当前位置:文档之家› 概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章
概率论与数理统计总结之第三章

第三章 多维随机变量及其分布

第一节二维随机变量的概念

1.二维随机变量

定义:设(X,Y)是二维随机变量,记为:

(,){()()}=≤?≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y

称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数

}}(){{(,lim (,)→+∞

=≤=≤≤+∞=X y F x P X x P X x Y F x y

}}(){{,lim (,)→+∞

=≤=≤+∞≤=Y x F y P Y y P X Y y F x y

分布函数(,)F x y 性质:

1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).

3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,

4)对于任意11221212(,),(,),,,<

定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量

其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P

2.

1≤≤=∑∑i i ij

x x y y

p

满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.

离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ij

x x y y

F x y p

,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和

的边缘分布

定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律

(), 1.2...

(), 1.2..

的边缘分布律:的边缘分布律:??========∑∑i i ij j

J i ij i

X p P X x p i Y p P Y y p i ,

0,0(, 1.2....)

1

???≥≥===∑∑i j j

i

i

p p i j pi p

联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.

3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞

-∞

==?

f x f x dx ,分布律:{}(),≤≤=?b a

P a x b f x dx 分布函数:()()-∞

=?

x

F x f t dt

二维:

定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有

(,)(,)-∞-∞

=?

?

x

y

F x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.

概率密度的性质: 1.(,)F x y ≥0 2.

(,)1∞∞

-∞-∞

=??

f x y dxdy

只要具有以下两条性质,必可作为某二维随机变量的概率密度.

3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:

{(,)}(,)∈=??D

P X Y D f x y dxdy (作二重积分)

(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有

2(,)

(,)?=??F x y f x y x y

(连续就能根据分布律求概率密度)

1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y

2) 一个方程有无实根:2

0++=ax bx c ,即求:22240,40,40,一个实根

无实根

两个实根

+=+<+>b ac b ac b ac

均匀分布:

定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为

1

,(x,y)(,)0,其它?∈?=???

D

f x y S

,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:

1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它?

?

--=≤≤≤≤???

b a d

c f x y a x b y d

2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度

为:22221

,(,))0,其它π??

=+≤???

f x y x y R R

定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞??=∞=??????x

X F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞??=∞=????

??y

Y F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞

-∞

=

-∞<<∞?

X f x f x y dy x

Y 的概率密度:()(,),()∞

-∞

=

-∞<<∞?

Y f y f x y dx y

(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)

(X,Y)的概率密度:(,)(,)[(,)]-∞-∞

-∞

-∞

==??

??

x y

x y

f x y f u v dudv f u v dv du

二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:

1.211()

(,)σX N u ,222()

(,)σY N u 边缘服从一维正态分布

2.0,ρ=?xy X Y 独立(相关系数为O,则两个随机变量独立)

3.212()

()σ++k X k Y N u (线性组合按一维正态处理)

4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:

设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称

{=i P X x |{,}

},1,2,{}

?====

=

==i j ij j j j

P X x Y y p Y y i P Y y p …

为在=j Y y 条件下随机变量X 的条件分布律

同样地,若{}0,=>i P X x 则称{=j P Y y |{,}

},1,2,{}

?

=====

==i j ij i i i P X x Y y p X x j P X x p …

为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.

设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称

(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度,记为|(,)

(|)()

=X Y Y f x y f x y f y 称

|(,)

(|)()

-∞

-∞

=?

?

x

x

X Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)

(|){|}()

-∞

=≤==?

x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的

设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)

第二节随机变量的独立性

1. 两个随机变量的独立性 定义:

设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有

(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.

可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.

1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况) 例:X,Y 独立,则2

2,x y 独立.

2)如果1212,...,...

,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。 如;1234与,-X X X X 相互独立(没有相同项)

放回抽样:样本总数为n

x ,样本点为:正有几种选法,次有几种取法。

不放回抽样:样本总数为(1)(2)....--x x x ,样本点为:正有多少种取法,次有多少种取法

第三节两个随机变量的函数的分布

1.离散弄随机变量的函数分布

2.两个连续型随机变量之和的概率 Z=X+Y 的分布

设(X,Y)的概率密度为f(x,y),则Z=X+Y 的分布函数为

(){}{}(,)+≤=≤=+≤=

??

Z x y z

F z P Z z P X Y z f x y dxdy

这里的积分区域:x+y ≤z 是直线x+y=z 及其左下方的半平面

()(,)[(,)]∞

-∞-∞

-∞

-∞

=-=-?

?

??

z

z Z F z f u y y dudy f u y y dy du

公式法:令x=z-y(y =z-x),得分布函数:

()(,)()(,)∞

-∞∞

-∞

=-=-??

Z Z F z f x z x dx

F z f z y y dy

如果两个变量独立:

()()()()()()(),()∞

-∞∞

-∞

'==-'==-??

Z Z X Y Z Z X Y f z F z f z y f y dy f z F z f x f z x dx

对分布函数求导得Z 的概率密度为

()()(,)()()(,)∞

-∞∞

-∞

'==-'==

-??

Z Z Z Z f z F z f z y y dy

f z F z f x z x dx

适用用两个变量的线性组合:

注:结论:假于X,Y 都服从正态分布,并X,Y相互独立,那221212()(u u ,)σσ+++X Y N ,212()

(,)

σ+k X k Y N u 有限个相互独立的正态随机变量的线性组合仍然服从正态分布

联合密度函数已知,二维连续性随机变量在一个区域上取值的概率我们转换成对联合密度函数作一个二重积分.

大学物理第三章题目答案(精品资料).doc

【最新整理,下载后即可编辑】 第三章 3.10 平板中央开一小孔,质量为m的小球用细线系住,细线穿过小孔后挂一质量为 1 M的重物.小球作匀速圆周运动,当半径为0r 时重物达到平衡.今在 1 M的下方再挂一质量为2M的物体,如题3.10图.试问这时小球作匀速圆周运动的角速度ω'和半径r'为多少? 题3.10图 解: 在只挂重物时 1 M,小球作圆周运动的向心力为g M 1 ,即 2 1 ω mr g M= ① 挂上 2 M后,则有 2 2 1 ) (ω' ' = +r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即v m r mv r' ' = ω ω' ' = ?2 2 r r ③ 联立①、②、③得 1 2 1123 01 1 1213 2 12 () () M g mr M g M M mr M M M M r g r m M M ω ω ω = + '= + '==? '+ 3.13 计算题3.13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M,半径为r,在绳与轮缘的摩擦力作

用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β)2 1 (212Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2212s m 6.72 15 20058 .92002-?=+ +?= + += M m m g m a 题3.13(a)图 题3.13(b)图 3.15 如题3.15图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ 30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量?

概率论与数理统计总结

第一章 随机事件与概率 第一节 随机事件及其运算 1、 随机现象:在一定条件下,并不总是出现相同结果的现象 2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω 表示基本结果,又称为样本点。 3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表 示,Ω表示必然事件, ?表示不可能事件。 4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。 5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示 6、事件的关系 (1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事 件B 发生,则称A 被包含于B ,记为A ?B; (2)相等关系:若A ?B 且B ? A ,则称事件A 与事件B 相等,记为A =B 。 (3)互不相容:如果A ∩B= ?,即A 与B 不能同时发生,则称A 与B 互不相容 7、事件运算 (1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。 (2)事件A 与B 的交:事件A 与事件B 同时发生,记为A∩ B 或AB 。 (3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。用交并补可以 表示为B A B A =-。 (4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。 对立事件的性质:Ω=?Φ=?B A B A ,。 8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A∪C)、 A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)棣莫弗公式(对偶法则):B A B A ?=? B A B A ?=? 9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ 称为事件域,又称为σ代数。具体说,事件域ξ满足: (1)Ω∈ξ; (2)若A ∈ξ,则对立事件A ∈ξ; (3)若A n ∈ξ,n=1,2,···,则可列并 ∞ =1 n n A ∈ξ 。

大学物理第三章

班级: 姓名: 学号: ★说明:作业模板必须使用单张A4纸(21x29.7cm)正反面打印、复印或手抄;手写作答;若手抄题目请注意题目排版布局。 评 分 大学物理作业 第3章 刚体的定轴转动 一、计算题 1. 如图,一半径为R 质量为m 的定滑轮(可视为圆盘)挂在天花板上,可绕其轴自由转动。质量为1m 和2m (21m m >)的两个物体通过一轻绳挂在定滑轮两侧,由静止开始运动,假设绳与圆盘无相对滑动,试求: (1) 两物体的加速度;(2) 轻绳的张力。 2. 刚体由长为l 、 质量为m 的匀质细杆和一质量同为m 的小球牢固地连接在杆的一端而成,可绕过杆的另一端O 的水平轴转动,在忽略摩擦的情况下,使杆由水平位置自静止状态开始自由转下,试求: (1) 当杆与水平线成θ 角时,刚体的角加速度; (2) 当杆转到竖直线位置时,刚体的角速度。 θ O

Ver 1.0 二、填空题 1. 一长为l 质量为m 的均匀细杆的一端,牢固的粘在另一条同样规格的细杆中点,构成一T 字形结构的刚体。则该刚体 对过其结合处且与两杆所在平面垂直的转轴的转动惯量 =J 。 2. 如图所示,一轻绳绕于半径为r 的飞轮边缘,质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动 惯量为I ,若不计摩擦力,飞轮的角加速度=α 。 3. 花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为0J ,角速度为0ω;然后她将两臂收回,使转动惯量减少为30J ,这时她转动的角速度=ω 。 4. 设飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程,阻力矩M 的大小与角速度ω的平方成正比,比例系数为正的常数k 。当0ωω=时,经历的时间=t ,此时飞轮的角加速度=α 。 5. 一飞轮以0ω的角速度转动,转动惯量为J ,现施加一恒定的制动力矩,使飞轮在2s 内停止转动,则该恒定制动力矩的大小=M 。 6. 如图所示,A 和B 两飞轮的轴杆 在同一中心线上,设两轮的转动惯量分别为A J 和B J 。开始时A 轮转速为0ω,B 轮静止。C 为摩擦合器,其转动惯量可 以忽略不计,A 、B 分别与C 的左右两个 组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转 速相等为止,设轴光滑,那么两轮啮合后共同的转速=ω 。 三、单项选择题 1. 有AB 两个半径相同、质量也相同的细圆环。其中A 环的质量分布均匀,而B 环的质量分布不均匀。若两环对过环心且与环面垂直轴的转动惯量分别记为为A J 和B J ,则有( ) (A) B A J J > (B) B A J J < (C)B A J J = (D)不能确定 2. 一圆盘正绕垂直于盘面的水平光滑轴O 转动,如图所示,射来两个质量相同、速度大小相同、方向相反并 在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子 弹射入后的瞬间,圆盘的角速度ω将( ) (A) 变大 (B) 变小 (C) 不变 (D) 不能确定 m O r C A B

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

离散数学第三章消解原理

*第三章消解原理 斯柯伦标准形 内容提要 我们约定,本章只讨论不含自由变元的谓词公式(也称语句,sentences),所说前束范式均指前束合取范式。 全称量词的消去是简单的。因为约定只讨论语句,所以可将全称量词全部省去,把由此出现于公式中的“自由变元”均约定为全称量化的变元。例如A(x)实指xA(x)。 存在量词的消去要复杂得多。考虑xA(x)。 (1)当A(x)中除x外没有其它自由变元,那么,我们可以像在自然推理系统中所做那样,可引入A(e/x),其中e为一新的个体常元,称e为斯柯伦(Skolem)常元,用A(e/x)代替xA(x),但这次我们不把A(e/x)看作假设,详见下文。 (2)当A中除x外还有其它自由变元y1,…,y n,那么xA(x, y1,…,y n) 来自于y1…y n xA(x, y1,…,y n),其中“存在的x”本依赖于y1,…,y n的取值。因此简单地用A(e/x, y1,…,y n)代替xA(x, y1,…,y n) 是不适当的,应当反映出x对y1,…,y n的依赖关系。为此引入函数符号f,以A(f(y1,…,y n)/x, y1,…,y n) 代替xA(x, y1,…,y n),它表示:对任意给定的y1,…,y n, 均可依对应关系f确定相应的x,使x, y1,…,y n满足A。这里f是一个未知的确定的函数,因而应当用一个推理中尚未使用过的新函数符号,称为斯柯伦函数。 定理(斯柯伦定理)对任意只含自由变元x, y1,…,y n的公式A(x, y1,…,y n),xA(x, y1,…,y n)可满足,当且仅当A(f(y1,…,y n), y1,…,y n)可满足。这里f为一新函数符号;当n = 0时,f为新常元。 定义设公式A的前束范式为B。C是利用斯柯伦常元和斯柯伦函数消去B中量词(称斯柯伦化)后所得的合取范式,那么称C为A的斯柯伦标准形(Skolem normal form)。 以下我们约定:斯柯伦标准形中,各子句之间没有相同的变元。 定义子句集S称为是可满足的,如果存在一个个体域和一种解释,使S中的每一个子句均为真,或者使得S的每一个子句中至少有一个文字为真。否则, 称子句集S是不可满足的。 习题解答 练习 1、求下列各式的斯柯伦标准形和子句集。 (1)┐(xP(x)→y zQ(y, z)) (2)x(┐E(x, 0)→y(E(y, g(x))∧z(E(z, g(x))→E(y, z)))) (3)┐(xP(x)→y P(y)) (4)(1)∧(2)∧(3) 解(1)┐(xP(x)→y zQ(y, z))┝┥┐xP(x)∧y zQ(y, z) ┝┥x┐P(x)∧y zQ(y, z) 斯柯伦标准形:┐P(e1)∧Q(e2, z) 子句集:{┐P(e1),Q(e2, z)} (2)x(┐E(x, 0)→y(E(y, g(x))∧z(E(z, g(x))→E(y, z)))) ┝┥x y z (E(x, 0)∨(E(y, g(x))∧(┐E(z, g(x))∨E(y, z)))) ┝┥x y z ((E(x, 0)∨E(y, g(x)))∧(E(x, 0)∨┐E(z, g(x))∨E(y, z))) 斯柯伦标准形:(E(x, 0)∨E(f(x), g(x)))∧(E(x, 0)∨┐E(z, g(x))∨E(f(x), z))子句集:{ E(x, 0)∨E(f(x), g(x)), E(x, 0)∨┐E(z, g(x))∨E(f(x), z)} (3)┐(xP(x)→y P(y))┝┥xP(x)∧┐y P(y) ┝┥xP(x)∧y┐P(y) ┝┥x y (P(x)∧┐P(y)) 斯柯伦标准形:P(x)∧┐P(y) 子句集:{P(x),┐P(y) }

概率论与数理统计小结

概率论与数理统计主要内容小结 概率部分 1、全概率公式与贝叶斯公式 全概率公式: )()|()(11B P B A P A P = ++)()|(22B P B A P )()|(n n B P B A P + 其中n B B B ,,,21 是空间S 的一个划分。 贝叶斯公式:∑== n j j j i i i B A P B P B A P B P A B P 1 ) |()() |()()|( 其中n B B B ,,,21 是空间S 的一个划分。 2、互不相容与互不相关 B A ,互不相容0)(,==?B A P B A φ 事件B A ,互相独立))(()(B A P B A P =? ; 两者没有必然联系 3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。 ),,1(~p b X 即二点分布,则分布律为.1,0,)1(}{1=-==-k p p k x P k k ),,(~p n b X 即二项分布,则分布律为.,...,1,0,)1(}{n k p p C k x P k n k k n =-==- ),(~λπX 即泊松分布,则分布律为,......1,0,! }{== =-k k e k x P k λ λ ),,(~b a U X 即均匀分布,则概率密度为.,0),(,1 )(??? ??∈-=其它 b a x a b x f ),(~θE X 即指数分布,则概率密度为.,00 ,1)(?? ???>=-其它x e x f x θ θ ),,(~2σμN X 即正态分布,则则概率密度为+∞<<-∞= - x e x f x ,21)(2 2π .

北京理工大学珠海学院大学物理第三章 答案

一、判断题 1. 刚体是质点与质点之间的相对位置保持不变的质点系。 ………………………………[×] 2. 刚体中任意质点都遵循质点力学规律。 …………………………………………………[√] 3. 定轴转动的刚体上的每一个质点都在作圆周运动,都具有相同的角速度。 …………[√] 4. 刚体对轴的转动惯量越大,改变其对轴的运动状态就越困难。 ………………………[√] 5. 刚体质量一定,其转动惯量也就一定。 …………………………………………………[×] 6. 当作用在刚体上的两个力合力矩为零时,则它们的合力也一定为零。 ………………[×] 7. 当作用在刚体上的两个力合力为零时,则它们的合力矩也一定为零。 ………………[×] 8. 平行于转轴的力对刚体定轴转动没有贡献。 ……………………………………………[√] 9. 刚体所受合外力矩为零时,刚体总角动量守恒。 ………………………………………[√] 10. 刚体对某一轴的角动量守恒,刚体的所受合外力矩为零。 ……………………………[×] 二、填空题 11. 质量为m 的质点沿半径为r 的圆周以速率v 运动,质点对过圆心的中心轴转动惯量J = 2 mr ,角动量L =mrv ;质量为m 的质点沿着直线以速率v 运动,它相对于直线外距离为d 的一点的角动量为L =m dv 。 12. 长度为l 的均匀细棒放在Oxy 平面内,其一端固定在坐标原点O 位置,另一端可在平面内 自由转动,当其转动到与x 轴正方向重合时,在细棒的自由端受到了一个34F i j =+ 牛顿 的力,则此力对转轴的力矩M =4l 。 13. 在Oxy 平面内有一个由3个质点组成的质点系,其质量分别为1m 、2m 、3m ,坐标分别为 ()11,x y 、()22,x y 、()33,x y ,则此质点系对 z 轴的转动惯量 J =()()()222222 111222333m x y m x y m x y +++++。 14. 质量为m 半径为r 的均匀圆盘绕垂直于盘面的中心轴转动,转动惯量J =2 1 2 m r ; 质量为m 长度为l 的细棒,对于经过细棒一端且垂直于棒的轴的转动惯量J = 2 13 m l ; 质量为m 长度为l 的细棒,对于与细棒中心轴平行、相距为4l 的轴的转动惯量J =2 748 m l ; 15. 如图1,一长为l 的轻质细杆,两端分别固定质量为m 和2m 的 小球,此系统在竖直平面内可绕过其中心点O 且与杆垂直的水平固定轴转动。开始时,杆与水平成60 角,处于静止状态,无初速度地释放,杆球系统绕O 转动,杆与两小球为一刚体,绕O 轴转动惯量J = 2 34 m l 。释放后当杆转到水平位置时,刚体受到

概率论和数理统计知识点总结[超详细版]

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

大学物理知识点总结

o x B r ? A r B r y A r ? s ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 22r r x y ==+ 运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,22r x y =?+?△ 路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

离散数学课后习题答案第三章

第六章部分课后习题参考答案5.确定下列命题是否为真: (1)? ?真 ? (2)? ?假 ∈ (3)} ?真 {? ? (4)} ?真 ∈ {? (5){a,b}?{a,b,c,{a,b,c}}真 (6){a,b}∈{a,b,c,{a,b}}真 (7){a,b}?{a,b,{{a,b}}}真 (8){a,b}∈{a,b,{{a,b}}}假 6.设a,b,c各不相同,判断下述等式中哪个等式为真: (1){{a,b},c,?}={{a,b},c}假 (2){a ,b,a}={a,b}真 (3){{a},{b}}={{a,b}}假 (4){?,{?},a,b}={{?,{?}},a,b}假 8.求下列集合的幂集: (1){a,b,c}P(A)={ ?,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}} (2){1,{2,3}}P(A)={ ?, {1}, {{2,3}}, {1,{2,3}} } (3){?}P(A)={ ?, {?} } (4){?,{?}}P(A)={ ?, {1}, {{2,3}}, {1,{2,3}} } 14.化简下列集合表达式: (1)(A B) B )-(A B) (2)((A B C)-(B C)) A 解: (1)(A B) B )-(A B)=(A B) B ) ~(A B) =(A B) ~(A B)) B=? B=? (2)((A B C)-(B C)) A=((A B C) ~(B C)) A =(A ~(B C)) ((B C ) ~(B C)) A =(A ~(B C)) ? A=(A ~(B C)) A=A

大学物理第三章题目答案

1 第三章 3.10 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球作匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2M 的物体,如题3.10图.试问这时小球作匀速圆周运动的角速度ω'和半径r '为多少? 题3.10图 解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即 2 001ωmr g M =① 挂上2M 后,则有 221)(ω''=+r m g M M ② 重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即v m r mv r ''=00 ωω''=?2020r r ③ 联立①、②、③得 100 2 1123 01 1121 30 212 ()()M g mr M g M M mr M M M M r g r m M M ωωω= +'=+'==?'+ 3.13计算题3.13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M , 半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200kg,M =15kg, r =0.1m

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有 a m T g m 222=-① a m T 11=② 对滑轮运用转动定律,有 β) 2 1 (212Mr r T r T =-③ 又,βr a =④ 联立以上4个方程,得 2212s m 6.72 15 20058 .92002 -?=+ +?= + += M m m g m a 题3.13(a)图题3.13(b)图 3.15 如题3.15图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ 30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量? 题3.15图 解: (1)设小球的初速度为0v , 棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所 以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式: mvl I l mv +=ω0① 2 2202 12121mv I mv +=ω②

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

大学物理 上册(第五版)重点总结归纳及试题详解第三章 刚体的转动

第三章 刚体的转动 一、 基本要求 1. 了解转动惯量概念,掌握刚体定轴转动的转动定律。 2. 理解角动量和刚体绕定轴转动情况下的角动量守恒定律。 3. 了解刚体定轴转动的功和能及能量守恒。 二、 基本内容 1.角速度矢量 角速度矢量 d dt = θω 在刚体定轴转动中,ω方向沿轴由右手螺旋法则确定,可用正、负表示。刚体上任一点的线速度v 与ω之间关系为=?r v ω。 2.角加速度矢量 角加速度矢量 d dt = ωβ 在刚体定轴转动中,β方向也沿轴,可用正、负表示。β与ω同向时转动 加快,β与ω反向时转动减慢。在刚体上任一点有 t n =???=??a r a v βω 3.力矩 力矩 =?M r F sin Fr ?=M ,?为r 与F 正向间夹角。M 的方向由右手螺旋法则确定。在定轴转动情况下,当规定了转动正方向后,可用正、负表示力矩的方向。 显然平行于转轴的力和作用线通过转动轴的力对该轴产生的力矩为零。在定轴转动情况下计算力矩时,只考虑力在转动平面内的分力对转轴的力矩。 4.转动惯量 ∑=?=n i i i m r J 12——定义式。 对于质量连续分布的刚体 dm r J ?=2 转动惯量是刚体转动惯性大小的量度。转动惯量的大小与刚体的质量有关,

又与刚体质量的分布有关,还与转轴的位置有关。 关于转动惯量的计算:①转动惯量是可加的,应能用转动惯量的定义式求质点组、刚体组对某一转轴的转动惯量。②能计算质量均匀分布,几何形状简单的几种刚体的转动惯量。③会用平行轴定理求刚体或刚体组合对一任意(与质心轴平行的轴)轴的转动惯量。平行轴定理为2mh J J c +=。 5.刚体的转动定律 J =M β 或 d dt = L M 式中M 为作用于刚体上的合外力矩。i =∑M M ,i M 为作用刚体上任一外力对轴的力矩。对定轴转动,在规定了转动正方向后,∑=i M M ,可求合外力矩的代数和。定律中J 、、M β应对同一轴而言。转动定律在描述刚体定轴转动中与描述质点平动中牛顿第二定律地位相当。应用转动定律时应选定刚体转动的正方向,把转动定律变为标量式βJ M =。 6.角动量(动量矩)L 质点的角动量 m =?L r v sin rm ?=L v ,?为r 与m v 间夹角。 刚体绕定轴转动的角动量 J =L ω 7.角动量定理和角动量守恒定律 角动量定理 2 1 21t t dt J J =-? M ωω 2 1 t t dt ? M 表示在21t t →时间内的冲量矩之和。 式中12J 、、、M ωω均对同一轴而言。应用角动量定理求解问题、应选定转动正方向,把矢量式变为标量式。 角动量守恒定律,当0, 0,d dt ===常量L M L 。对于绕定轴转动的刚体,如果对固定轴的合外力矩为零,则对于该固定轴的角动量保持不变。 应用此定律应注意:①守恒条件为对固定轴的合外力矩为零(而不是合外力为零)。刚体受合外力为零时,受合外力矩不一定为零。②角动量守恒时,对绕固定轴转动的刚体,J 不变,ω不变,此时刚体作匀角速转动。若系统对某轴的转动惯量发生变化,则其转动角速度也随之变化,但ωJ 不变。 8.转动动能 转动动能 22 1 ωJ E k = 注意ω、J 应对同一轴而言。单位,焦耳。

《概率论与数理统计》课程学习心得

《概率论与数理统计》课程学习感想 概率论与数理统计是研究随机现象统计规律的科学,既是重要的基础理论,又是实践性很强的应用科学。 概率论与数理统计是现代数学的一个重要分支。近二十年来,随着计算机的发展以及各种统计软件的开发,概率统计方法在金融、保险、生物、医学、经济、运筹管理和工程技术等领域得到了广泛应用。主要包括:极限理论、随机过程论、数理统计学、概率论方法应用、应用统计学等。极限理论包括强极限理论及弱极限理论;随机过程论包括马氏过程论、鞅论、随机微积分、平稳过程等有关理论。概率论方法应用是一个涉及面十分广泛的领域,包括随机力学、统计物理学、保险学、随机网络、排队论、可靠性理论、随机信号处理等有关方面。它主要是通过数学建模,理论分析、推导,数值计算以及计算机模拟等理论分析、统计分析和模拟分析,以求研究和分析所涉及的理论问题和实际问题。 实用性赋予了概率论与数理统计强大的生命力。17世纪概率论与数理统计作为学科诞生后,其方法就被英国古典政治经济学创始人佩蒂引进到社会经济问题的研究中,他提倡让实际数据说话,其对资本主义经济的研究从流通领域进入生产领域,对商品的价值量做了正确的分析。 生活中会遇到这样的事例:有四张彩票供三个人抽取,其中只有一张彩票有奖。第一个人去抽,他的中奖概率是25%,结果没抽到。第二个人看了,心里有些踏实了,他中奖的概率是33%,结果他也没抽到。第三个人心里此时乐开了花,其他的人都失败了,觉得自己很幸运,中奖的机率高达50%,可结果他同样没中奖。由此看来,概率的大小只是在效果上有所不同,很大的概率给人的安慰感更为强烈。但在实质上却没有区别,每个人中奖的概率都是50%,即中奖与不中奖。 同样的道理,对于个人而言,在生活中要成功做好一件事的概率是没有大小之分的,只有成功或失败之分。但这概率的大小却很能影响人做事的心态。 如果说概率有大小之分,那应该不是针对个体而言,而是从一个群体出发,因为不同的人有不同的信念,有不同的做事方法。把地球给撬起来,这在大多数

大学物理物理知识点总结

y 第一章质点运动学主要内容 一 . 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

大学物理第三章部分答案

大学物理部分课后题参考答案 第三章动量守恒定律和能量守恒定律 选择题:3.15—3.19 A A D D C 计算题: 3.24 A、B两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递50kg的重物,结果是A船停了下来,而B船以3.4m/s的速度继续向前驶去。A、B两船原有质量分别为0.5103kg和1.0103kg,求在传递重物前两船的速度。(忽略水对船的阻力) 解: (1)对于A船及抛出的重物和B船抛来的重物组成的系统,因无外力(水对船的阻力已忽略),系统动量守恒设A船抛出重物前的速度大小为v A、B船抛出重物前的速度大小为v B, AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 两船抛出的重物的质量均为m .则动量守恒式为, 0B A A A =+-mv mv v m (1) (2)对于B 船及抛出的重物和A 船抛来的重物组成的 系统,因无外力(水对船的阻力已忽略),系统动量守恒 设B 船抛出重物后的速度大小为V B ,则动量守恒式为, B B A B B B V m mv mv v m =+- (2) 联立(1)、(2)式并代入kg 105.03A ?=m 、kg 100.13B ?=m 、 kg 50=m 、m /s 4.3B =V 可得 m/s 4.0))((2B A B B A -=----= m m m m m mV m v 3.38用铁锤把钉子敲入墙面木板。设木板对钉子的阻力与钉 子进入木板的深度成正比。若第一次敲击,能把钉子钉入木 板m 1000.12-?, 第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深? 解:因阻力与深度成正比,则有F = kx (k 为阻力系数)。

概率论与数理统计学习地总结

概率论与数理统计 学习报告 学院 学号: 姓名:

概率论与数理统计学习报告 通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。 先简单地介绍一下概率论与数理统计这门学科。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的

随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。 至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。 概率论应用随机变量与随机变量的概率分布、数字特征及特征函数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所获取的信息,对整体进行推断,是归纳而得到结论的。因此掌握它特有的学习方法是很重要的。 在学习的过程中,不论是老师提出的一些希望我们课后讨论的问题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些

大学物理第三章

第3章 习题 一、填空题 3.1.1 跨过定滑轮的细绳下端系质量为m 的物体,在物体以4/g 的恒定加速度下落一段距离h 的 过程中,绳的拉力对物体做的功为 考察物体以 4 g 的恒定加速度下落一段距离h 的过程。设初速率为P v ,末速率Q v 满足 22 224Q P g v v a s h -=?= (3-1) 物体受到重力mg r 和绳子的拉力T r 的作用,合外力F r 做功为 Q Q Q mg T P P P A F dr mg dr T dr A A =?=?+?=+???r r r r r r (3-2) 注意到重力是保守力,其做功为 ()()()mg pQ pP Q P P Q A E E mgh mgh mg h h mgh =--=--=-= (3-3) 对物体使用动能定理,有 ()2222 111222 kQ kP Q P Q P A E E mv mv m v v =-=-=- (3-4) 联立(3-1)~(3-4),可求出绳的拉力对物体所做的功为 3 4 T A mgh =- 3.1.2 高m 100的瀑布每秒钟下落3 1200m 水,假设水下落过程中动能的75%由水力发电机转换成 电能,则此发电机的输出功率为 。 依题设,每秒钟有质量为 33361.0101200 1.210m V kg m m kg ρ-==???=? 的瀑布水下落。取水和地球为系统,在水从瀑布最高点下落h 的过程中,系统机械能守恒,有 k E mgh = 经水力发电机转换后的电能为 6875% 1.2109.810075%8.8210()E mgh J =?=????=?

相关主题
文本预览
相关文档 最新文档