ax x =&的状态转移矩阵)(t Φ如下,求其系统矩阵A 。 ?? ? ???+-+---=Φ--------2t t 2t t 2t t 2t t 3e 2e 3e 3e 2e 2e 2e 3e )t (。 解:? ? ? ? ??=Φ==4-3-21|)t (A 0t & (3分) 4.(8分)已知系统的状态方程为: u x x ?? ????+??????=111101&, 初始条件为1)0(1=x ,0)0(2=x 。求系统在单位阶跃输入作用下的响应。 解:解法1:?? ? ???=??? ? ????????---=Φ--t t t e te e s s L t 01101)(1 1; (4分) ?? ????-=??????-+??????=??? ?????????-+????????????=?---t t t t t t t t t t t t t te e te e te e d e e t e e te e x 212111)(00100τττττ。 (4分) 解法2: ?? ????--=??????--+??????--=+-=-s s s s s s s s s s x s Bu A s s x 21)1(1 11)1(11)1(1)}0()({)I ()(22221 ;

数学物理方法习题答案[1]

数学物理方法习题答案: 第二章: 1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。 (2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2 ,cos(2)sin(2)i e i π ππ+; 32,2[cos(sin(3)i e i π ππ+; ,(cos1sin1)i e e e i ?+ 3、22k e ππ--; (623)i k e ππ+; 42355cos sin 10cos sin sin ?????-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1 ()cos 2 y y ay b e e x e ---- 4、(1) 2214u υ+= 变为W 平面上半径为1 2的圆。 (2)u υ=- 平分二、四象限的直线。 5、(1) z ie iC -+; 2(1) 2i z -; ln i z - (2) 选取极坐标 ,, ()2 2 u C f z ?? υ==+=6、ln C z D + 第三章: 1、 (1) i π (2)、 i ie π-- (3)、 0 (4)、i π (5)、6i π 2、 设 ()!n z z e f n ξ ξ= z 为参变数,则 () 1 220 1 1 () 1(0)2!2! 1()()!!! ! n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξ ξ +=== ====? ? 第四章: 1、(1) 23 23 ()()ln 22z i z i z i i i i i ---+-+- (2)23313 (1) 2!3!e z z z ++++ (3) 211111()()[(1)(1)](1)11222k k k k k k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑ 2、(1) 1 n n z ∞ =--∑ (2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞ ++=-∑ , 34z <<时

数学物理方法第二篇第4章

第四章 分离变量法、本征函数法 在讨论有界区域具有齐次边界条件的数学物理问题时可寻求变量分离形式的解,这就是分离变量法. §2.4.1一维有界区域齐次方程齐次边界条件 混合问题的分离变量法 以弦的横振动为例,设弦长为l ,两端固定的一维自由振动的混合问题是 ?? ? ??≤≤==≥==>≤≤=) 0(),()0,(),()0,()0(, 0),(,0),0()0,0(),,(),(2l x x x u x x u t t l u t u t l x t x u a t x u t xx tt ψ? 由于边界条件是齐次的,因此设问题有变量分离形式的解: )()(),(t T x X t x u =, 这里X (x )与变量t 无关,T (t )与变量x 无关,将它代入方程,分离变量得到 ) ()() ()(2 x X x X t T a t T ''= '', 这是一个恒等式,左边仅是t 的函数,右边仅是x 的函数,而x ,t 是两个无关的独立变量,所以这个等式只能是常数,记为λ-,于是有 λ -=''= '') ()() ()(2 x X x X t T a t T , 从而得到两个常微分方程:

)()(,0)()(2 =+''=+''x X x X t T a t T λλ, 对齐次边界条件也有, )()(, 0)0()0(==t T l X T X , 由于求非零解,所以0)(≠t T ,只有,0)(,0)0(==l X X ,由此就得 到关于X (x )的施斗姆-刘维尔本征值问题: ?? ?===+''0 )(,0)0(0)()(l X X x X x X λ, (1)0<λ不是本征值. (2)0=λ,得B Ax x X +=)(,A ,B 为待定常数,由0)0(=X 得B =0, 由0)(=l X 得Al =0,0≠l ,所以A =0,表明0=λ也不是本征值. (3)当0>λ时,方程的通解为 x D x C x X λλs i n c o s )(+= 由0)0(=X 得C=0;由0)(=l X 得关于λ的方程 0sin =l D λ 由于求问题的非零解,所以0≠D .只有0sin =l λ,从而得到问题 的可列个本征值: ,...) 3,2,1(,== n l n n πλ 即 ,...) 3,2,1(,)( 2 ==n l n n πλ 对应的本征函数(把非零常数D 省去)有

数学物理方法习题

数学物理方法习题 第一章: 应用矢量代数方法证明下列恒等式 1、 2、 3、 4、 5、 第二章: 1、下列各式在复平面上的意义是什么? (1) (2) ; 2、把下列复数分别用代数式、三角式和指数式表示出来。 3、计算数值(和为实常数,为实变数) 4、函数 将平面的下列曲线变为平面上的什么曲线? (1) (2) 5、已知解析函数的实部或虚部,求解析函数。 (1) ; (2) 6、已知等势线族的方程为 常数,求复势。 第三章: 1、计算环路积分: 3r ?= 0r ??= ()()()()()A B B A B A A B A B ???=?-?-?+? 21()0 r ?=()0A ???= 0; 2 Z a Z b z z -=--=0arg 4z i z i π -<<+1Re()2 z =1;1i i e ++a b x sin5i i ?sin sin() iaz ib z a i b e -+1 W z = z W 224x y +=y x =()f z (,)u x y (,)x y υ22sin ;,(0)0;,(1)0x u e y u x y xy f u f ?==-+== =(00) f υ==22 x y +=

2、证明:其中是含有的闭合曲线。 3、估计积分值 第四章: 1、泰勒展开 (1) 在 (2)在 (3)函数在 2、(1) 在区域展成洛朗级数。 (2) 按要求展开为泰勒级数或洛朗级数:① 以为中心展开; ②在的邻域展开;③在奇点的去心邻域中展开;④以奇点为中心展开。 3、确定下列函数的奇点和奇点性质 第五章: 1、计算留数 (1) 在点。 (2) ,在点; (3) 在孤立奇点和无穷远点(不是非孤立奇点); 2211132124sin 4(1).(2).11sin (3). (4). () 231 (5). (1)(3)z z z i z z z z z e dz dz z z z e dz dz z z z dz z z π π+=+====-+--+-????? 21()!2!n n z n l z z e d n i n ξξ πξξ=? l 0ξ=222i i dz z +≤? ln z 0 z i =1 1z e -0 0z =21 1z z -+1z =1 ()(1)f z z z = -01z <<1 ()(3)(4)f z z z = --0z =0z =521 (1);(2)(1)sin cos z z z z -+2 (1)(1)z z z -+1,z =±∞3 1sin z e z -0z =31 cos 2z z -

数学物理方法第08章习题

第八章 习题答案 8.1-1 证明递推公式: (1)()()()x l x x x l l l P P P 1=' -'- (2)()()()()x l x x x l l l P 1P P 1+=' -'+ (3)()()()()x l x x l l l P 12P P 11+=' -'-+ 证明:基本递推公式 ()()()()()x l x l x x l l l l 11P 1P P 12+-++=+ ① ()()()()x x x x x l l l l ' -'+'=-+P 2P P P 11 ② (1)将①式对x 求导后可得: ()()()()()()()x l x l x l x x l l l l l '++'=++'++-11P 1P P 12P 12 ③ 由③-()?+1l ②可得 (目的:消去()x l ' +1P ) ()()()()()()x l x l x x l l l l P 1P 12P 12+-++'+ ()()()()()x l x x l x l l l l '++'+-'=--P 12P 1P 11 整理可得:()()()x l x x x l l l P P P 1=' -'- (2)将()()()x l x x x l l l P P P 1=' -'-乘以l 得: ()()()x l x l x lx l l l P P P 21=' -'- ④ 由③-④得 (目的:消去()x l ' -1P ) ()()()()()()x l x l x x l l l l '+=++'++12P 1P 1P 1 整理可得:()()()()x l x x x l l l P 1P P 1+=' -'+ (3)由2×③-()12+l ×②可得: (目的:消去()x l ' P ) ()()()()()()x l x l x l l l l '++'+++-+11P 12P 12P 24 ()()()()()x l x l x l l l l P 12P 22P 211++' ++'+- 整理可得:()()()()x l x x l l l P 12P P 11+=' -'-+

数学物理方法第05章习题

第五章 习题答案 5.1-1一长为l 的均匀细杆,0=x 端固定,另一端沿杆的轴线方向被拉长d 而静止(假定拉长在弹性限度内)。突然放手使其振动,试写出振动方程与定解条件。 解:振动方程的形式与自由杆的振动方程一样。 ()l x u a u xx tt ≤≤=-00 2 ρ Y a = 2 初始条件:()()l x x l d x U ≤≤= 00, ()00,=x U t 边界条件:()0,0=t U ()0,0=t U x (右端自由振动) 5.1-2 长为l 的弦两端固定,密度为ρ,开始时在ε<-c x 处受到冲量I 的作用,写出初始条件。 解: ()00,=x U 在ε≥-c x 处 ()00,=x U t 在ε<-c x 处 由动量定理有: [] ερ ερ2)0,(0)0,(2I x U x U I t t = ?-?= 即:()??? ??<-≥-=ε ερ εc x I c x x U t 200, 5.1-3 长为l 的均匀细杆,在振动过程中,0=x 固定,另一端受拉力0F 的作用。试写出边界条件。(横截面积S ,杨氏模量Y )。 解:()0,0=t U 2 20),(t U S S t l P F ????=?--ρεε 当0→ε时有YS F t l U x U Y S F x l x 0 0),(= ???? ?==

5.1-4线密度为ρ,长为l 的弦两端固定,在某种介质中作阻尼振动,单位长度受阻力 t u h F ??-=,试写出其运动方程。 解:如图,取微元x d ,它的两端与x 轴间的夹角分别为21αα、,两端受力分别为 ()()t x T t x x T ,,d 、+,受力分析如下: x 轴方向: ()()0cos ,cos ,d 21=-+ααt x T t x x T 21,αα很小,则()()t x T t x x T ,,d =+, 即弦上张力不变。 y 轴方向:()()2221d d d sin ,sin ,d t u x g x x F t x T t x x T ????=??=?+-+ρραα 略去重力x g d ρ 有: x t u h x x u T t u x d d d 2222???-????=??ρ 所以:02 222=???+???-??t u h x u T t u ρρ 设2 a T =ρ 有:02 =+-t xx tt u h u a u ρ 5.1-5一均匀细圆锥杆作纵振动,锥的顶点固定在0=x 处,试导出此杆的振动方程。 解:设体密度为ρ,取微元x d (s 与s '中间一段) 则质量()?? ? ????-'?+??=s x s x x m 31d 31d ρ 而2 22 d 2d x x x x x x x s s +≈??? ??+=' 故()x s s x x x x m d d 31d 2 3 ??≈??? ?? ??-+??=ρρ 纵向上由牛顿定律有:s t x P s t x x P t u m ?-'?+=???),(),d (d 22 ()s x t x u x x x x t x x u Y t u x s ???? ???????-??? ??+??+??=???),(d ,d d 222ρ 1α 2α x l ()t x x T ,d + ()t x T , ()t x u , x x x d + x s s '

数学物理方法

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

(整理)数学物理方法

《数学物理方法》课程考试大纲 一、课程说明: 本课程是物理学专业的一门重要基础课程,它是继高等数学后的一门数学基础课程。 本课程的教学目的是:(1) 掌握复变函数、数学物理方程、特殊函数的基本概念、基本原理、基本解题计算方法;(2) 掌握把物理问题归结成数学问题的方法,以及对数学结果做出物理解释。为今后学习电动力学、量子力学和统计物理等理论物理课程打下必要的数学基础。 本课程的重点是解析函数、留数定理、傅里叶变换、数学物理方程、分离变数法、傅里叶级数法、本征值问题等。 本课程的难点是把物理问题归结成数学问题,以及各种数学物理方程的求解。 二、参考教材: 必读书:《数学物理方法》,梁昆淼编,高等教育出版社,1998年6月第3版。 参考书:《数学物理方法》,汪德新编,科学出版社,2006年8月第3版;《数学物理方法》,赵蕙芬、陆全康编,高等教育出版社,2003年8月第2版。 三、考试要点: 第一章复变函数 (一)考核知识点 1、复数及复数的运算 2、复变函数及其导数 3、解析函数的定义、柯西-黎曼条件 (二)考核要求 1、掌握复数三种形式的转换。 2、掌握复变函数的导数和解析等基本概念,并掌握判断导数是否存在和函数是否解析的 方法。 u 。 3、了解解析函数与调和函数的关系,并能从已知调和函数u或v,求解析函数iv 第二章复变函数的积分 (一)考核知识点 1、复变函数积分的运算 2、柯西定理 (二)考核要求 1、理解单通区域和复通区域的柯西定理,并能用它们来计算复变函数的积分。

2、掌握应用原函数法计算积分。 3、掌握柯西公式计算积分。 第三章幂级数展开 (一)考核知识点 1、幂级数的收敛半径 2、解析函数的泰勒展开 3、解析函数的洛朗展开 (二)考核要求 1、理解幂级数收敛圆的性质。 2、掌握把解析函数展开成泰勒级数的方法。 3、掌握把环域中的解析函数展开成洛朗级数的方法。 4、理解孤立奇点的分类及其类型判断。 第四章留数定理 (一)考核知识点 1、留数的计算 2、留数定理 3、利用留数定理计算实变函数定积分 (二)考核要求 1、掌握留数定理和留数计算方法。 2、掌握利用留数定理计算三类实变函数定积分。 第五章傅里叶变换 (一)考核知识点 1、傅里叶级数 2、傅里叶变换 3、δ函数 (二)考核要求 1、掌握周期函数的傅里叶级数形式和定义在有限区间) ,0(l上的函数的傅里叶展开。 2、掌握非周期函数的傅里叶变换。 3、掌握δ函数的性质及其傅里叶积分的形式。 第七章数学物理方程的定解问题

《高等数学》第四册(数学物理方法)

第一章 复数与复变函数(1) 1.计算 )(1)2; i i i i i -- = -- =-()122(12)(34)(2)5102122. ; 345(34)(34)59165 5 i i i i i i i i i i i i +-++--+++ = + =- =- --+-+5 5 51(3). ; (1)(2)(3) (13)(3) 102i i i i i i i = = = ------ 4 2 2 2 (4).(1)[(1)](2)4; i i i -=-=-=- 1 1 22 ())]a b a b i =+= 1 1 2 2 24s sin )]()(co s sin ); 2 2 i a b i θθθθ=+=++ 3. 设 1z = 2;z i = 试用三角形式表示12z z 及1 2z z 。 解: 121co s sin ;(co s sin ); 4 4 2 6 6 z i z i ππππ=+= + 121155[co s( )sin ( )](co s sin ); 2 4 6 4 6 2 12 12 z z i i π π π π ππ= + ++ = + 12 2[co s( )sin ( )]2(co s sin ); 4 6 4 6 12 12 z i i z ππππππ=- +- =+ 11.设123,,z z z 三点适合条件1230z z z ++=及1231; z z z ===试证明123,,z z z 是一个内接于单位圆 z =1 的正三角形的顶点。 证明:1230;z z ++=z 123231;312;;z z z z z z z z z ∴=--=--=-- 122331;z z z z z z ∴-=-=-123 ,,z z z ∴所组成的三角形为正三角形。 1231z z z === 123 ,,z z z ∴为以z 为圆心,1为半径的圆上的三点。 即123z ,z ,z 是内接于单位圆的正三角形。

数学物理方法第二篇第3章

第三章 行波法和通积分法 §2.3.1一维波动方程哥西问题达朗贝尔公式 无限长均匀弦的自由振动归结为一维齐次波动方程的哥西问题: ?? ?==>+∞<<-∞=-) ()0,(),()0,() 0,(,02x x u x x u t x u a u t xx tt ψ? 这个方程的特征方程为 0 )( 2 2 =-a t x d d , 所以波动方程是双曲型方程,有两组实的特征线 1c at x =-,2c at x =+, 作自变量的变换,令 at x -=ξ,at x +=η, 应用复合函数求导法则,有 η ξηξau au a u a u u t +-=?+-=)(, ηξηξu u u u u x +=?+?=11, ηηξηξξu a u a u a u tt 2 2 2 2+-=, ηη ξηξξu u u u xx ++=2, 代入波动方程中,化简得 0=ξηu , 利用偏导数的意义,得通解

)()()()(),(at x G at x F G F t x u ++-=+=ηξ, 其中F 和G 是任意二阶连续可微函数. 由),(t x u 满足的初始条件来确定F 和G 的具体形式,于是 得函数方程 ? ? ?='+'-=+)()()(), ()()(x x G a x F a x x G x F ψ? 积分第二式得 C a x G x F x x += +-?α αψd 0 )(1)()(,C 为积分常数. 从而得 2)(21)(21)(0C a x x F x x - - = ?ααψ?d , 2 )(21)(2 1)(0 C a x x G x x + + =?ααψ?d 故得一维齐次波动方程哥西问题的解 ααψ??d ?+-+ ++-= at x at x a at x at x t x u )(21)]()([2 1),(, 这就是著名的达朗贝尔公式. 通常称)(at x F -为右传播波(或右行波),称)(at x G +为左传播波(或左行波),a 为速度.所以这种解波动方程哥西问题的方法称为行波法,在数学上又叫通积分法.

数理方程8-11章习题精选(计算题)

数学物理方法习题精选 §8-3 1. ??? ?? ???? +===><<=-===.2sin 52,2)0;0(020 202x x l u l u t a u t l x u a u t l x x x xx t π,  2. 222222220200 0,(0)0,1315cos cos cos 0 23252x x x l t t t u u a x l t x u u l a t x x x u x u l l l πππ====???-=<

数学物理方法名词解释

第一章 1.定解条件:边界条件和初始条件统称为定解条件。边界条件又有Dirichlet 边界条件(也称第一类边界条件)、Neumann 条件,也称第二类边界条件、Robin 边界条件,第三类边界条件。P3-4 2.定解问题:一个微分方程(组)和相对应的定解条件合在一起就构成了一个定界问题。又分有初始问题(Cauchy 问题),只有初始条件没有边界条件的定界问题;边值问题,只有边界条件没有初始条件的定解问题;混合问题,两者都有。对于边值问题,根据边界条件不同,又可以分为第一、第二和第三边值问题。 P11 3.定解问题的适定性 从数学上看,判断一个定解问题是否合理,即是否能够完全描述给定的物理状态,一般来说有一下三个标准: ⑴解的存在性:所给定的定解问题至少存在一个解。 ⑵解的惟一性:所给定的定解问题至多存在一个解。 ⑶解的稳定性:当给定条件以及方程中的系数有微小变动时,相应的解也只有微小变动。 定解问题解的存在性、惟一性和稳定性统称为定解问题的适定性。P12 4.Dirichlet 、Neumann 定解问题 定解条件只有Dirichlet 条件没有初始条件的定解问题叫做Dirichlet 定解问题。 定解条件只有Neumann 条件没有初始条件的定解问题叫做Neumann 定解问题。 5.热传导Fourier 定律:热量以传导形式传递时,单位时间内通过单位面积所传递的热量与当地温度梯度成正比。对于一维问题,可表示为:Φ=-λA(dt/dx) 其中Φ为导热量,单位为W,λ为导热系数,A 为传热面积,单位为m2, t 为温度,单位为K, x 为在导热面上的坐标。 6.Hooke 弹性定律:在弹性限度内,物体的形变跟引起形变的外力成正比。χχεσE = 7.发展方程:所描述的物理过程随时间而演变,如:波动方程、热传导方程等 8.在热传导方程中,如果温度分布稳定,即0u t =,则三维热传导方程f u a u 2t +?=变为 0f u =+?,此方程为Poisson 方程。特别地,若f(x,y,z)=0,即0u =?,则为Laplace 方程。 Poisson 方程或Laplace 方程统称为位势方程。 9.二阶线性偏微分方程分类方法 022*******=++++++F Cu u B u B u A u A u A ηξηηξηξξ的二阶主部为yy xy xx u A u A u A 2212112++。 若二阶主部作成的判别式在区域Ω中的某点 ),(00y x 02211212>-≡?a a a ,则称方程在这点),(00y x 是双曲型的;若某点),(00y x 022112 12=-≡?a a a ,称方程在这点),(00y x 是 抛物型的;若某点),(00y x 02211212<-≡?a a a ,则称方程在这点),(00y x 是椭圆型的。 第二章 1.特征值: 使常微分方程边值问题具有非零解的数λ称为这个边值问题的特征值,相对应的非零解称为这个特征值的特征函数。P26

数学物理方法作业习题第二篇第3章

习 题 1. 求下列方程的通解: (1)032=--yy xy xx u u u ; (2)032=-+yy xy xx u u u ; (3)23253=++--y x yy xy xx u u u u u ; (4)022 2 =+++-y x yy xy xx yu xu u y xyu u x ; (5)03222=--yy xy xx u y xyu u x ;(6)y x y x xy e u u u u +=+--2632; (7) 22 2 )(y u x u x x ??=????;提示:令),(1),(y x v x y x u = . 2. 求解下列初值问题: (1)| |2)0,(,2)0,(x t xx tt e x u x u u a u -=???== (2)2211)0,(,cos )0,(x x u x x u u a u t xx tt +=?? ?== (3)????? ==+=) ()0,(,)()0,()2(2x x u x x u u x u a u t x xx tt ψ? 3. 求解下列定解问题: (1)x x u x x u u u t xx tt 4)0,(,)0,(6 2 =?? ?=+= (2)? ??==+=x o x u x x u xt u u t xx tt ),(,)0,(42 (3)???==+=0)0,(,sin )0,(sin x u x x u x u u t xx tt (4)?? ?+==+=x x x u x x u e u u t x xx tt cos )0,(, sin )0,(

(5)???==+=0 )0,(,0)0,(sin 2x u x u x u a u t xx tt ω (6)???==+=0)0,(,0)0,(sin 2x u x u t u a u t xx tt ω 4. 求解下列定解问题: (1)、?? ?==∞ <<∞-=+==1|, sin |0 x y x x y x xy u x u x u u (2)???===++-==0|, |02200y y y y x yy xx u x u u u u u (3)???-=-==---==1|,|4 2200 y u y u u u u u x x x y x yy xx (4)?? ?<===+++-==) 1(|, 0|0 2 533x e u u xyu xu yu u x x y y x y y x xy (5)????? ==>=+-==,0|, |) 0(02 100y y y x yy xx u x u x u u xu (6)?? ???=-=>=-+==3|,1|)0(, 02112 y y y y yy xy u x u y u y u u y 5. 求解下列初值问题: (1)???==++===20202|,|)(z u y u u u u a u t t t zz yy xx tt (2)???=+=++===0|,|)(03 02t t t zz yy xx tt u yz x u u u u a u (3)???==+++===2 02022|,|)(8z u y u t x u u u u t t t zz yy xx tt (4)???==++===y u x u u u u t t t yy xx tt 00|,|2 (5)???+=-=+===2 202 202|, 2|) (2y x u y x u u u u t t t yy xx tt

北邮数理方程课件-第六章-Legendre多项式

第六章Legendre多项式 6.2 基础训练 6.2.1例题分析 例1 氢原子定态问题的量子力学Schrodinger(薛定谔)方程是 ?? 2 2 ?2u? Ze2 u=Eu 其中?,μ,Z,e,E都是常数。试在球坐标系下把这个方程分离变量。 解:先令A= 2 8π2μ ,B=Ze2,则Schrodinger方程可以简单写为 A?2u+B u+Eu=0 由laplace算符在球坐标下的表达式,则在球坐标下,Schrodinger方程的表达式为 A[1 2 e e (r2 eu e )+ 1 2 e e (sinθ eu e )+ 1 22 e2u e2 ]+B u +Eu=0 令u(r,θ,?)=R(r)Y(θ,?),代入上式得 AY 2d (r2 dR )+ AR 2 e e (sinθ eY e )+ AR 22 e2Y e2 +( B +E)RY=0 两边分别乘以r 2 ARY ,得 1 R d dr (r2 dR dr )+ r2 A ( B r +E)=? 1 Y sinθ e eθ (sinθ eY eθ )? 1 Y sin2θ e2Y e?2 要使上式成立,则必有两边等于同一个常数,记为l(l+1),从而 d dr (r2 dR dr )+[ B A r+Er2?l(l+1)]R=0 即 1 r2d dr (r2dR dr )+[8π2μ ? 2 (Ze2 r +E)?l(l+1) r2 ]R=0(1) 至于Y则满足球函数方程 1 sinθ e eθ (sinθeY eθ )+1 sinθ e2Y e? +l(l+1)Y=0(2) 球函数方程(2)的可以进一步分离变,令Y(θ,?)=Θ(θ)Φ(?)代入(2),并有周期条件,则得Φ满足 Φ′′+m2Φ=0(3) 它的解是 Φm=A m cos m?+B m cos m?m=0,1,2,? Θ满足缔合勒让德方程 (1?x2)d2Θ dθ2?2x dΘ dθ +[l(l+1)?m2 1?x2 ]Θ=0(4) 其中x=cosθ. 例2.证明:P n(1)=1,P n(?1)=(?1)n,P2n?1(0)=0,P2n(0)=(?1)n2n! 2n! .

数学物理方法第一章作业答案

第一章复变函数 §1.1 复数与复数运算 1、下列式子在复数平面上个具有怎样的意义? (1)z≤ 2 解:以原点为心,2 为半径的圆内,包括圆周。 (2)z?a=z?b,(a、b 为复常数) 解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。 (3)Re z>1/2 解:直线x=1/ 2右半部分,不包括该直线。 (4)z+Re z≤1 解:即x2 +y2 +x≤1,则x≤1,y2 ≤1?2x,即抛物线y2 =1?2x及其内部。(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数) 解: (6)0 0 x 2 2 + +( y y 2 + ? 1 1) 2 > 所以 ,即x <0,x2 +y2 ?1+2x >0 x 0

z -1 ≤(7)1, z +1

2 z-1 x 1 iy x y 1 4y ?+?+?? 2 2 2 ==+ ?? 解:()[()] +++++ iy 1 y2 2 2 z 1 x 1 x ?x 1 y ?+ 2 + 2 所以()[()] x+?+≤++ 2 2 2 y 1 4y2 x 1 y 2 2 2 化简可得x≥0 (8)Re(1 /z) =2 ????? 1 x iy x 解:Re( ?=R e 2 1/ z=? ) R e 2 == ???? ?iy? x ?x ++y+y ?x 2 2 2 即(1/ 4)1/16 x? 2 +y= 2 (9)Re Z2 =a2 解:Re Z2 =x2 ?y2 =a2 +z+z?z=2 z+2 z 2 (10) z 1

数学物理方法 课本答案第五章 Bessel 函数

第五章 Bessel 函数 5.2 基础训练 5.2.1例题分析 例1 试用平面极坐标系把二维波动方程分离变量: 2()0tt xx yy u a u u -+= (1) 解 先把时间变量t 分离出来,令)(),(),,(t T U t u ?ρ?ρ=,代入方程(1) 22(,)''()(,)()0U T t a U T t ρ?ρ?-?= 两边同乘以 21 a UT 并移项得 22''T U a T U ?= 上式左边仅是t 的函数;右边是ρ,t 的函数。若要使等式成立,两边应为同一个常数,记为2k -,则有 22''0T a k T += (2) 220U k U ?+= (3) (3)式为二维亥姆霍兹方程,它在平面极坐标系下的表达式为: 22 1 1 0U U U k U ρρρ??ρ ρ + + += 进一步分离变量,令(,)()()U R ρ?ρ?=Φ,代入上式得 22 11 '''''0R R R k R ρρ Φ+ Φ+ Φ+Φ= 两边同乘以 2 R ρΦ ,并整理得 222'' ' ''R R k R R ρρρΦ= +=- Φ

同上讨论,等式两边应为同一常数,记为2m ,则有 2''0m Φ+Φ= (4) 2222'''()0R R k m R ρρρ++-= (5) 对(5)式作代数变换x k ρ=后变为贝塞尔方程 222'''()0x R xR x m R ++-= (6) 其通解是 ()()()m m R AJ k BY k ρρρ=+ 其中,, m m A B J Y 为任意常数和为第一类和第二类Bessel 函数。 由周期条件,方程(4)的解为 ( )c o s s i n 0,1,2 m m m A m B m m ??Φ=+= 由波动问题及解在0ρ→有限的条件,方程(2)的解为 cos sin n n n n n T C k at D k at =+ 例2 用()J x ν的级数表达式证明: (1) x x x J cos 2)(2 1π=-; (2) x x d x J sin cos )cos (200=?π θθθ 证明:(1) 因为20(1)()()!(1)2 k k v v k x J x k k v ∞ +=-=Γ++∑, 所以 12221002220(1)()( )()1 22 !(1) 1)(222)223)12k k k k k k k k k k x x J x k k k x π∞ ∞ --==∞ ∞==-==Γ-+--==?∑ 2k k k x ∞ ∞=====

相关主题
文本预览
相关文档 最新文档