当前位置:文档之家› 双母线接线方式保护死区分析及对策

双母线接线方式保护死区分析及对策

双母线接线方式保护死区分析及对策
双母线接线方式保护死区分析及对策

微机继电保护测试仪_继电保护事故25个案例分析

https://www.doczj.com/doc/1b10250480.html, 微机继电保护测试仪_继电保护事故25个案例分析HZ-702微机继电保护测试仪是在参照电力部颁发的《微机型继电保护试验装置技术条件(讨论稿)》的基础上,广泛听取用户意见,总结目前国内同类产品优缺点,充分使用现代先进的微电子技术和器件实现的一种新型小型化微机继电保护测试仪。微机继电保护测试仪自带大屏幕液晶显示器以及灵活方便的旋转鼠标控制器。单机独立操作即已具有很强的功能,可进行大多数试验,联接电脑运行则具有更强大的操作功能。体积小、精度高。既具有大型测试仪优越的性能、先进的功能,又具有小型测试仪小巧灵活、操作简便、可靠性高等优点,性能价格比高。是继保工作者得心应手的好工具。 以下是汇卓电力整理出来的关于继电保护出现的25个故障及分析思路,希望可以帮助到各位,

https://www.doczj.com/doc/1b10250480.html, 案例1:某110kV变电站,运行人员在修改主变保护定值时,主变零序过压保护误动作全切主变三侧开关。 分析:运行人员在监控系统后台上进行定值修改过程中未认真履行监护制度,误将零序过压定值修改为0V。 案例2:某35kV变电站,在保护年检预试完毕后恢复送电过程中,因监控系统故障改为在高压室开关柜上就地操作,主变后备保护动作全站失压。 分析:10kV线路上有地线未拆除,带地线合闸事故。当开关柜上“运行/检修”切换开关切至检修位置时,保护在二次回路被断开,线路故障虽然保护正确动作,却无法出口跳闸,致使主变后备保护越级跳闸。 案例3:某35kV变电站,10kV馈线三相短路故障,馈线保护动作,断路器拒动,主变低后备动作出口,10kV一段母线失压。 分析:断路器低压分闸不合格。规程要求,断路器最低分合闸电压应为30%-65%直流电压。 案例4:某110kV变电站,10kV电容器故障跳闸后,运行人员在处理过程中造成10kV 母线三相短路故障,10kV总路断路器拒动,主变低后备、高后备保护均动作出口,110kV 二母、35kV二母、10kV二母失压。 分析:违章操作,断路器低压分闸不合格。 案例5:某110kV变电站,先后几次发生10kV馈线故障,馈线保护拒动,主变低后备动作出口,10kV一段母线失压。 分析:CT饱和导致保护拒动。同样的故障现象发生在另一35kV变电站中,经查,系运行人员误将保护定值区号(组别)改变,导致保护当前运行定值混乱所致。

漏电保护器接线方式

漏电保护器接线方式 漏电保护器接线图: 漏电保护器接线方法: 1、根据不同的电气设备的供电方式选用不同的漏电保护器 单相220V电源供电的电气设备,应选用二极二线或单极二线式漏电保护器。 三相三线式380V电源供电的电气设备,应选用三极式漏电保护器。 三相四线式380V电源供电的电气设备或单相设备与三相设备共用的电路,应选用三极四线或四极四线式漏电保护器。

2、根据电气线路的正常泄漏电流,选择漏电保护器的额定漏电动作电流 选择漏电保护器的额定漏电动作电流值时,应充分考虑到被保护线路和设备可能发生的正常漏电流值。 选用的漏电保护器的额定漏电不动作电流,应小于电气线路和设备的正常漏电电流的最大值的2倍。 漏电保护器的额定电压、额定电流、短路分断能力、额定漏电电流、分断时间应满足被保护供电线路和电气设备的要求。 漏电保护器接线错误方式: 1、用于支线保护时,各支线应有各自的专用零线,且两相邻支线路的零线不得相连。如果将两分支线路相连,零线中的电流互流,破坏零序电流互感器内的工作电流平衡,使漏电保护器发生误动作。如果想就近利用动力分支线的零线作为照明分支线的零线,则会造成动力分支线的漏电保护器动作。 2、一个用电设备只能接在一条保护支路内,不得跨接在两条分支回路内,不得接在零序互感器的前面,也不得采取一线一地制供电,否则,会导致漏电保护器误动作。 3、装有漏电保护器和未装漏电保护器的用电设备,不得共用一个接地装置。例如,当电机M1的绝缘损坏而外壳带电时,电机M2的外壳也带电,由于电流没有经过漏电保护器,所以未起到漏电保护的作用。 4、单相负荷应尽可能均衡分配。如果分配不均(如一相的线路偏

探讨快速切除220kV变压器死区故障的继电保护方案

探讨快速切除220kV变压器死区故障的继电保护方案 发表时间:2018-11-11T11:58:00.780Z 来源:《电力设备》2018年第17期作者:向华钧 [导读] 摘要:现阶段,掌控电力的最佳途径便是运用快速切除220kV变压器死区故障的继电保护技术,其不但能确保供电系统良好发展,并且还能有效防范死区出现问题故障。 (韶关市关山供电工程有限公司广东韶关 512029) 摘要:现阶段,掌控电力的最佳途径便是运用快速切除220kV变压器死区故障的继电保护技术,其不但能确保供电系统良好发展,并且还能有效防范死区出现问题故障。本文将主要围绕变压器死区故障的主要特点展开分析,并提供方案以供参考。 关键词:220kV变压器;死区故障;继电保护 所谓死区故障,具体是指220kV变压器在电流出现短路或是互感器通过时把问题拒绝在调度以外的一种形式,同时让电力防护生成死角。即使在电压超出标准额时,还会驱动自我保护性能,然而却并非全方位的,这些问题依然存在。因此,探究死区故障的继电保护方案有着举足轻重的意义。 一、变压器死区故障继电保护方案 伴随死区故障对电力影响逐渐加深,电力监管人员对其的关注程度也愈来愈高。各种各样的继电保护方案也纷纷涌现,以此确保电力的稳定运作。对比220Kv变压器各侧死区故障特点、继电保护动作特点与电网其余死区故障继电保护方案,可采取以下方案:(一)方案一 在220kV变压器一端存在死区问题时,其问题特点是此端母线差动未折回,220kV变压器此端母联依然有问题电流经过。对比此问题特点,制作TA断路器死区故障的继电保护方案,提供变压器此端问题死区问题封母联的跳闸掌控方案。首先,变压器此端后续保护跳闸出口,继电器保持动作形态,或其余保护跳闸出口,继电器保持动作形态。其次,变压器此端各相电流处于驱动值,或者负序电流超过规定值。 以上条件都达到要求时,经过一定的延时后退出变压器此端变压器差动保护母联,也就是变压器此端电流不参加变压器差动保护电流运算。在以上某条件不达标时,零秒连接变压器此端变压器差动保护母联,也就是变压器此端电流参加变压器差动保护电流运算。因为变压器差动保护鉴别此问题通过区外问题转变成区内问题,进而让变压器差动保护动作,驱动变压器总出口跳闸回路,躲避其余断路器,清除了此问题。 (二)方案二 在220kV变压器一端出现死区故障时,故障特点和方案一相同,对比线路路断路器死区故障继电保护方案里的光纤分相电流差动保护去除故障,制定变压器此端死区故障驱动链条的跳闸掌控方案。首选,变压器此端后续保护跳闸出口,继电器位于动作形态,或其余保护跳闸出口,继电器保持动作形态。其次,变压器此端各相电流到达驱动值,或者负序电流超过规定值。 以上条件都达到时,经过一定的延时后驱动变压器保护总出口跳闸回路,驱动避开变压器的各端断路器,进而实现迅速去除此种变压器死区故障的效果。如果其中有一个条件没达到,零秒折回,跳闸总出口回路不驱动变压器来保护。 针对这两套方案而言,鉴别变压器此侧各相有无电流,可搜集变压器此侧差动保护TA电流,此电流定值可依据避开变压器此侧最大负载电流或者依据变压器此侧电路终端时此死区故障有充足的机敏性整定。在变压器此侧是高效接地体系时,负序或者零序电流定值可依据变压器此侧母线接地问题有充足的机敏性整定。在变压器某侧电压等级是小于等于35kV系统时,其往往是不接地体系,那么变压器此侧零序电流判据可无用。如果是电阻接地体系,那么变压器此侧零序电流判据可运用。 (三)方案三 在220kV变压器一端出现死区故障时,其后续保护动作,避开变压器此端断路器,并且断路器已在分闸地点,然而220kV变压器此端TA依然有问题电流通过,制定TA断路器死区故障继电保护方案,实际此端死区故障跳闸掌控方案为:首先,变压器此端断路器位于分闸地点;其次,变压器此端各相电流都大于规定值,负序电流或者零序电流也纷纷大于规定值。 以上条件都达到时,通过一定的延时后退出变压器此端变压器差动保护母联断路器,代表变压器此端电流不参加变压器差动保护电流运算。在其中某一条件未达到时,零秒连接变压器此端比那氩气差动保护母联断路器,也就是变压器差动保护把问题测电流退出比那氩气差动保护电流运算,等于变压器差动保护有效差流从之前的较小或者零变成短路位置的短路电流,从而让变压器差动保护鉴别此问题从区外问题转变成区内问题,进而让变压器差动保护行为,避开变压器其余侧断路器,清除了此问题。 (四)方案四 条件为:侧断路器位于分闸地点;变压器各相电流大于规定值,或者负序电流零序电流大于规定值。 达到这两个条件时,通过一定的延时驱动变压器保护总出口跳闸回路,避开变压器各端断路器,进而村塾去除此种死区故障。在有一个条件未达到时,零秒撤回,总出口跳闸回路不驱动变压器保护。 针对方案三与方案四而言,以上各相电流可搜集变压器此侧差动保护TA电流,相电流的整定值可制定成大于变压器1.2倍此侧额定电流或者依据变压器此侧断路器中断时本侧死区相建问题有充足的机敏性整定。在变压器本侧是高效接地系统时,负序电流与零序电流整定值都能依据此侧目前接地问题有充足的机敏性制定。变压器其中一端是电压级别是35kV和之下系统时,此系统往往是经消弧线圈接地或者不接地系统,那么变压器这侧零序电流判据无效。如果是电阻接地系统,那么变压器这端零序电流判据有效。 (五)变压器死区故障保护的布置 依据220kV变压器某一端有无出现死区故障展开布置,仅要有这一端或者这一端的某一分支出现死区故障,那么此端或者某一分支回路要依据迅速去除死区故障方案布置变压器死区故障保护。 二、关于变压器死区故障保护延时 (一)方案一与方案二 针对这两个方案来讲,变压器某侧死区故障延时t1可从此端母线差动保护或者变压器此端后续保护驱动出口继电器动作之后发射跳闸脉冲计时,所以,此延时要超过此端断路器跳闸组织行为时间与中断电弧时间加上此端母线差动保护或者变压器此端后续保护驱动出口继电器折回时间或者电流鉴别元件折回时间。断路器跳闸行为动作与中断电弧时间通常在50-60ms,往往不会超过80ms;出口继电器折回时

EA9RN2C3230C 漏电保护器接线

断路器的几大功能: A、短路保护:就是火线和零线接触,瞬间电流很大,断路器跳闸。 B、过载保护:就是用电电流超过电器的额定电流,断路器跳闸。 C、漏电保护(电漏电保护装置):就是当漏电电流超过30毫安时,漏电附件自动拉闸,主要是保护人体安全的。 1P断路器与DPN断路器的区别: 一、1P就是火线进断路器,零线不进,DPN是火线和零线同时进断路器,切断时火线和零线同时切断,对居民用户来说安全性更高。 二、2P断路器也为双进双出,即火线和零线都进断路器,但2P断路器的宽度比1P和DPN断路器宽一倍。 三、漏电保护器:实际上是指带漏电保护装置的断路器,作用是当漏电电流超过30毫安时,漏电附件自动拉闸,保护人体安全。 断路器(空气开关)的极性和表示方法 单极1P:220V 切断火线 双极2P:220V 火线与零线同时切断 双极1P+N:220V 相线+中性线同时切断 三级3P: 380V 三相线全部切断 四级4P:380V 三相火线一相零线全部切断。 家庭用电路的配置方法为: 1、总开关一回路 2、照明一回路 3、客厅、卧室插座一回路 4、厨房、卫生间插座一回路 5、每个空调各一回路

空调如何换算功率及匹配断路器空气开关 1匹=750W 1.5匹=1.5×750W=1125W 2匹=2×750W=1500W 2.5匹=2.5×750W=1875W 此计算法以此类推。 1例:一个2P(2匹)的空调回路配的断路器规格大小为DPN20A,那么他准许通过的最大功率就为 4400W(220V*20A)。而一个2匹的空调的额定功率为2000W,但考虑到空调启动瞬间功率会突然加大,所以配一个20A的断路器(足矣)。注:断路器的大小并不是配得越大越好,配得过大,反而起不到过栽保护作用,使家用电器受损。 2例:3匹空调应选择多少A的空气开关?(220V电压) 750W×3匹=2250W×3倍(冲击电流)=6750W÷220V=30.68A≈32A。 3例:5匹空调应选择多少A的空气开关?( 380V电压) 750W×5匹=3750W×3倍(冲击电流)=1125W÷380V=29.60≈32A(功率÷电压=安培) 安装或施工说明: 1.、按产品说明书进行安装。 (1) 应安装在干燥、清洁的地方。不能装在露天和潮湿地方,不能装在灰尘多、受烟薰的地方。因为雨水、潮气或灰尘、烟雾侵入漏电开关,能使金属件生锈动作不灵、绝缘降低,或使电子元件受到腐蚀,致使整机过早损坏。 (2) 漏电开关的进、出线不可接反。因为进线接电源,当漏电开关跳闸后,其辅助电源亦断开,其内晶闸管瞬间导通不会损坏;若出线接电源,跳闸后辅助电源不能断开,晶闸管有一特性,就是导通后即使触发信号消失,仍旧保持导通状态,则晶闸管因较长时间导通而烧毁,整机因而损坏。 2、应由电工动手安装。因电工有一定的电气知识和电力工作经验,能选择恰当位置、安装正确、走线美观、出现问题可当即处理。 3安装中可能出现的问题及处理方法 (1) 按"试跳按钮"不会动作。检查电源和接线,若均无问题,则是漏电开关故障,应换新的。 (2) 安上后合上开关即动作,送不上电。先检查电源电压,看是否过压引起漏电开关动作;若电压正常,退掉负载线,若一开仍跳,系漏电开关故障,应换新的,若不跳,系被保护的线路泄漏过大,超过漏电开关的额定漏电动作电流。 采购指南: (1)由线路的计算电流来决定断路器的额定电流;(大概有99%的设计者做到了这一条)。 (2)断路器的短路整定电流应躲过线路的正常工作启动电流。(大概有30%的设计者注意到了这一条)。(3)按线路的最大短路电流来校验低压断路器的分断能力;(大概有10%的设计者注意到了这一条)。(4)按照线路的最小短路电流来校验断路器动作的灵敏性,即线路最小短路电流应不小于断路器短路整定电流的1.3倍;(大概有5%的设计者注意到了这一条)。 (5)按照线路上的短路冲击电流(即短路全电流最大瞬时值)来校验断路器的额定短路接通能力(最大电流预期峰值),即后者应大于前者。(大概有1%的设计者注意到了这一条)。

单母线和双母线优缺点及图解

1、单母线接线 (1)只有一组母线的接线,进出线并接在这组母线上。 单母线接线图见图1。图中倒闸操作:如对馈线LI送电时,须先合上隔离开关QS2与QS3,再投人断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3与QS2。即隔离开关相对于断路器而言要“先通后断”,母线隔离开关相对于线路隔离开关也要“先通后断”。接地开关QS4就是在检修电路与设备时合上,取代安全接地线的作用。 图1 单母线接线图 单母线接线优点:简单清晰、设备少、投资小、运行操作方便,且有利于扩建。 缺点:可靠性与灵活性较差。 应用:6~10kV配电装置的出线回路数不超过5回; 35~63kV配电装置的出线回路数不超过3回;110~220kV配电装置的出线回路数不超过2回。 改进:单母线分段接线、单母线带旁路接线。 (2)单母线分段接线:避免单母线接线可能造成全厂停电的缺点,提高供电可靠性及灵活性。见图2。

图2 单母线分段接线图 单母线用分段断路器QF1进行分段。两段母线同时故障的几率甚小,可以不予考虑。在可靠性要求不高时,亦可用隔离开关分段(QS),任一段母线故障时,将造成两段母线同时停电,在判别故障后,拉开分段隔离开关,完好段即可恢复供电。分段的数目,取决于电源的数量与容量。段数分越多,故障时停电范围越小,但使用断路器的数量亦越多,且配电装置与运行也越复杂,通常以2~3段为宜。这种接线方式广泛用于中、小容量发电厂的6~10kV主接线与6~220kV变电所配电装置中。4 优点:对重要用户可以从不同段引出两回馈线,由两个电源供电;当一段母线发生故障(或检修),仅停该段母线,非故障段母线仍可继续工作。 缺点:当一段母线或母线隔离开关故障或检修时,接在该段母线上的回路必须全部停电;任一回路的断路器检修时,该回路必须停止工作。 (3)单母线分段带旁路接线:检修出线断路器,不致中断该回路供电。见图3。 图3 单母线分段带旁路接线示意图

电热水器专用16A漏电保护插座插头安装接线图例

漏电保护插座 1. 外型结构图: 2. 安装方法: A、将两只安装螺钉穿入安装板的两只孔内且与埋入墙体内的安装盒两只纹孔拧紧;

B、将面板与安装板配合,面板四只卡钩与安装板扣孔配合紧密; C、拆卸面板时需用“一”字形螺丝刀插入面板二侧扁槽内旋转翘开即可。 D、使用标准86型接线盒,接线盒深度需在50毫米以上,明盒安装时需特别注意此深度要求(因为一般的明盒都只有30~40毫米深)。安装时请严格按照说明书要求,由专业电工安装。 3. 接线方法:(关于电源端、输出端、接地端的接线方法) A、电源端:通用电线的选用:φ、φ(铜)单线专用。 B、输出端:选用电线:φ(铜)单线专用。(注:此产品在与普通插座相连接时才具备此输出端接线,此接线方法视情况而采用,如辅助接线图所示。一般不需接线) C、接地端:通用电线的选用:φ、φ(铜)单线专用。如下图所示

4. 辅助接线:在此产品输出端可续接若干个普通插座或开关,同样具有本产品所具有的性能。此接线方法视情况而采用。如下图所示。 5. 检测:每月至少检测一次 为安全可靠运行,安装完毕后需进行检测,以后每月至少检测一次。 检测方法: A、检查产品接线无误后,开启总电源; B、按下蓝色RESET复位按钮,绿色指示灯亮,触头闭合,输出端带电;

C、按下黄色TEST测试按钮,红色指示灯亮,触头断开,输出端断电; D、每隔3~5秒,重复B、C步骤至少3~5次,鉴定插座完好; E、每月至少检测一次; F、用户请勿自行拆解。 6. 注意事项: A、不能将湿毛巾或湿布擦拭产品表面,应使用充分拧干的软布或毛巾擦拭产品的污垢; B、不能用化学清洁剂涂上产品表面,否则将会损伤产品表面质量。 C、以上为简要安装说明,详细说明请参见说明书。产品必须由合格的专业电工安装。 QS-1-10L-16-CA 规格: 3P 额定电流: 16A

单母线和双母线优缺点及图解

单母线和双母线优缺点 及图解 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1.单母线接线 (1)只有一组母线的接线 ,进出线并接在这组母线上。 单母线接线图见图1。图中倒闸操作:如对馈线LI送电时,须先合上隔离开关QS2和QS3,再投人断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。即隔离开关相对于断路器而言要“先通后断”,母线隔离开关相对于线路隔离开关也要“先通后断”。接地开关QS4是在检修电路和设备时合上,取代安全接地线的作用。 图1 单母线接线图 单母线接线优点:简单清晰、设备少、投资小、运行操作方便,且有利于扩建。 缺点:可靠性和灵活性较差。

应用:6~10kV配电装置的出线回路数不超过5回; 35~63kV配电装置的出线回路数不超过3回;110~220kV配电装置的出线回路数不超过2回。 改进:单母线分段接线、单母线带旁路接线。 (2)单母线分段接线:避免单母线接线可能造成全厂停电的缺点,提高供电可靠性及灵活性。见图2。 图2 单母线分段接线图 单母线用分段断路器QF1进行分段。两段母线同时故障的几率甚小,可以不予考虑。在可靠性要求不高时,亦可用隔离开关分段(QS),任一段母线故障时,将造成两段母线同时停电,在判别故障后,拉开分段隔离开关,完好段即可恢复供电。分段的数目,取决于电源的数量和容量。段数分越多,故障时停电范围越小,但使用断路器的数量亦越多,且配电装置和运行也越复杂,通常以2~3段为宜。这种接线方式广泛用于中、小容量发电厂的6~10kV主接线和6~220kV变电所配电装置中。4

220kV典型保护死区问题的探讨

220kV典型保护死区问题的探讨 关键词: 继电保护断路器保护死区 摘要:针对220 kV 断路器只在一侧装设一组CT 的现状,简要分析了目前典型保护死区的常规动作逻辑及其存在问题,研究了在断路器两侧各装设一组CT 的条件下,通过两侧保护加入低电压闭锁功能,分段跳开相应断路器的动作机理。在此基础上提出了消除保护死区的解决方法,即在断路器两侧各装设一组CT 的基础上,两侧保护加入低电压闭锁功能,分段跳开相应断路器切除死区故障。此法在一定程度上能够有效降低事故影响范围。 0 引言 目前,220 kV 变电站通常采用双母线带旁路的主接线方式,断路器只在一侧装设一组CT。由于继电保护装置自身工作原理等方面的缺陷,被保护元件在某一特定的小范围内发生故障而由延时的后备保护切除(常发生在各类断路器与断路器CT 之间),这类故障称之为死区故障。典型死区故障一般有三种:出线断路器与出线CT 之间的死区故障;主变断路器与主变CT 之间的死区故障;母联断路器与母联CT 之间的死区故障。虽然这三种死区故障发生的概率很小,但随着电网的日趋复杂,电力系统的稳定可靠运行变得愈加重要,一旦死区发生故障不能及时切除,或者不能准确切除,相对来说对系统的稳定运行将影响更大[1]。 本文就这三种典型死区故障存在的问题进行探讨,提出在断路器两侧各装设一组CT 的基础上,保护加入低电压闭锁功能,分段跳开相应断路器切除死区故障的对策,此法在一定程度上能够大大降低事故影响范围。 1 出线断路器与出线CT 之间的死区故障 1.1 常规保护逻辑 如图1 所示:当出线断路器与出线CT 之间的A 点发生故障时,因该点故障属母差保护范围,不属于线路保护范围。但在母差保护动作跳开母线所连接断路器后,A 点故障仍然存在,因此图1 中的A 点对母差保护来说就意味着死区故障点。 图1 出线单CT 死区故障示意图(常规)

主变开关死区故障的分析

主变开关死区故障的分析 【内容摘要】主变压器开关的死区发生故障时,保护动作情况较为复杂,运行人员若按常规方法根据保护动作情况进行事故的分析、判断和设备的巡视检查,将影响事故的处理效率和正确性。本文以220kV主变压器中压侧开关与开关CT之间发生相间短路故障为例,结合自己实际工作经验,总结出针对变电运行人员在遇到大型复杂事故时,逐步分析确定事故的性质、类型和范围的方法。 【关键词】事故分析事故较大可能性主变开关死区 一、事故发生时的运行方式简介 图1-1 1、一次设备简介: (1)变电站共有主变两台:分别为1号主变、2号主变,均为有载调压变电器,额定容量12万kVA,正常时两台主变并列运行。 (2)220kV系统采用双母线带专用旁路母线的接线方式,接有7回出线,另外接有旁路290,

母联260,1、2号主变高压侧开关201、202,母线PT。 (3)110kV系统采用双母线带专用旁路母线的接线方式,接有7回出线另外接有旁路140,母联100,1、2号主变中压侧101、102.母线PT。 (4)10kV系统采用单母线接线方式接有1、2号站用变931、941,1、2号主变低压侧901、902,母线PT。 2、二次相关保护简介: (1)110kV母线保护采用RCS-915A型微机母线保护装置。配备有母线差动保护、母联充电保护、母联死区保护。母差保护装置大差电流回路取母线上除母联开关外所有开关CT,Ⅰ母小差电流回路取Ⅰ母线上开关和母联开关CT,Ⅱ母小差电流回路取Ⅱ母线上开关和母联开关CT。 (2)主变保护:采用双屏配置,2套电气量保护,1套非电气量保护。 电气量保护配置:(1号保护装置取开关CT,2号保护装置取套管CT) ①主保护: 差动保护,包括差动差速保护、比率差动保护、工频变化量比率差动保护、零序/分侧比率差动保护。均无时限跳主变三侧开关。 保护范围: 1号差动保护范围为主变各侧开关CT以内的各类故障,2号差动保护范围为主变各侧套管CT以内的各类故障。 ②后备保护: 复合电压压闭锁方向过流保护:包括220kV复合电压压闭锁方向过流保护、110kV复合电压压闭锁方向过流保护、10kV复合电压压闭锁方向过流保护。各侧复合电压压闭锁过流保护均整定为三段,每段2个时限。T11跳对应侧母联开关(10kV侧停用)、T12跳对应侧主变总路开关、T21跳对应侧主变总路开关、T22跳主变三侧开关、T31=T32跳主变三侧开关。 保护方向性:复合电压压闭锁方向过流保护Ⅰ、Ⅱ段带有方向性,保护动作正方向为主变指向母线,复合电压压闭锁过流保护Ⅲ段不带方向。 保护范围:复合电压压闭锁方向过流保护Ⅰ、Ⅱ段作为对应侧母线及线路短路故障时的远后备保护, 1号保护装置复合电压压闭锁方向过流保护Ⅰ、Ⅱ段保护范围为对应侧开关CT 以外的相间短路故障,2号保护装置复合电压压闭锁方向过流保护Ⅰ、Ⅱ段保护范围为对应侧套管CT以外的相间短路故障;复合电压压闭锁方向过流保护Ⅲ段作为主变本体、各侧母线及

电气事故案例分析(20100611)

电气事故案例分析题 (2) 一、运行人员擅自传动发变组保护装置,造成机组跳闸 (2) 二、擅自解除闭锁带电合接地刀闸 (2) 三、安全措施不全电除尘触电 (3) 四、带负荷推开关 (4) 五、野蛮操作开关,导致三相短路 (5) 六、小动物进入电气间隔,造成机组跳闸 (7) 七、PT保险熔断造成机组跳闸 (7) 八、励磁整流柜滤网堵塞,造成机组跳闸 (8) 九、励磁变温度保护误动,造成机组跳闸 (9) 十、6KV电机避雷器烧损,发变组跳闸 (9) 十一、MCC电源切换,机组跳闸 (10) 十二、励磁机过负荷反时限保护动作停机 (12) 十三、220千伏A相接地造成差动保护动作停机 (12) 十四、查找直流接地,造成机组跳闸 (13) 十五、查找直流接地,造成机组跳闸 (14) 十六、检修工作不当,造成机组跳闸 (15) 由于人员工作不当,229出线与220kV下母线距离过近放电,引起保护动作。 (15) 十七、主变差动保护误动 (15) 十八、主变冷却器全停使母线开关跳闸 (16) 十九、试验柴油发电机造成机组停运 (16) 二十、定冷水冷却器漏泄,定子接地保护动作停机 (17)

电气事故案例分析题 一、运行人员擅自传动发变组保护装置,造成机组跳闸 事件经过 1月8日某厂,#3发电机有功85MW。运行人员XX一人到#3发-变组保护屏处学习、了解设备,进入#3发-变组保护A柜WFB-802模件,当查看“选项”画面时,选择了“报告”,报告容为空白,又选择了“传动”项,想查看传动报告,按“确认”键后,出现“输入密码”画面,再次“确认”后进入保护传动画面,随后选择了“发-变组差动”选项欲查看其容,按“确认”键,#3发-变组“差动保护”动作出口,#3发-变组103开关、励磁开关、3500开关、3600开关掉闸,3kV5段、6段备用电源自投正确、水压逆止门、OPC保护动作维持汽机3000转/分、炉安全门动作。 原因分析: 1.在机组正常运行中,运行人员在查看3号发-变组微机保护A柜“保护传动”功能时,越权操作, 造成发-变组差动保护出口动作。是事故的主要原因。 2.继电保护装置密码设置为空,存在人员误动的隐患。是事故的次要原因。 3.运行人员无票作业,且未执行操作监护制度。 暴露问题: 1、违反《集团公司两票管理工作规定》,无票作业。 2、集团公司《防止二次系统人员三误工作规定》执行不到位,继电保护密码管理存在漏洞。 3、运行人员安全意识不牢固,盲目越权操作。 4、运行人员技术水平不高,对操作风险无意识。 采取措施: 1、加强对运行人员的技术培训,并吸取此次事故的教训。 2、认真对照集团公司《防止二次系统人员三误工作规定》进行落实、整改,进一步完善制度。 3、加强“两票”管理,各单位要严格执行《集团公司两票管理工作规定》,严禁无票作业。 4、发电部加强对运行人员安全教育和遵章守纪教育及技术培训,并认真吸取此次事故的教训,不 要越限操作。 5、继电保护人员普查所有保护设备,凡有密码功能的一律将空码默认形式改为数字密码。完善警 告标志,吸取教训。完善管理制度,加强设备管理。 二、擅自解除闭锁带电合接地刀闸

漏电保护器原理及接线图

漏电保护器原理及接线图

————————————————————————————————作者:————————————————————————————————日期:

漏电保护器原理及接线图 家装电路虽然有专业的电工师傅安装,不用我们操心,但是稍作了解家庭电路也是有必要的。就拿漏电保护器的接线图来说,人家拿张电路图给你看,也要大概看得懂些。对于没有太多专业电路知识的我们来说,确实有点难度,下面就随一起来学习下漏电保护器原理及接线图。 漏电保护器原理 漏电保护器由脱扣电路、过载保护器装置和漏电触发电路三部分组成。过载保护装置由双金属片构成的热元件EHl、EH2组成。将漏电保护器安装在线路中,一次线圈与电网的线路相连接,二次线圈与漏电保护器中的脱扣器连接。 当用电设备正常运行时,线路中电流呈平衡状态,互感器中电流

矢量之和为零(电流是有方向的矢量,如按流出的方向为“+”,返回方向为“-”,在互感器中往返的电流大小相等,方向相反,正负相互抵销)。由于一次线圈中没有剩余电流,所以不会感应二次线圈,漏电保护器的开关装置处于闭合状态运行。 当设备外壳发生漏电并有人触及时,则在故障点产生分流,此漏电电流经人体—大地—工作接地,返回变压器中性点(并未经电流互感器),致使互感器申流入、流出的电流出现了不平衡(电流矢量之和不为零),一次线圈申产生剩余电流。因此,便会感应二次线圈,当这个电流值达到该漏电保护器限定的动作电流值时,自动开关脱扣,切断电源。 漏电保护器接线图 漏电保护器的正确接线方式有一个系统叫TN,指的是配电网的低压中性点直接接地,电气设备外露可到店的部分通过保护线与该接地点连接。

典型电气事故案例大全

典型电气事故案例汇编 汇编:郝建伟 2012年4月10日 前言 通过典型事故案例学习,认清每一次事故的根源,消除松懈麻痹思想,强化忧患意识和风险意识,增强做好安全工作的积极性、主动性;加强事故问责,进一步明确各自安全责任,使安全生产“可控、再控”,建立和完善各类规章制度,加大反违章和安全监督监察力度,推行安全工作标准化,深化安全事故闭环管理,检查事故管理和整改措施的落实情况,避免解决事故处理失之于宽、失之与松的问题,使安全生产基础不断得到巩固和加强,保证发电设备的安全稳定运行。 本《典型事故案例汇编》收集了我厂建厂以来在生产过程中发生的较为典型的电气事故,对事故发生的原因进行了分析,提出防范措施。希望各部门、各班组认真学习,接受事故教训,不断提高自我防护意识和防范能力,结合自身工作特点,举一反三,使防范措施真正落到实处,夯实生产安全基础,促进企业建立安全生产长效管理机制,确保发电设备安全、稳定、经济运行。 目录 一黄台电厂继电保护误接线事故 二黄台电厂110KV母差保护直流接地动作致Ⅰ母线跳闸 三黄台电厂220KVⅡ母线PT刀闸引线支柱瓷瓶污闪事故 四黄台电厂小动物造成发电机出线短路事故 五黄台电厂发电机转子内冷水回路堵塞致小修延期事故

六黄台电厂继电保护误整定事故 七黄台电厂#7机丙循环水A相CT下部接线处熔化导致停机事故 八黄台电厂#7机油隔离6KV电源老鼠短路致#7炉灭火 九黄台电厂#7机205开关B相CT爆炸事故 十黄台电厂6KVⅦ段母线室漏雨造成母线故障 十一黄台电厂#6机低真空停机保护动作 十二黄台电厂#7机定子接地保护动作, 发电机跳闸 十三黄台电厂#7发电机定子A相接地故障 十四金陵电厂“”电气误操作事故 十五金陵电厂“”电气设备事故 十六沁北电厂500kVⅡ母线由运行转检修过程中运行人员误操作事故 十七沾化热电厂“”全厂停电事故 (一)继电保护误接线事故 一、事故经过 1984年10月12日,事故前总负荷 210MW,黄南线有功负荷为 5MW,6:12南郊变电所发生单相接地故障,我厂110KV黄南线距离保护I段动作跳闸,重合闸因投同期鉴定方式没有动作,6:20按调度命令合上黄南线103开关,恢复运行。 二、原因分析 根据录波分析,故障电流已达到另序1段保护动作定值,但没有动作,而距离I段保护动作。从原理及接线看距离I段系误动,经分析阴抗元件电流回路接线不合理。 PLH-12/AI型系上海早期产品,厂家说明书及水电部检验规程对接地距离切换为相间距离,从原理设计和对接线要求均没有明确的说明,我厂也没有研究、分析,特别对中调76年下达的距离保护整定值通知单提出停用接地距离同时另序变流器K值为的要求没提出异议,而后又对78年、79年通知单提出接地距离取消另序变流器K值的变动,由于对接线要求认识不足,没有做真的分析研究,也滑积极向上级业务部门联系,仍按制造厂原接线运行,致使误动作事故的发生。 三、防范措施 (1)、加强业务学习,提高业务水平。 (2)、坚持严细作风,提高保护校验质量,确保保护的准确性。 (3)、加强和上级业务部门的联系和请示,同时建议上级业务部门对保护主接线的改变能

漏电保护器的工作原理、使用范围、接线方式

漏电保护器的工作原理、使用范围、接线方式 国内外多年的运行经验表明,推广使用漏电保护器,对防止触电伤亡事故,避免因漏电而引起的火灾事故,具有明显的效果。本文就广泛使用的电流型漏电保护器(以下简称漏电保护器)的工作原理及应用作些介绍。 1漏电保护器的工作原理: 漏电保护器主要包括检测元件(零序电流互感器)、中间环节(包括放大器、比较器、脱扣器等)、执行元件(主开关)以及试验元件等几个部分。 三相四线制供电系统的漏电保护器工作原理示意图。TA为零序电流互感器,GF为主开关,TL为主开关的分励脱扣器线圈。在被保护电路工作正常,没有发生漏电或触电的情况下,由克希荷夫定律可知,通过TA一次侧的电流相量和等于零,即:这样TA的二次侧不产生感应电动势,漏电保护器不动作,系统保持正常供电。当被保护电路发生漏电或有人触电时,由于漏电电流的存在,通过TA一次侧各相电流的相量和不再等于零,产生了漏电电流Ik。在铁心中出现了交变磁通。在交变磁通作用下,TL二次侧线圈就有感应电动势产生,此漏电信号经中间环节进行处理和比较,当达到预定值时,使主开关分励脱扣器线圈TL通电,驱动主开关GF自动跳闸,切断故障电路,从而实现保护。用于单相回路及三相三线制的漏电保护器的工作原理与此相同,不赘述。 2装设漏电保护器的范围 1992年国家技术监督局发布的国标GB13955292《漏电保护器安装和运行》,对全国城乡装设漏电保护器做出统一规定。 2.1必须装漏电保护器(漏电开关)的设备和场所 (1)属于I类的移动式电气设备及手持式电动工具(I类电气产品,即产品的防电击保护不仅依靠设备的基本绝缘,而且还包含一个附加的安全预防措施,如产品外壳接地); (2)安装在潮湿、强腐蚀性等恶劣场所的电气设备; (3)建筑施工工地的电气施工机械设备; (4)暂设临时用电的电器设备; (5)宾馆、饭店及招待所的客房内插座回路; (6)机关、学校、企业、住宅等建筑物内的插座回路; (7)游泳池、喷水池、浴池的水中照明设备;

单母线和双母线优缺点及图解

1.单母线接线 (1)只有一组母线的接线,进出线并接在这组母线上。 单母线接线图见图1。图中倒闸操作:如对馈线LI送电时,须先合上隔离开关QS2和QS3,再投人断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。即隔离开关相对于断路器而言要“先通后断”,母线隔离开关相对于线路隔离开关也要“先通后断”。接地开关QS4是在检修电路和设备时合上,取代安全接地线的作用。 图1 单母线接线图 单母线接线优点:简单清晰、设备少、投资小、运行操作方便,且有利于扩建。 缺点:可靠性和灵活性较差。 应用:6~10kV配电装置的出线回路数不超过5回;35~63kV配电装置的出线回路数不超过3回;110~220kV配电装置的出线回路数不超过2回。 改进:单母线分段接线、单母线带旁路接线。 (2)单母线分段接线:避免单母线接线可能造成全厂停电的缺点,提高供电可靠性及灵活性。见图2。

图2 单母线分段接线图 单母线用分段断路器QF1进行分段。两段母线同时故障的几率甚小,可以不予考虑。在可靠性要求不高时,亦可用隔离开关分段(QS),任一段母线故障时,将造成两段母线同时停电,在判别故障后,拉开分段隔离开关,完好段即可恢复供电。分段的数目,取决于电源的数量和容量。段数分越多,故障时停电范围越小,但使用断路器的数量亦越多,且配电装置和运行也越复杂,通常以2~3段为宜。这种接线方式广泛用于中、小容量发电厂的6~10kV主接线和6~220kV变电所配电装置中。4 优点:对重要用户可以从不同段引出两回馈线,由两个电源供电;当一段母线发生故障(或检修),仅停该段母线,非故障段母线仍可继续工作。 缺点:当一段母线或母线隔离开关故障或检修时,接在该段母线上的回路必须全部停电;任一回路的断路器检修时,该回路必须停止工作。 (3)单母线分段带旁路接线:检修出线断路器,不致中断该回路供电。见图3。 图3 单母线分段带旁路接线示意图

常见的漏电保护器错误接线方式(2020年)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 常见的漏电保护器错误接线方 式(2020年) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

常见的漏电保护器错误接线方式(2020年) 常见的漏电保护器错误接线方式有以下几种: (1)用于支线保护时,各支线应有各自的专用零线,且两相邻支线路的零线不得相连。 如果将两分支线路相连,零线中的电流互流,破坏零序电流互感器内的工作电流平衡,使漏电保护器发生误动作。 如果想就近利用动力分支线的零线作为照明分支线的零线,则会造成动力分支线的漏电保护器动作(图2-26错误接线之一)。 图(略) (2)一个用电设备只能接在一条保护支路内,不得跨接在两条分支回路内,不得接在零序互感器的前面,也不得采取一线一地制供电,否则,会导致漏电保护器误动作(图2-27错误接线之二)。 (3)装有漏电保护器和未装漏电保护器的用电设备,不得共用

一个接地装置。例如,当因图2-28(错误接线之三)中的电机M1的绝缘损坏而外壳带电时,电机M2的外壳也带电。由于电流没有经过漏电保护器,所以未起到漏电保护的作用。 (4)单相负荷应尽可能均衡分配。如果分配不均(如一相的线路偏长,设备集中),则负荷较重的一相,其漏电电流偏大,因而干线的三相不平衡漏电电流增大,达到一定值时就会使干线首端的漏电保护器动作。 (5)被保护的线路(包括工作零线)应全部穿过零序电流互感器和漏电保护器的贯穿孔,不得用三极漏电保护器代替四极三相四极、漏电保护器。如果是三相五线制,则保护地线不得穿过漏电保护器的互感器,而必须跨接到第一极漏电保护器前端(进线端)的零干线上或重复接地极上。图2-29是零序电流互感器的几种常见错误接线方式。 图(略) 云博创意设计 MzYunBo Creative Design Co., Ltd.

220KV系统设备介绍及双母线接线方式

220KV系统设备介绍及双母线接线方式 一、 220KV系统设备参数 1、220KV断路器参数 (一)型式: 户外防污型, 单断口、六氟化硫断路器,弹簧机构。 数量: 220kV 分相操作 3台 220kV 三相联动 1台 (二)基本参数 1、额定电压: 220kV 2、最高工作电压: 252kV 3、额定频率: 50Hz 4、相数: 3相 5、额定电流: 3150A 6、额定短路开断电流: 40kA 7、额定短路关合电流: 100kA(峰值) 8、额定热稳定电流: 40kA(4S) 9、额定动稳定电流: 100kA(峰值) 10、分闸时间: < 0.04s 11、合闸时间: < 0.12s 12、额定操作顺序: 分-0.3s-合分-180s-合分 13、断路器相间距: 3.5m 14、额定绝缘水平 雷电冲击耐压(峰值): 950kV 1分钟工频耐压(有效值): 395kV 15、额定SF6气体泄漏: < 1%/年 16、SF6气体水分含量: < 150PPM 2、220KV隔离开关参数 (一)型式: 户外防污型, 三相机械联动,主刀电动操作,接地刀手动操动。 数量: 220kV垂直断口垂直开启交叉布置。单接地 5组;不接地 3组 220kV水平断口水平开启交叉布置。双接地 5组 (二)基本参数 1、额定电压: 220kV 2、最高工作电压: 252kV 3、额定频率: 50Hz 4、相数: 3相 5、额定电流: 2000A 6、额定热稳定电流: 40kA(4S) 7、额定动稳定电流: 100kA(峰值) 8、额定绝缘水平 雷电冲击耐压(峰值): 1050kV

1分钟工频耐压(有效值): 460kV 9、隔离开关端子静拉力 水平纵向: >1500N 水平横向: >1000N 垂直: >1000N 静态安全系数不小于2.5,短时动态安全系数不小于1.7。 10、隔离开关主刀及接地刀电动操动机构:控制电压交流220V,电动机电压交流380V,配真空辅助开关。 3、电压互感器参数 4、电流互感器参数

继电保护 带答案

§1-1电力系统基本概念1、电力系统是由发电厂、变电所、送电线路、配电线路、()组成的整体。 A.变压器 B.断路器 C.继电保护 D.电力用户 2、电力网主要由()组成。 A.送电线路 B.变电所 C.配电所 D.配电线路 3、无限大容量系统的特征为()。 A.当被供电系统中负荷变动甚至发生故障,电力系统母线电压应维持不变,频率不作要求 B.当被供电系统中负荷变动甚至发生故障,电力系统母线频率应维持不变,电压不作要求 C.当被供电系统中负荷变动甚至发生故障,电力系统母线电压及频率基本维持不变 D.当被供电系统中负荷变动甚至发生故障,电力系统母线电压及频率不作要求 4、低压配电网中所有设备的外露可导电部分均接公共保护线PE,或接公共保护中性线PEN的系统称为()。 TN系统 B.TT系统 C.IT系统 5、电力网主要由送电线路、变电所、配电所和配电线路组成。( V ) 6、电力系统中联系发电机与主变压器的中间环节称为电力网。(X )用户 7、电力系统中作为联系发电厂与用户的中间环节,具有汇集电能和分配电能、变换电压和交换功率等功能的称为()。 A.变电站 B.变压器 C.发电厂 D.断路器 8、变电站中()属于一次设备。 A.变压器 B.断路器 C.继电保护 D.避雷器 E.电压互感器 F.隔离开关 9、从输电网或地区发电厂接受电能,通过配电设施将电能分配给用户的电力网称为输电网。( X )配电网 10、隔离开关没有灭弧机构,不允许切断和接通负荷电流。( V ) 11、隔离开关是将电气设备与电源进行电气隔离或连接的设备。( V ) 12、变电站主接线图一般用单线图表示。( V ) 13、变电站中将交流一次侧大电流转换成二次电流,供给测量、保护等二次设备使用的电气设备是()。 A.变压器 B.电压互感器 C.电流互感器 D.母线 14、变电站中将交流一次侧高电压转换成二次电压,供给控制、测量、保护等二次设备使用的电气设备是()。 A.变压器B.电压互感器C.电流互感器D.断路器 15、变电站中将交流一次侧高电压转换成二次电压,供给控制、测量、保护等二次设备使用的电气设备是电流互感器。(X )电压 16、电力系统中性点运行方式是指电力系统中发电机或变压器的中性点的接

相关主题
文本预览
相关文档 最新文档