当前位置:文档之家› 复变函数实验课(一)

复变函数实验课(一)

复变函数实验课(一)
复变函数实验课(一)

湖北民族学院理学院

2014年春季学期

数学与应用数学专业复变函数实验课

(一)计算部分

上课教师:汪海玲

Matlab中复变函数命令集

定义符号变量Syms

虚单位z=Sqrt(-1)

复数表示z=x+y*i

指数表示z=r*exp(i*a)

求实部Real(z)

求虚部Imag(z)

求共轭Conj(z)

求模Abs(z)

求幅角Angle(z)

三角函数z=sin(z)

z=cos(z)

指数函数z=exp(z)

对数函数z=log(z)

幂函数z=z^a

解方程expr=‘方程式’;

Solve(expr)

泰劳展开Taylor(e,z)

求留数[r,p,k]=residue(p,q)

傅立叶变换Fourier(e,z,w)

逆傅立叶变换Ifourier(e,w,z)

拉普拉斯变换Laplace(e,w,t)

逆拉普拉斯变换Ilaplace(e,t,x)

一复数的运算

1.复数的实部和虚部

复数的实部和虚部的提取可由函数real和imag实现。

调用形式

real返回复数x的实部

(x

)

(x

imag返回复数x的虚部

)

2.共轭复数

复数的共轭可由函数conj实现。

调用形式

conj返回复数x的共轭复数

(x

)

3.复数的模和辐角

复数的模和辐角的求解由功能函数abs和angle实现。

调用形式

abs复数x的模

)

(x

angle复数x的辐角

)

(x

上机操作:课本例题1.2、例题1.4、课后习题(一)1.

4.复数的乘除法

复数的乘除法运算由“/”和“ ”实现。

5.复数的平方根

复灵敏的平方根运算由函数sprt实现。

调用形式

)

sprt返回复数x的平方根值

(x

6.复数的幂运算

x^,结果返回复数x的n次幂。

复数的幂运算的形式为n

上机操作:课本例题1.8

7.复数的指数和对数运算

复数的指数和对数运算分别由函数exp和log实现。

调用形式

exp(x返回复数x的以e为底的指数值

)

log(x返回复数x的以e为底的对数值

)

上机操作:课本例题2.17、 2.18

8.复数的三角函数运算

复数的三角函数运算函数参见下面的复数三角函数

复数三角函数表

9.复数方程求根

复数方程求根或实方程的复数根求解也由函数solve实现。

(')

solve equation

上机操作:课本例题1.8

比较6和9 所对应计算结果

二复变函数的积分

1 非闭合路径的积分

非闭合路径的积分,用函数int求解,方法同微积分部分的积分。

例1 计算

?

-

=i

i

z dz

e

π

32

1

?=0

6

3

2

i

zdz

ch

?-

-

=i z dz

e

z

z

)1

(

3

?

-

+

=i dz

z

z

z

12

cos

tan

1

4

(沿1到i的值线段)。

解:在Matlab编辑器中编辑M文件LX0908.m:

z1=int('exp(2*z)','z',-pi*i,3*pi*i)

syms z

z2=int(cosh(3*z),z,pi/6*i,0)

z3=int((z-1)*exp(-z),z,0,i)

z4=int((1+tan(z))/cos(z)^2,z,1,i)

运行结果为:

z1 =

z2 =

-1/3*i

z3 =

-i*exp(-i)

z4 =

1/2*(2*i*cos(1)^2*sinh(1)*cosh(1)+cos(1)^2-2*cosh(1)^2*sin(1)*cos(1)

-cosh(1)^2)/cosh(1)^2/cos(1)^2

说明:在z1中定义表达式为符号;在z2、z3、z4中,先定义符号变量,再进行积分。两种方法都可行,且结果一样。

上机操作:课后第三章习题(一)1题、6题

2 沿闭合路径积分

对沿闭合路径的积分,先计算闭区域内各孤立奇点的留数,再利用留数定理可得积分值。

2.1 留数计算

留数定义:设a 为f (z)的孤立奇点,C 为a 的充分小的邻域内一条包含a 点

的闭路,积分

?C

dz

z f i )(21

π称为f (z)在a 点的留数或残数,记作Res[f (z), a]。在

Matlab 中,可由函数residue 实现。

函数:residue %留数函数(部分分式展开) 格式:[R, P, K] = residue (B, A)

说明:

)()()

()2()2()1()1()()()(s K n P s n R P s R P s R s A s B z f +-++-+-==

向量B 为f (z)的分子系数;(以s 降幂排列) 向量A 为f (z)的分母系数;(以s 降幂排列) 向量R 为留数;

向量P 为极点;极点的数目n = length (A)-1=length (R) = length (P)。 向量K 为直接项,如果length (B)

m

j P s m j R j P s j R j P s j R ))(()1())(()1()()(2--+++-++-

注意:Matlab 函数只能解决有理分式的留数问题。 格式:[B, A] = residue (R, P, K)

说明:R 、P 、K 含义同上。当输入R 、P 、K 后,可得f (z)的分子、分母系数向量。

例2 求下列函数在奇点处的留数:

(1) z z z 212-+ (2)14

-z z

解:在Matlab 命令窗口键入: >> [r1,p1,k1]=residue([1,1],[1,-2,0]) r1 = 1.5000 -0.5000

p1 =

2

k1 =

[ ]

>> [r2,p2,k2]=residue([1 0],[1 0 0 0 -1])

r2 =

0.2500

0.2500

-0.2500 + 0.0000i

-0.2500 - 0.0000i

p2 =

-1.0000

1.0000

0.0000 + 1.0000i

0.0000 - 1.0000i

k2 =

[ ]

反之:

>> [B,A]=residue([0.2500 0.2500 -0.2500 -0.2500],[-1 1 i -i],[])

B =

0 0 1 0

A =

1 0 0 0 -1

上机操作:课后第五章习题(一)4题

2.2 闭合路径积分

留数定理:设函数f (z)在区域D内除有限个孤立奇点z1,z2,…,zn外处处解析,C为D内包围诸奇点的一条正向简单闭曲线,则

∑?=?=n

k k C

z z f s i dz z f 1

]),([Re 2)(π。

闭合路径积分利用留数定理来计算。

例3 计算积分

?

-C

dz z z

1

4

其中C 为正向圆周| z | = 2。

解:在Matlab 编辑器中建立M 文件LX0910.m : B=[1 0]; A=[1 0 0 0 -1];

[r,p,k]=residue(B,A) %求被积函数的留数 I=2*pi*sum(r) %利用留数定理计算积分值 运行结果为: r =

0.2500 0.2500 -0.2500 + 0.0000i -0.2500 - 0.0000i p =

-1.0000 1.0000 0.0000 + 1.0000i 0.0000 - 1.0000i k = [ ] I = 0

上机操作:课后第三章习题(一)9题、课后第六章习题(一)3题

三Taylor级数展开

Taylor级数展开在复变函数中有很重要的地位,如分析复变函数的解析性等。

函数:taylor %Taylor级数展开

格式:taylor (f) %返回f函数的5次幂多项式近似

taylor (f, n) %返回n-1次幂多项式近似

taylor (f, a) %返回a点附近的幂多项式近似

taylor (f, x) %对f中的变量x展开;若不含x,则对变量x = findsym (f)展开。

例求下列函数在指定点的Taylor级数展开式。

(1)1/z2,z0 = -1;(2)tan (z),z0 = pi/4;(3)sinz/z,z0 = 0

解:在Matlab中实现为:

>> syms z

>> taylor(1/z^2,-1)

ans =

3+2*z+3*(z+1)^2+4*(z+1)^3+5*(z+1)^4+6*(z+1)^5

>> taylor(tan(z),pi/4)

ans =

1+2*z-1/2*pi+2*(z-1/4*pi)^2+8/3*(z-1/4*pi)^3+10/3*(z-1/4*pi)^4+64/15*(z-1/4*pi) ^5

>> taylor(sin(z)/z,10)

ans =

1-1/6*z^2+1/120*z^4-1/5040*z^6+1/362880*z^8

从(3)的展开式可知彼知已z = 0是sinz/z的可去奇点。

注意:taylor展开运算实质上是符号运算,因此在不久的将来Matlab中执行此命令前应先定义符号变量syms z,否则Matlab将给出出错信息!

上机操作:课本例题例4.6 4.7 例4.13

复变函数教案1.2

第一章 复数与复变函数 教学课题:第二节 复平面上的点集 教学目的:1、理解关于平面点集的几个基本概念; 2、理解区域与约当曲线这两个重要概念; 3、了解约当定理和区域的连通性。 教学重点:平面点集的几个基本概念 教学难点:区域与约当曲线 教学方法:启发式教学 教学手段:多媒体与板书相结合 教材分析:理解关于平面点集的几个基本概念、掌握区域与约当曲线这两个重要概念、了解约当定理和区域的单连通和多连通,对于学好该门课程具有重要的作用。 教学过程: 1、平面点集的几个基本概念: 定义1.1 设),0(, +∞∈∈r C a ,a 的r -邻域),(r a U 定义为 },,|| |{C z r a z z ∈<- 称集 },,|| |{C z r a z z ∈≤- 为以a 为中心,r 为半径的闭圆盘,记为),(r a U 。 定义1.2设C a C E ∈?,, 若E r a U r ?>?),(,0中有无穷个点,则称a 为E 的极限点; 若0>?r ,使得E r a U ?),(,则称a 为E 的内点; 若E r a U r ?>?),(,0中既有属于E 的点,又有不属于E 的点,则称a 为E 的边界点; 集E 的全部边界点所组成的集合称为E 的边界,记为E ?; E E ??称为E 的闭包,记为E ; 若0>?r ,使得}{),(a E r a U =?,则称a 为E 的孤立点(是边界点但不是聚

点); 定义1.3 开集:所有点为内点的集合; 闭集E :或者没有聚点,或者所有聚点都属于E ;则任何集合E 的闭包E 一定是闭集; 定义1.4如果0>?r ,使得),0(r U E ?,则称E 是有界集,否则称E 是无界集; 复平面上的有界闭集称为紧集。 例1、圆盘),(r a U 是有界开集;闭圆盘),(r a U 是有界闭集; 例2、集合}|||{r a z z =-是以a 为心,半径为r 的圆周,它是圆盘),(r a U 和闭圆盘),(r a U 的边界。 例3、复平面、实轴、虚轴是无界集,复平面是无界开集。 例4、集合}||0|{r a z z E <-<=是去掉圆心的圆盘。圆心E a ?∈,它是E ?的孤立点,是集合E 的聚点。 无穷远点的邻域:0>?r ,集合},|||{∞∈>C z r z z 称为无穷远点的一个邻域。类似地有,聚点、内点、边界点与孤立点,开集、闭集等概念。 ∞C 我们也称为C 的一点紧化。 2、区域、约当(Jordan )曲线: 定义1.5复平面C 上的集合D ,如果满足: (1)、D 是开集; (2)、D 中任意两点可以用有限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于D 。 则称D 是一个区域。 结合前面的定义,有有界区域、无界区域。 性质(2)我们称为连通性,即区域是连通的开集。 区域D 内及其边界上全部点所组成的集称为闭区域。 扩充复平面∞C 上不含无穷远点的区域的定义同上;含无穷远点的区域是C

复变函数与积分变换》教学大纲

《复变函数与积分变换》教学大纲 课程名称:复变函数与积分变换 FunctionsofVariables&Transformations 课程性质:专业基础课 学分:3 总学时:48学时,其中,理论学时:48学时,实验(上机)学时:0学时, 适用专业:通信工程、电子信息工程等专业 先修课程:高等数学 一、教学目的与要求: 复变函数与积分变换是工科院校中数学要求较高专业的一门基础理论课程。复变函数以及与它密切相关的积分变换,它的理论和方法不仅在数学的其他的许多分支中,而且在其他自然科学和工程技术如电力工程、自动控制、信号分析和图像处理、材料成型等领域内获得广泛的应用,已成为不可缺少的运算工具。 通过本课程的学习,使学生掌握复变函数的基本理论和基本方法,傅立叶变换和拉普拉斯变换的思想与运算技巧,并在此基础上培养学生应用这些知识解决实际问题的能力,为后继专业课程的学习提供必要的数学工具。

第一章复数与复变函数(8学时) 第一节复数的概念与运算 一、复数的概念、表示法和运算 二、区域 第二节复变函数 一、复变函数的概念 二、复变函数的极限和连续 本章重点:复数的表示法、方根运算公式 本章难点:复变函数的极限与连续性 本章教学要求:掌握复数的概念和它的各种表示方法及运算;熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式;了解区域的概念;理解复变数学的概念;理解复变函数的极限和连续的概念。 第二章解析函数(5学时) 第一节解析函数的概念 一、复变函数的导数和解析的概念 二、复变函数解析的充要条件 三、解析函数的基本性质 第二节初等函数的解析性 一、指数函数、三角函数、对数函数 本章重点:复变函数解析的充要条件 本章难点:复变函数解析的充要条件 本章教学要求:理解复变函数的导数及复变函数解析的概念;掌握复变函数解析的C-R条件,并能利用C-R条件判断复变函数的可导性和解析性;掌握解析函数的基本性质;了解指数函数、三角函数及对数函数的定义及它们的主要性质。 第三章复变函数的积分(6学时) 第一节复变函数的积分 一、复变函数的积分的定义与性质 第二节柯西定理与柯西公式 一、柯西积分定理、柯西积分公式 二、解析函数的高阶导数公式 本章重点:会求复变函数的积分,理解柯西积分定理 本章难点:掌握柯西积分公式、解析函数的高阶导数公式 本章教学要求:了解复变函数积分的定义及性质,会求复变函数的积分;理解柯西积分定理,掌握柯西积分公式;掌握解析函数的高阶导数公式;了解解析函数无限次可导的性质;会综合利用各定理计算闭路积分。 第四章级数(5学时) 第一节复级数的基本概念 一、复级数的一般概念

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

(完整版)复变函数试题库

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是 )(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在} 1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数, 那么它在 D 内为常数. 2. 试证 : ()f z = 在割去线段0Re 1z ≤≤的z 平面内能分出两 个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

复变函数与积分变换论文

复变函数与积分变换论文 题目:阐述复变函数与积分变换对电气自动化专业的作用 阐述复变函数与积分变换对电气自动化专业的作用 复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。复数起源于求代数方程的根。通过学习《复变函数与积分变换》这门课程,我了解到它既是一门理论性较强的课程,又是解决实际问题的强有力的工具,它的理论和方法在数学、自然科学和工程技术中有着广泛的应用,同时老师也给我们了解到了更多关于复变函数的历史知识,让我更加对这门产生浓厚的学习兴趣。 《复变函数和积分变换》课程本身应该是一种将数学知识如何应用于工程的学科,是培养创新思维的非常重要的课程。这门课程对于培养创新人才具有特殊作用,而创新能力的基础是创新思维。复变函数和积分变换作为我们学校的电气工程自动化专业大

学生专业必修课,除了要求我们掌握复变函数和积分变换课程的基础知识、基本方法外,更重要的是要培养创新型的思维能力。让学生强化应用、重视实践、淡化专业、消灭书呆子,重视创新能力和实践能力的培养。 我们在复变函数和积分变换课程的学习中面对的处处都是创新模式,没有创新就不能学好该课程。复数域打破了实数域的限制、解析函数突破了二元函数和一元实函数的禁锢、洛朗级数克服了幂级数的局限性、拉普拉斯积分变换是傅里叶积分变换应用方面的创新等等。 在复变函数和积分变换的学习中,我们得到的不仅有作为科学创新基础的数学原理,还有一些创新思想方法,如解析函数高阶导数和积分变换中导数公式的归纳法思想、复数几何意义的直观性在初等几何中的应用思想、保形变换和积分变换中对称思维、两类积分变换应用的同中求异和理论中的异中求同、复势应用中的猜想与证明,观察与实验等等都体现了创新思维的火花。我们在学习中掌握了这些方法,有利于在今后的工作和生活中发挥巨大的作用。因此,复变函数和积分变换课程的教学,有助于学生创新思维能力的训练和培养。培养我们运用基本理论和方法解决实际问题的意识、兴趣和能力,尤其是解析函数在平面向量场中的应用,留数理论的应用,积分变换在解微分方程中的应用和求广义积分,培养我们打破思维定式,打破常规惯例,用新的眼光看复变函数和积分变换,就是说变量从实数到复数,积分从直线到曲线,尤其是封闭曲线。 我们从这门课程上可以学到傅里叶变换是一种对连续时间函数的积分变换。通过我们专业课的实验学习,深刻了解到傅里叶变换在处理和分析工程实际中的一些问题的重要作用。通过变换技术,从另一个角度对问题进行处理和分析,使问题的性质更清楚、更便于分析,也使问题的求解更方便,更便于解决。我以前总认为学这些东西没有用处,只是一些很落后和过时的理论,通过实验学习,我看到了它的重大作用。在我以后的学习中,也要在掌握基本理论的同时,去挖掘生活中的问题,并努力用所学的知识去解决,那样才能更好的理解和运用。我还学到积分变换可以把微分方程变换为初等方程,求解方便。另外求线性系统的响应,用积分变换不用考虑初始状态,非常方便。可以实现时域和频域的变换,方便对谐波进行分析计算。使用复频域的状态变量解法可以方便的用计算机对系统进行求解。 通过课程的学习,我们可以了解到,复数可以应用到现实中的数学建模,其在很多运算中都有者不可思议的性质和规律。复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是神奇的留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。 复变函数给我们一个新的概念,让我们不局限于实数的学习范围,给我们一个创新思维的学习。

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

实验一、复变函数与特殊函数图形的绘制

实验一、复变函数与特殊函数图形的绘制 一、复变函数图形的绘制 例题:编程绘制出复变函数31/31 ,的图形。 z z , z 解: %experiment1.m close all clear all m=30; r=(0:m)'/m; theta=pi*(-m:m)/m; z=r*exp(i*theta); w=z.^3; blue=0.2; x=real(z); y=imag(z); u=real(w); v=imag(w); v=v/max(max(abs(v))); %%函数值虚部归一化 M=max(max(u)); m=min(min(u)); axis([-1 1 -1 1 m M]) caxis([-1 1]) %%指定颜色值的范围 s=ones(size(z)); subplot(131) mesh(x,y,m*s,blue*s) %%画投影图 hold on surf(x,y,u,v) %%画表面图 xlabel('x') ylabel('y') zlabel('u') title('z^3') hold off colormap(hsv(64)) %%画色轴 w=z.^(1/3); x=real(z); y=imag(z); subplot(132) for k=0:2 rho=abs(w);

phi=angle(w)+k*2*pi/3; u=rho.*cos(phi); v=rho.*sin(phi); v=v/max(max(abs(v))); %%函数值虚部归一化 M=max(max(max(M,u))); m=min(min(min(m,u))); surf(x,y,u,v) %%画表面图 axis([-1 1 -1 1 m M]) hold on end s=ones(size(z)); mesh(x,y,m*s,blue*s) %%画投影图 xlabel('x') ylabel('y') zlabel('u') title('z^{1/3}') colormap(hsv(64)) %%画色轴 w=1./z; w(z==0)=NaN; x=real(z); y=imag(z); u=real(w); v=imag(w); v=v/max(max(abs(v))); %%函数值虚部归一化 M=max(max(max(M,u))); m=min(min(min(m,u))); subplot(133) surf(x,y,u,v) %%画表面图 hold on axis([-1 1 -1 1 m M]) s=ones(size(z)); mesh(x,y,m*s,blue*s) %%画投影图 xlabel('x') ylabel('y') zlabel('u') title('1/z') colormap(hsv(64)) %%画色轴

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

复变函数教案12.doc

第一章复数与复变函数 教学课题:第二节复平面上的点集 教学目的:1、理解关于平而点集的儿个基本概念; 2、理解区域勾约当曲线这W个重要概念; 3、了解约当定理和区域的连通性。 教学重点:平血点集的几个基木概念 教学难点:区域与约当曲线 教学方法:启发忒教学 教学手段:多媒体与板15相结合教材分析:理解关于〒面点集的儿个基本概念、掌握区域与约当llh线这两个重要概念、了解约当定理和区域的单连通和多连通,对于学好该门课程具有重要的作用。 教学过程: 1、平面点集的几个基本概念: 定义1.1 设6/ e C,r G (0,+oo), tz 的r-邻域[/(fz,r)定义为 {z\\z-a\< r,zeC}, 称集 {z\\z-a\

若3/、〉0,使得= 则称6/为£的孤立点(是边界点但不是聚 点); 定义1.3开集:所冇点为内点的集合; 闭集或者没冇聚点,或者所冇聚点都展于£;则任何集合£的闭包互一定是闭集; 定义1.4如果3r〉0,使得£c=t/(O,r),则称£是有界集,否则称£是无界 集; 复平面上的宥界闭集称为紧集。 例1、岡盘[/(^,r)是有界开集;闭闢盘fGz,r)是宥界闭集; 例2、集合{z||z-0,集合Mz|〉r,zeCJ称为无穷远点的一个邻域。类似地有,聚点、内点、边界点与孤立点,开集、闭集等概念。 C;我们也称为C的一点紧化。 2、区域、约当(Jordan)曲线: 定义1.5复平面C上的集合£>,如果满足: (1)、是幵集; (2)、Z)中任意两点可以用宥限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于£>。 则称Z)是一个区域。 结合前面的定义,有有界区域、无界区域。 性质(2)我们称为连通性,即区域是连通的丌集。 区域Z)内及其边界上全部点所组成的集称为闭区域。 扩充复平面C、上不含无穷远点的区域的定义同上;含无穷远点的区域是C 上的一个区域与无

Matlab在复变函数中应用解读

Matlab在复变函数中应用 数学实验(一) 华中科技大学数学系 二○○一年十月

MATLAB在复变函数中的应用 复变函数的运算是实变函数运算的一种延伸,但由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,且在引入了Taylor级数展开Laplace 变换和Fourier变换之后而使其显得更为重要了。 使用MATLAB来进行复变函数的各种运算;介绍留数的概念及MAT–LAB的实现;介绍在复变函数中有重要应用的Taylor展开(Laurent展开Laplace变换和Fourier变换)。 1 复数和复矩阵的生成 在MATLAB中,复数单位为)1 j i,其值在工作空间中都显示为 =sq rt = (- 0+。 .1 i 0000 1.1 复数的生成 复数可由i z+ =。 a =语句生成,也可简写成bi a z* + b 另一种生成复数的语句是) exp(i theta r =,也可简写成) =, z* exp(theta * i r z* 其中theta为复数辐角的弧度值,r为复数的模。 1.2 创建复矩阵 创建复矩阵的方法有两种。 (1)如同一般的矩阵一样以前面介绍的几种方式输入矩阵 例如:)] i A* * i i = + 3[i * - + * , ), 23 5 33 6 exp( 2 3 , exp( 9 (2)可将实、虚矩阵分开创建,再写成和的形式 例如: )2,3( re=; rand im=; )2,3( rand

im i re com *+= ] 5466.07271.05681.02897.07027.05341.08385.03420.03704.03412.03093.06602.0[i i i i i i com ++++++= 注意 实、虚矩阵应大小相同。 2 复数的运算 1.复数的实部和虚部 复数的实部和虚部的提取可由函数real 和imag 实现。 调用形式 )(x real 返回复数x 的实部 )(x imag 返回复数x 的虚部 2.共轭复数 复数的共轭可由函数conj 实现。 调用形式 )(x conj 返回复数x 的共轭复数 3.复数的模和辐角 复数的模和辐角的求解由功能函数abs 和angle 实现。 调用形式 )(x abs 复数x 的模 )(x angle 复数x 的辐角 例:求下列复数的实部与虚部、共轭复数、模与辐角 (1) i 231 + (2)i i i --131 (3)i i i 2)52)(43(-+ (4)i i i +-2184 由MATLAB 输入如下:

复变函数试题及答案

成绩 西安交通大学考试题 课程复变函数(A) 系别考试日期 2007 年 7 月 5 日专业班号 姓名学号期中期末 1. 填空(每题3分, 2. 共30分) 1.= 2.=0是函数的 (说出类型,如果是极点,则要说明阶数) 3. ,则= 4. 5. 函数在处的转动角为 6. 幂级数的收敛半径为 =____________ 7. 8.设C为包围原点在内的任一条简单正向封闭曲线,则 9.函数在复平面上的所有有限奇点处留数的和为___________ 10. 二.判断题(每题3分,共30分) 1.在解析。【】 2.在点可微,则在解析。【】 3.是周期函数。【】 4.每一个幂函数在它的收敛圆周上处处收敛。【】 5.设级数收敛,而发散,则的收敛半径为1。【】 6.能在圆环域展开成洛朗级数。【】 7.为大于1的正整数, 成立。【】 8.如果函数在解析,那末映射在具有保角性。【】 9.如果是内的调和函数,则是内的解析函数。【】10.。【】三.(8分)为调和函数,求的值,并求出解析函数。 四.(8分)求在圆环域和内的洛朗展开式。 五.(8分)计算积分。 六.(8分)设,其中C为圆周的正向,求。 七.(8分)求将带形区域映射成单位圆的共形映射。

复变函数与积分变换(A)的参考答案与评分标准 (2007.7.5) 一.填空(各3分) 1. ; 2. 三级极点; 3. ; 4. 0 ; 5. 0 ; 6. ; 7. ; 8. 0; 9. 0 ;10. 。 二.判断1.错;2.错;3.正确; 4. 错;5.正确;6.错; 7.错;8. 错;9. 正确;10. 错。 三(8分) 解: 1)在 -----4分 2) 在 --4分 四.(8分) 解:被积函数分母最高次数比分子最高次数高二次,且在实轴上无奇点,在上半平面有一个一级极点 -2+i, 故 --------3分 --------6分 故 ---------8分 五.(8分) 解: -------3分 由于1+i在所围的圆域内, 故 -------8分 六. (8分) 解:利用指数函数映射的特点以及上半平面到单位圆的分式线性映射,可以得到 (映射不唯一,写出任何一个都算对) 七.(8分) 解:对方程两端做拉氏变换: 代入初始条件,得 --------4分 故, ---------8分(用留数做也可以) 复变函数 (A)的参考答案与评分标准 (2007.7.5) 一.填空(各3分)1. ;2. 三级极点;3. ; 4. 0 ;5. 0 ;6. ;7. ;8. 0 ; 9. 0 ; 10. 0。 二.判断1.错;2.错;3.正确;4. 错;5.正确;6.错;7.错;8. 错;9. 正确;10. 错。 三.(8分) 解:因为是调和函数,则有 ,即故 ---------2分 1) 当时, , 由C-R方程, , 则 , 又由 ,故 , 所以。 则 ----------3分 2) 当时, , 由C-R方程, , 则 , 又由 ,故 , 所以。 则

复变函数教案3.3

第三章 教学课题:第三节 柯西积分公式及其推论 教学目的:1、充分掌握柯西积分公式以及其解析函数的平均值定理; 2、了解柯西高阶导数分公式; 3、切实掌握解析函数的无穷可微性; 4、理解柯西不等式、刘威尔定理及解析函数的一些等价刻画。 教学重点:柯西积分公式; 教学难点:柯西不等式、刘威尔定理及解析函数的一些等价刻画 教学方法:启发式 教学手段:多媒体与板书相结合 教材分析:柯西积分公式是解析函数的积分表达式,可以帮助我们详细地去研究解析函数的局部性质。柯西不等式是对解析函数各阶导数模的估计式。 教学过程: 1、柯西积分公式: 定理3.11设f (z )在以圆)0(|:|000+∞<<=-ρρz z C 为边界的闭圆盘上连续,C 的内部D 上解析,则有 其中,沿曲线C 的积分是按反时针方向取的,这就是柯西积分公式。它是解析函数的积分表达式,因而是今后我们研究解析函数的重要工具。 证明:设D z ∈,显然函数在z f -ζζ)(满足z D ≠∈ζζ,的点ζ处解析。 以到z 为心,作一个包含在D 内的圆盘,设其半径为ρ,边界为圆ρC 。在D 上,挖去以ρC 为边界的圆盘,余下的点集是一个闭区域ρD 。在ρD 上,ζ的函数)(ζf 以及z f -ζζ)(解析,所以有 其中,沿曲线C 的积分是按关于D 的正向取的,沿ρC 的积分是按反时针方向取的。因此,结论成立。 说明:f(z)沿C 的积分为零。考虑积分 则有:(1)被积函数在C 上连续,积分I 必然存在;

(2)在上述闭圆盘上0 )(z z z f -不解析,I 的值不一定为0,例如i I z f π21)(=≡时,; 现在考虑f (z )为一般解析函数的情况。作以为 0z 心,以)0(0ρρρ<<为半径的圆ρC ,由柯西定理,得 因此,I 的值只f (z )与在点 0z 附近的值有关。令θρi e z z =-0, 则有 由于I 的值只f (z )与在点 0z 附近的值有关,与ρ无关,由f (z )在点0z 的连续性,应该有)(20z if I π=,即 事实上,当ρ趋近于0时,有 由于由f (z )在点0z 的连续性,所以)(0,00ρδδε≤>?>?,使得当ρδρC z ∈<<,0时,ε<-|)()(|0z f z f ,因此 即当ρ趋近于0时,上式右边的有第二个积分趋近于0;而i dz z z C πρ210 =-?,因此,结论成立。 注解1、对于某些有界闭区域上的解析函数,它在区域内任一点所取的值可以用它在边界上的值表示出来。 注解2、柯西公式是解析函数的最基本的性质之一,对于复变函数理论本身及其应用都是非常重要的。 注解3、柯西公式有非常明确的物理背景和物理意义。 2、解析函数的无穷可微性 定理3.12 设D 是以有限条简单闭曲线C 为边界的有界区域。设f (z )在D 及C 所组成的闭区域D 上解析,那么f (z )在D 内有任意阶导数 ,...)3,2,1( )()(2!)(1 )(=-=?+n d z f i n z f C n n ζζζπ, 证明:先证明结论关于n =1时成立。设D h z ∈+是D 内另一点。 只需证明,当h 趋近于0时,下式也趋近于0 现在估计上式右边的积分。设以z 为心,以2d 为半径的圆盘完全在D 内,并且

复变函数实验课(一)

湖北民族学院理学院 2014年春季学期 数学与应用数学专业复变函数实验课 (一)计算部分 上课教师:汪海玲

Matlab中复变函数命令集 定义符号变量Syms 虚单位z=Sqrt(-1) 复数表示z=x+y*i 指数表示z=r*exp(i*a) 求实部Real(z) 求虚部Imag(z) 求共轭Conj(z) 求模Abs(z) 求幅角Angle(z) 三角函数z=sin(z) z=cos(z) 指数函数z=exp(z) 对数函数z=log(z) 幂函数z=z^a 解方程expr=‘方程式’; Solve(expr) 泰劳展开Taylor(e,z) 求留数[r,p,k]=residue(p,q) 傅立叶变换Fourier(e,z,w) 逆傅立叶变换Ifourier(e,w,z) 拉普拉斯变换Laplace(e,w,t) 逆拉普拉斯变换Ilaplace(e,t,x)

一复数的运算 1.复数的实部和虚部 复数的实部和虚部的提取可由函数real和imag实现。 调用形式 real返回复数x的实部 (x ) (x imag返回复数x的虚部 ) 2.共轭复数 复数的共轭可由函数conj实现。 调用形式 conj返回复数x的共轭复数 (x ) 3.复数的模和辐角 复数的模和辐角的求解由功能函数abs和angle实现。 调用形式 abs复数x的模 ) (x angle复数x的辐角 ) (x 上机操作:课本例题1.2、例题1.4、课后习题(一)1. 4.复数的乘除法 复数的乘除法运算由“/”和“ ”实现。 5.复数的平方根 复灵敏的平方根运算由函数sprt实现。 调用形式 ) sprt返回复数x的平方根值 (x 6.复数的幂运算 x^,结果返回复数x的n次幂。 复数的幂运算的形式为n 上机操作:课本例题1.8 7.复数的指数和对数运算 复数的指数和对数运算分别由函数exp和log实现。

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

《复变与积分变换教案》.

《复变与积分变换教案》 第二次课 1教学目标:使学生熟练二维平面图形的复形式,熟练掌握复变函数的分量处理法,重温二元微积分,并赋以复的外衣而导出复变量,复数列,复变函数增量和复积分等知识。 2讲课段落: 平面曲线(定向)和区域;复变函数的分量处理法;二维平面图形的复形式;复变量,复数列,复变函数的极限和连续性; 复变函数的增量; 复积分定义和计算,复积分的性质。 3知识要点: 无重点的按段光滑闭曲线简称为简单闭曲线。数学上可证明任 条在平面上有确定的始端和终端的简单曲线是可求长的,特别是 任一条简单闭曲线总是有有限长度的。 对给定点P (x o,y o)和正数0,称 u (P) (X, y)J(x X o)2 (y y。)2 为P的一个邻域。 平面上的区域D为可用折线连通的开集. 本课程中经常出现的多连域D为有限条简单闭曲线C0,C i,C2, ,C m按以下 方式围成的区域:设D O,D1,D2, , D m分别为C o,C1,C2, ,C m的内部区域, m 1 j k m, (3) C j C k 满足(1) D j D o, (2) D j D k j 1 m 称此多连域D为复围线:C o'GG'L ,C m围成的区域,即D D O D j。 j 1

w f (z) u u(x,y) V v(x,y) max max a n max U x x o , y y o X o , b n f Z o X o , y o iv x Z o X X o y o y o Z n Z o a n X o b n y o x o ,y o U y x o ,y o iV y X o ,y o E u iE v f 1 z u x x o ,y o iv x X o ,y o U y X o ,y o iV y X o ,y o C: F(x,y) 0, 经变换 若平面曲线参数方程为 则其复数表示为 z z(t): x(t) iy(t), 所以一个复变函数相当于两个二元函数,即 也称为D 的边界。而数学上称D 0 m D j 即D 连同C o ,G,C 2, ,C m 一起的 j 1 集合为多连域D 的闭包,也记为D 。 而复围线 :C o ,C 1,C 2, ,C m 的正向 定义为,在C o 上取逆时针方向,而在 C 1,C 2, , C m 上都取顺时针方向。 得到C 的复数表示 z z 2i X y (t) (t).

实验一计算复变函数极限、微分、积分、留数、泰勒级数展开式

实验一计算复变函数极限、微分、积分、留数、泰勒级数展开式 【实验目的】 1、熟悉Matlab运行环境,会在窗口操作和运行一些命令 2、掌握求复变函数极限、微分、积分、留数以及泰勒级数命令 3、熟练在计算机上操作复变函数极限、微分、积分、留数以及泰勒级数命令【实验仪器】一台电脑,要求安装matlab 软件 【实验内容】 MATLAB实现内容 1、MATLAB求复变函数极限 2、MATLAB求复变函数微分 3、MATLAB求复变函数积分 4、MATLAB求复变函数在孤立奇点的留数 5、MATLAB求复变函数的泰勒级数展开式 【实验步骤】 1.打开matlab桌面和命令窗口,方式一,双击桌面快捷方式,方法二,程序里单击matlab图标,方式三,找到matlab文件夹,双击图标2.在matlab命令窗口输入命令 3.运行,可以直接回车键,F5键 【注意事项】 1.命令的输入要细心认真,不能出错 2.尤其是分号,逗号等符号的区别 3. 注意数学上的运算和matlab中的不同,尤其是括号

【实验操作内容】 以下的例题都是在命令窗口输入源程序,然后运行,或回车就可以得到结果。 1、MATLAB 求复变函数极限 用函数limit 求复变函数极限 【Matlab 源程序】 syms z f=; limit(f,z,z0) 返回极限结果 例 1 求 在 的极限 解 【Matlab 源程序】 syms z f=sin(z)/z; limit(f,z,0) ans= 1 limit(f,z,1+i) ans= 1/2*sin(1)*cosh(1)-1/2*i*sin(1)*cosh(1) +1/2*i*cos(1)*sinh(1)+1/2*cos(1)*sinh(1 2、 MATLAB 求复变函数微分 用函数diff 求复变函数极限 【Matlab 源程序】 z z z f sin )(=i z +=1,0

复变函数测试试题库

复变函数试题库

————————————————————————————————作者:————————————————————————————————日期:

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是)(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内

相关主题
文本预览
相关文档 最新文档