当前位置:文档之家› 一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法

一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法

一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法
一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法

运动目标检测光流法

摘要 运动目标检测方法是研究如何完成对视频图像序列中感兴趣的运动目标区域的“准确定位”问题。光流场指图像灰度模式的表面运动,它可以反映视频相邻帧之间的运动信息,因而可以用于运动目标的检测。MATLAB这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以利用MATLAB 软件来用光流法对运动目标的检测中具有很大的优势。本设计主要可以借助matlab软件编写程序,运用Horn-Schunck算法对图像前后两帧进行处理,画出图像的光流场。而图像的光流场每个像素都有一个运动矢量,因此可以反映相邻帧之间的运动,分析图像的光流场就可以得出图像中的运动目标的运动情况。 关键字:光流法;Horn-Schunck算法;matlab

目录 1光流法的设计目的 (1) 2光流法的原理 (1) 2.1光流法的介绍 (1) 2.1.1光流与光流场的概念 (1) 2.1光流法检测运动目标的原理 (2) 2.1.1光流场计算的基本原理 (2) 2.2.2基于梯度的光流场算法 (2) 2.2.3Horn-Schunck算法 (3) 2.2.4光流法检测运动目标物体的基本原理概述 (5) 3光流法的程序具体实现 (6) 3.1源代码 (6) 3.1.1求解光流场函数 (6) 3.1.2求导函数 (9) 3.1.3高斯滤波函数 (9) 3.1.4平滑性约束条件函数 (10) 3.1.5画图函数 (10) 4仿真图及分析 (12) 结论 (13) 参考文献 (14)

1 光流法的设计目的 数字图像处理,就是用数字计算机及其他有关数字技术,对图像进行处理,以达到预期的目的。随着计算机的发展,图像处理技术在许多领域得到了广泛应用,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。 数字图像处理课程设计是在学习完数字图像处理的相关理论后,进行的综合性训练课程,其目的是:使学生进一步巩固数字图像处理的基本概念、理论、分析方法和实现方法;增强学生应用Matlab编写数字图像处理的应用程序及分析、解决实际问题的能力;尝试所学的内容解决实际工程问题,培养学生的工程实践能力。 运动目标检测是数字图像处理技术的一个主要部分,近些年来,随着多媒体技术的迅猛发展和计算机性能的不断提高,动态图像处理技术日益受到人们的青睞,并且取得了丰硕的成果,广泛应用于交通管理、军事目标跟踪、生物医学等领域。 因此,基于光流法,实现运动目标的检测是本文的研究对象。结合图书馆书籍、网上资料以及现有期刊杂志,初步建立起运动目标检测的整体思路和方法。 2 光流法的原理 2.1 光流法的介绍 2.1.1 光流与光流场的概念 光流是指空间运动物体在观测成像面上的像素运动的瞬时速度,它利用图像序列像素强度数据的时域变化和相关性来确定各自像素位置的“运动”,即反映图像灰度在时间上的变化与景物中物体结构及其运动的关系。将二维图像平面特定坐标点上的灰度瞬时变化率定义为光流矢量。视觉心理学认为人与被观察物体

混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与 k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项 式分布,,其中,有k个值{1,…,k} 可以选取。而且我们认为在给定后,满足多值高斯分布,即。由 此可以得到联合分布。 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个, 然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。 注意的是这里的仍然是隐含随机变量。模型中还有三个变量和。最大似然估计为 。对数化后如下: 这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是 close form。但是假设我们知道了每个样例的,那么上式可以简化为: 这时候我们再来对和进行求导得到:

就是样本类别中的比率。是类别为j的样本特征均值,是类别为j的样例的特征的协方差矩阵。 实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。 之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM 的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

基于速度特征矢量提取运动目标的图像分割方法

第20卷 第3期2000年6月北京理工大学学报 J o urnal of Beijing Institute o f Technolog y V o 20 No.3Jun.2000 文章编号:1001-0645(2000)03-0347-05 基于速度特征矢量提取运动目标的 图像分割方法 李冬霞, 曾禹村 (北京理工大学电子工程系,北京 100081) 摘 要:研究基于速度特征矢量提取运动目标的图像分割方法.根据目标图像像素移动的一致性,在序列图像中利用块匹配法进行帧间图像配准,得到目标图像块的速度估计,将具有相同速度矢量的目标图像块聚类,即可分割出运动目标.仿真实验结果表明,该方法能有效地对复杂背景下的运动目标图像进行分割,并具有较好的抗噪能力.关键词:运动目标检测;图像分割;块匹配;速度特征矢量中图分类号: TN 957.53 文献标识码:A 收稿日期:19991005 作者简介:李冬霞,女,1971年生,博士生. 理想情况下,具有运动目标的图像序列相邻图像帧间背景几乎不动,目标像素是作为一个整体相对于背景平移运动的,因此可以利用目标的速度特征将其从背景中提取出来.一般以二维位移偏移量(d x ,d y )作为目标运动速度的描述,常用的运动估计算法有像素递归法 (recursive algo rithm )和块匹配算法(block -ma tching alg orithm )[1,2].像素递归法计算量大,计算过程复杂,不易达到实时分割的要求.作者采纳块匹配算法,证实了该算法的有效性. 1 运动目标的速度估计 块匹配方法是一种相关分析方法,它是把一帧实时图像分为若干个大小相等的子图像块,将每一子图像块作为模板在相邻参考帧图像中一定搜索范围内进行相关计算,根据匹配准则,找出最优匹配位置.该位置对应的二维位移偏移量(d x ,d y )即可作为模板子图像块运动速度矢量的估计值 [3] . 1.1 匹配准则 匹配准则是衡量帧与帧之间两个子图像块相似程度的准则函数.可以用子图像块之间的二维互相关函数N (D )作为准则函数,其定义为 N (D )=R S K S K -1(D ) R S K S K (0)R S K S K -1(D ), (1) 其中 R S K S K -1(D )=E [S K (x ,y )S K -1(x -d x ,y -d y )]. 为减少计算量而又保持一定的匹配精度,也可采用子图像块间对应像素绝对差值即均值

高斯混合模型实现——【机器学习与算法分析 精品资源池】

实验算法高斯混合模型实验 【实验名称】 高斯混合模型实验 【实验要求】 掌握高斯混合模型应用过程,根据模型要求进行数据预处理,建模,评价与应用; 【背景描述】 高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM 可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况。属于无监督机器学习,用于对结构化数据进行聚类。 【知识准备】 了解高斯混合模型的使用场景,数据标准。了解Python/Spark数据处理一般方法。了解spark 模型调用,训练以及应用方法 【实验设备】 Windows或Linux操作系统的计算机。部署Spark,Python,本实验提供centos6.8环境。【实验说明】 采用UCI机器学习库中的wine数据集作为算法数据,除去原来的类别号,把数据看做没有类别的样本,训练混合高斯模型,对样本进行聚类。 【实验环境】 Spark 2.3.1,Pyrhon3.X,实验在命令行pyspark中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。【实验步骤】 第一步:启动pyspark: 1

命令行中键入pyspark --master local[4],本地模式启动spark与python: 第二步:导入用到的包,并读取数据: (1).导入所需的包 from pyspark import SparkContext, SQLContext, SparkConf from math import sqrt from pyspark.sql.functions import monotonically_increasing_id (2).读取数据源 df_wine = sc.textFile(u"file:/opt/algorithm/gaussianMixture/wine.txt").map( lambda x: str(x).split(",")).map(lambda x: [float(z) for z in x]) (3).数据转换为Data df_wine_rdd = sqlContext.createDataFrame(df_wine) (4).数据展示 df_wine_rdd.show() 1

运动序列目标检测算法研究及 DSP 实现

运动序列目标检测算法研究及DSP实现 李文艳,王月琴,张笑微 (西南科技大学信息工程学院四川绵阳621010) 摘要:由于实际场景的多样性,目前常用的运动目标检测算法都还存在一定程度的缺陷,因此本文提出了一种将帧差法和背景减法相结合的方法,实现快速精确地检测和提取运动目标。实验结果表明,本方法是比较实用的,能较好满足实时视频监控系统的要求。最后将程序移植到基于DSP的平台上,进行相应的优化后基本满足了实时性的要求。 关键词:目标检测;帧差法;背景减法 中图分类号:TP751.1 文献标识码:A Algorism Research of Moving Object Detection and DSP Implementation LI Wen-yan,WANG Yue-qin,ZHANG Xiao-wei (Southwest University of Science and Technology Mianyang Sichuan China 621010) Abstract: Because of the environment’s variety, the methods that have been used for moving object detection need to be improved. An algorithm based on two consecutive frames subtraction and background subtraction is presented and it can detect and extract object quickly and accurately. The results show that the proposed method is a practical one. It can meet the need of the real time video surveillance and monitoring system. The coding is transplanted in DSP, and the project is executed successfully on CCS simulator. Keywords: Object detection; Frames subtraction; Background subtraction 引言 运动目标的检测在智能监控等领域中得到了广泛的应用。运动目标的检测就是从视频流中去除静止背景提取出运动的目标,运动目标的有效分割对跟踪等后期处理非常关键。 本文提出了将帧间差分和背景减法相结合的方法。首先选取一帧作为背景帧, 建立各像素点的高斯模型。再运用帧间差分法对相邻两帧图像进行差分处理, 区分出背景点和变化的区域。然后将变化区域与背景帧的对应区域进行模型拟合区分出显露区和运动物体。 1 运动目标检测算法总体流程 采用帧间差分与背景减法相结合的算法进行运动目标检测,包括运动目标的检测和将检测到的运动目标从背景中分割出来两部分,其系统框架流程图如图1所示。 图1 运动目标检测流程图 这种设计充分利用了被检测区域部分时间静止的特点,具有智能检测的功能,它只在检

运动目标检测方法总结报告

摘要 由于计算机技术的迅猛发展,使得基于内容的视频信息的存取、操作和检索不仅成为一种可能,更成为一种需要。同时,基于内容的视频编码标准MPEG-4和基于内容的视频描述标准MPEG-7正在发展和完善。因此提取和视频中具有语义的运动目标是一个急需解决的问题。运动目标提取和检测作为视频和图像处理领域的重要研究领域,有很强的研究和应用价值。运动检测就是将运动目标从含有背景的图像中分离出来,如果仅仅依靠一种检测算法,难以从复杂的自然图像序列中完整地检测出运动的目标。较高的检测精度和效率十分重要,因此融合多种检测方法的研究越来越受到重视。本文介绍了几种国内外文献中的经典的视频运动目标的检测和提取算法,并对各种方法进行了评价和总结。首先介绍了基本的运动目标检测的基本知识和理论,然后介绍了基本的几种目标检测方法及其各种改进方法。对今后的运动目标检测提取的相关研究提供一定的参考。 关键词:运动目标检测光流法帧差法背景建模方法

ABSTRACT Because of the rapid development of computer technology, it is possible to access, operate and retrieve the video information based on the content of the video. At the same time, based on the content of the video coding standard MPEG-4 and content-based video description standard MPEG-7 is developing and improving. Therefore, it is an urgent problem to be solved in the extraction and video. Moving object extraction and detection is a very important field of video and image processing, and has a strong research and application value. Motion detection is to separate moving objects from the image containing background, if only rely on a detection algorithm, it is difficult to from a complex natural image sequences to detect moving target. Higher detection accuracy and efficiency are very important, so the study of the fusion of multiple detection methods is becoming more and more important. In this paper, the detection and extraction algorithms of the classical video moving objects in the domestic and foreign literatures are introduced, and the methods are evaluated and summarized. Firstly, the basic knowledge and theory of basic moving target detection is introduced, and then the basic method of target detection is introduced. To provide a reference for the research on the extraction of moving target detection in the future. Keywords: Visual tracking Optical flow method Frame Difference Background modeling method

混合高斯模型算法原理

混合高斯模型算法原理 混合高斯模型是一种经典的背景建模算法,用于背景相对稳定情况下的运动目标检测。它由单高斯模型发展而来,对于多模态的背景有一定的鲁棒性,如:树叶晃动、水纹波动等。在介绍混合高斯模型前,首先介绍单高斯模型。 1. 单高斯背景模型: 单高斯模型将图像中每一个像素点的颜色值看成是一个随机过程,并假设该点的像素值出现的概率服从高斯分布。该算法的基本原理就是对每一个像素位置建立一个高斯模型,模型中保存该处像素的均值和方差。如,可设),(y x 处像素的均值为),(y x u ,方差为),(2y x σ,标准差为),(y x σ。由于随着视频图像序列的输入,模型参数不断更新,所以不同时刻模型参数有不同的值,故可将模型参数表示为三个变量t y x ,,的函数:均值),,(t y x u 、方差),,(2t y x σ、标准差),,(t y x σ。用单高斯模型进行运动检测的基本过程包括:模型的初始化、更新参数并检测两个步骤。 1)模型初始化 模型的初始化即对每个像素位置上对应的高斯模型参数进行初始化,初始化采用如下公式完成: ?? ???===init std y x init std y x y x I y x u _)0,,(_)0,,()0,,()0,,(22σσ (1) 其中,)0,,(y x I 表示视频图像序列中的第一张图像),(y x 位置处的像素值,init std _为一个自己设的常数,如可设20_=init std 。 2)更新参数并检测 每读入一张新的图片,判断新图片中对应点像素是否在高斯模型描述的范围中,如是,则判断该点处为背景,否则,判断该点处为前景。假设前景检测的结 果图为out put ,其中在t 时刻),(y x 位置处的像素值表示为),,(t y x output ,),,(t y x output 的计算公式如下: ???-?<--=otherwise t y x t y x u t y x I t y x output ,1)1,,()1,,(),,(,0),,(σλ (2) 其中,λ是自己设的一个常数,如可设5.2=λ。以上公式表示的含义是:若新的图片中相应位置的像素值与对应模型中像素的均值的距离小于标准差的λ倍,则该点为背景,否则为前景。 模型的更新采用如下公式: ?? ???=-?+-?-=?+-?-=),,(),,()],,(),,(I [)1,,()1(),,(),,()1,,()1(),,(2222t y x t y x t y x u t y x t y x t y x t y x u t y x u t y x u σσασασαα (3) 其中,参数α表示更新率,也是自己设的一个常数,该常数的存在可以使得模型在背景的缓慢变化时具有一定的鲁棒性,如光照的缓慢变亮或变暗等。

静止背景运动目标识别

Moving Object Detection in Stationary Scene 摘要:随着计算机技术的不断提高,智能视频监控技术得到了很好的发展, 过去依靠人力监控视频中出现的人或汽车等既浪费人力物力,又不够准确,很容易发生遗漏,而智能监控就不存在这种问题,只需在程序中设定报警条件即可,能够准确地达到实时监控的目的。现在智能视频监控逐渐应用于城市道路、小区、银行等重要场所及对场景中的异常事件或人的异常行为的监控中, 应用前景广泛,正在逐步取代靠人力来观察视频信息。智能视频监控相比过去常用的靠人来监测的最重要的不同就是识别出需要监控的对象,通常是运动目标的提取。在本文中利用matlab视频处理功能,通过matlab程序来获取视频,使用背景减差法来检测出运动目标提取静止背景中的运动目标,并将结果显示出来,以进行进一步的分析处理。 关键字:视频监控;目标提取;静止背景;matlab;目标识别;背景减差法

基于视频的运动目标主要提取方法 目标检测是计算机视觉的一个重要组成部分,在军事及工业等领域有着重要的应用前景。运动目标的检测方法主要有光流法,差值法。光流法的计算量很大,实时性和应用性较差。而图像差值法比较简单,实时性较好,是目前应用最广泛,最成功的运动目标检测的方法。图像差值法可分为两类,一类是用序列图像的每一帧与一个固定的静止的参考帧做图像差分,但自然场景不是静止不变的,因而必须不断的更新背景。另一类是用序列图像的两帧进行差分,这种方法无法检测出两帧图像中重合的部分,只能检测出目标的一部分信息。在绝大多数视频监控图像应用中,每一个像素都可以用一个或多个高斯模型近似,因此,高斯背景模型是绝大多数目标检测方法常用的基本模型。许多学者对基于高斯混合背景模型的背景消除法作了改进并取得了较好的效果。Stauffer 等人提出了采用自适应混合高斯模型,作为背景统计模型的算法;Power 等人详细的讨论了混合高斯模型,并对模型中的参数选择及更新提出了很好的建议。Monnet 等人在文献[3]中对摆动的树叶,水纹的波动等动态纹理干扰作了深入研究,提出了在线的自动聚类模型来获得并预测场景中的这些变化以减少干扰。然而,由于光照条件的影响,大多数图像都存在阴影,阴影的存在干扰了目标的检测,使检测到的目标与真实的目标形状相差很大,这对后续处理如目标识别、行为判断等会产生很大的影响。混合高斯模型无法消除阴影的干扰,因此找到阴影消除的方法变得非常重要。近年来,提出了很多阴影消除方法,毛晓波提出了基于最大色度差分的阴影检测方法,A. Leone提出了基于纹理分析的阴影消除方法,通过分析纹理信息获取前景目标并消除阴影,取得了较好的效果。 运动目标检测常用的方法一般分为两大类,一种是基于特征的方法,另一种是基于灰度的方法。基于特征的方法是依据图像的特征来检测运动目标,它多用于目标较大、特征容易提取的场合。基于灰度的方法一般是依据图像中灰度的变化来检测运动目标。目前基于视频的检测方法主要有: 基于帧间差分的方法、基于光流场的方法、基于背景差的方法等。帧间差分法是基于运动图像序列中相邻两帧图像间具有强相关性而提出的检测方法, 具有很强的自适应性。但如果物体内部灰度分布均匀这种方法会造成目标重叠部分形成较大空洞,严重时造成目标分割不连通,从而检测不到目标。 光流场法是基于对光流的估算进行检测分割的方法。光流中既包括被观察物体的运动信息, 也包括有关的结构信息。光流场的不连续性可以用来将图像分割

检测交通视频中运动目标的程序设计

专业综合实践任务书 学生姓名:________专业班级: 指导教师: 工作单位: 信息工程学院 题目:检测交通视频中运动目标的程序设计 初始条件: (1)提供实验室机房及其matlab软件; (2)数字图像处理的基本理论学习。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体 要求): (1)学习运动目标检测的原理及方法,并利用matlab设计程序完成以下功能;(2)读取交通视频文件; (3)运用一种背景建模方法,提取背景图像; (4)读取一帧有运动目标的图像,利用背景差分法,得到差分区域; (5)对差分区域进行数学形态学处理,得到完整的运动目标区域,并显示运动目标检测结果图; (6)对检测的结果进行分析比较; (7)要求阅读相关参考文献不少于5篇; (8)根据课程设计有关规范,按时、独立完成课程设计说明书。 时间安排: (1) 布置课程设计任务,查阅资料,确定方案 1.5天; (2) 进行编程设计、调试2天; (3) 完成课程设计报告书、答辩 1.5天; 指导教师签名: 年月日系主任(或责任教师)签名: 年月日

目录 摘要 (1) 1.概述 (2) 2.设计原理 (3) 2.1 背景提取与更新算法 (3) 2.1.1 手动背景法 (4) 2.1.2 统计中值法 (4) 2.1.3 算术平均法 (4) 2.1.4 Surendra算法 (5) 2.2 背景差分法运动目标检测 (6) 2.3 形态学滤波 (7) 2.4总体方案设定 (9) 2.4.1 算术平均法与Surendra算法相结合的背景建模 (9) 2.4.2 总体程序框图 (10) 3.软件编程实现 (11) 4.结果及分析 (13) 5.心得体会 (17) 参考文献 (18)

运动目标检测原理

运动检测(移动侦测)原理 一、引言 随着技术的飞速发展,人们对闭路电视监控系统的要求越来越高,智能化在监控领域也得到越来越多的应用。在某些监控的场所对安全性要求比较高,需要对运动的物体进行及时的检测和跟踪,因此我们需要一些精确的图像检测技术来提供自动报警和目标检测。运动检测作为在安防智能化应用最早的领域,它的技术发展和应用前景都受到关注。 运动检测是指在指定区域能识别图像的变化,检测运动物体的存在并避免由光线变化带来的干扰。但是如何从实时的序列图像中将变化区域从背景图像中提取出来,还要考虑运动区域的有效分割对于目标分类、跟踪等后期处理是非常重要的,因为以后的处理过程仅仅考虑图像中对应于运动区域的像素。然而,由于背景图像的动态变化,如天气、光照、影子及混乱干扰等的影响,使得运动检测成为一项相当困难的工作。 二、运动检测(移动侦测)原理 早期的运动检测如MPEG1是对编码后产生的I帧进行比较分析,通过视频帧的比较来检测图像变化是一种可行的途径。原理如下:MPEG1视频流由三类编码帧组成,它们分别是:关键帧(I 帧),预测帧(P帧)和内插双向帧(B帧)。I帧按JPEG标准编码,独立于其他编码帧,它是MPEG1视频流中唯一可存取的帧,每12帧出现一次。截取连续的I帧,经过解码运算,以帧为单位连续存放在内存的缓冲区中,再利用函数在缓冲区中将连续的两帧转化为位图形式,存放在另外的内存空间以作比较之用,至

于比较的方法有多种。此方法是对编码后的数据进行处理,而目前的MPEG1/MPEG4编码都是有损压缩,对比原有的图像肯定存在误报和不准确的现象。 目前几种常用的方法: 1.背景减除(Background Subtraction ) 背景减除方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如光照和外来无关事件的干扰等特别敏感。最简单的背景模型是时间平均图像,大部分的研究人员目前都致力于开发不同的背景模型,以期减少动态场景变化对于运动分割的影响。 2.时间差分(Temporal Difference ) 时间差分(又称相邻帧差)方法是在连续的图像序列中两个或三个相邻帧间采用基于像素的时间差分并且阈值化来提取出图像中的运动区域。时间差分运动检测方法对于动态环境具有较强的自适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产生空洞现象。 3.光流(Optical Flow) 基于光流方法的运动检测采用了运动目标随时间变化的光流特性,如Meyer[2] 等通过计算位移向量光流场来初始化基于轮廓的跟踪算法,从而有效地提取和跟踪运动目标。该方法的优点是在摄像机运动存在的前提下也能检测出独立的运动目标。然而,

视频图像中运动目标检测

视频图像中运动目标检测

毕业论文 题目视频图像中运动目标检测 方法研究 专业电气工程及其自动化 班级电气1003 学生曹文 学号20113024543 指导教师赵哥君 二〇一二年六月八日

摘要 在很多现代化领域,运动目标检测都显示出了其重要的作用。尤其是近二十年的社会经济的飞速发展,运动目标检测都彰显了其重要性,在航空、通信、航海等各个方面都有关键性的作用,从而使运动目标检测方法的研究成为各国的研究热门课题。 通过阅读大量的相关论文、期刊及其网络资源,了解了高斯背景建模及背景更新的基本原理及思想。在本文中,首先介绍了运动目标检测方法的相关基础知识,如图像的二值化、图像的形态学处理、颜色空间模型。然后重点说明了三种常用的运动目标检测方法的研究,简要阐述了三种研究方法的基本思想。在老师的帮助下进行了相应的实验,最终得出了三种运动目标检测方法的优点和缺点,着重探究了高斯背景建模及其背景更新基本原理及思想。 最后,通过相关的程序及软件对混合高斯背景模型进行了相关的实验,进而发现了混合高斯背景建模算法存在的不足之处,如:高斯背景建模的计算量大、运动目标较大时检测效果差等问题,并对对这些问题提出了相关设想及改进。 关键词:运动目标检测;二值化;图像的形态学处理;高斯背景建模;背景更新 I

ABSTRACT In many modern fields, moving target detection are showing its important role. Especially nearly twenty years of rapid development of social economy, the moving target detection has shown its importance, in various aviation, communication, navigation and so on have a key role, so the study of moving target detection method has become a research hot topic in countries. By reading relevant papers, a large number of journals and cyber source, understand the basic principle and thought of Gauss background modeling and updating the background. In this paper, firstly introduces the basic knowledge of moving target detection method, such as the two values image, morphological image processing, color space model. Then focus on the study of three methods used for moving object detection, a brief description of the basic ideas of the three kinds of research methods. By the experiment, the results of three kinds of method of moving target detection has advantages and disadvantages, this paper emphatically explores Gauss background modeling and background updating basic principle and thought. Finally, through the program and software related to mixed Gauss background model for the relevant experiments, and found the shortcomings, the presence of mixed Gauss background modeling algorithm such as: the problem of computing Gauss background modeling, moving target volume larger detection effect is poor, and on these problems put forward relevant ideas and improvement. Keywords: moving object detection; two values; I I

视频序列中运动对象分割方法的设计与实现

视频序列中运动对象分割方法的设计与实现[1][repaste] 2009-03-23 09:36 转自:https://www.doczj.com/doc/1012696711.html,/2008/07/video-sequence.html The technology of multimedia correspondence developed quickly. After the standard MPEG-1 and MPEG-2, a new standard named MPEG-4 was put forward by the MPEG committee. The key technical of the standard is the standard is the Video Object Segmented from the video frame. The results of object segmentation will affect subsequent applications directly. At the present time, there is no current method, which can segment object models from the background efficiently, though a great deal of research work has been done for video coding. Most algorithms aim at particular image sequences. The video segmentation has been widely applied in many fields, especially in low bite-rate ratio multimedia fields, so it is more and more becoming the hot point in the video research field. This paper discusses the basic theory of digital image segmentation, and then analyzes the exist method for the segmentation of moving objects in video sequences. At last an effective moving object segmentation algorithm is used. First, the moving regions are obtained by the intersections of two neighbor difference images, and then small regions that are not accurate are removed. Finally, the moving regions are filled using the method of mathematical morphology. This arithmetic makes use of the functions of the library effectively, improves precision and efficiency of computation, and has a good property for the application to multi-platform. Experimental result shows that the algorithm can get satisfactory result. Key words: Image segmentation, Frame difference, video sequence, moving object, mathematical morphology 目录 摘要 I ABSTRACT II 第一章绪论 1 1.1 研究背景与意义 1 1.2 国内外研究状况 3 1.3论文内容与结构安排 4 第二章典型的图像分割方法 6 2.1阈值法与边缘检测法 6 2.1.1阈值法 6 2.1.2边缘检测法 7

混和高斯模型的推导和实现

基于GMM 的运动目标检测方法研究 一、GMM 数学公式推导 1、预备知识: (1)设离散型随机变量X 的分布率为: {} 2,1,P ===k p a X k k 则称()∑= k k k p a X E 为X 的数学期望或均值 (2)设连续型随机变量X 的概率密度函数(PDF )为f(x) 其数学期望定义为:()()dx x xf X E ? +∞ ∞ -= (3)()()()[] 2 X E X E X D -=称为随机变量x 的方差,()X D 称为X 的标准差 (4)正态分布:() 2,~σμN X 概率密度函数为:()()??????? ?--= 22221 σμσ πx e x p (5)设(x,y)为二维随机变量,()[]()[]{}Y E Y X E X E --若存在,则 称其为X 和Y 的协方差,记为cov(x,y) ()()[]()[]{}()XY E Y E Y X E X E Y X =--=,cov 2、单高斯模型:SGM (也就是多维正态分布) 其概率密度函数PDF 定义如下: ()() ()()μμπμ--- -= x C x n T e C C x N 12 1 21 ,; 其中,x 是维数为n 的样本向量(列向量),μ是期望,C 是协方差矩阵,|C|表示C 的行列式,1-C 表示C 的逆矩阵,()T x μ-表示()μ-x 的转置。 3、混合高斯模型:GMM 设想有 m 个类:m 321????,,,, ,每类均服从正态分布。 各分布的中心点(均值)分别为:m 321μμμμ,,,,

方差分别为:m 321σσσσ,,,, 每一类在所有的类中所占的比例为 ()()()()m P P P P ????,,,,321 其中()11=∑=m i i P ?。 同时,已知 个观察点: 。其中,用大写P 表示概率,用小写p 表 示概率密度。 则依此构想,可得概率密度函数为: ()()()()()()()() ()()()μμπ??σμ?σμ?σμ--- =-∑ =?++?+?=x C x m i d i m m m T e C P P N P N P N x p 12 1 12221112,,, 其中d 是维数,|·|是行列式 但是在利用GMM 进行目标检测时,这些模型的参数可能已知,也可能不知道,当参数已知时,可以直接利用GMM 进行目标检测,在未知的情况下,需要对参数进行估计。对参数估计时,还要考虑样本分类是否已知。 (1)样本已知: 最大似然估计: 可以直接采用MLE (最大似然估计)进行参数估计: 未知量为集合:()()()m P P C C ??μμλ,,1m 1m 1 ,,,,,,= 将衡量概率密度函数优劣的标准写出:()()∏==n k k x P x p 1||λλ 即为: ()() () ()()i k T i k x C x n k m i d i e C P x p μμπ?λ--- ==-∏∑ =12 1 11 | |2| 只要定出该标准的最大值位置,就可以求出最优的待定参数。为了 求出这个最

EM算法在高斯混合模型中的应用

EM 算法在高斯混合模型中的应用 1.定义 对于一个随机信号生成器,假设他的模型参数为Θ,我们能观测到的数据输出为X ,不能观测到的数据输出为Y ,且随机系统模型结构的概率密度函数为 (,|)p x y Θ (1) 能够观测到的一部分数据输出数据12{,,...,}N x x x ,模型的另一部分输出数据 未知,模型的参数Θ也未知。EM 算法就是要求我们从观测数据12{,,...,}N x x x 中估计出参数Θ。 2.EM 算法的描述 假设每一对随机系统的输出样本(,)n n x y 对于不同的n 相互独立,这样当(,,)p x y Θ,x 和y 都已知的情况下,概率(,,)p x y Θ也已知。未观测的输出y 的概率分布也属于待求参数Θ。 根据独立性假设有: 1(,|)(,|)N n n n p x y p x y =Θ=Θ∏ (2) 3.EM 算法的基本思路 基本问题是求解下面的方程的解: arg max (,|)p x y Θ=Θ (3) 由于X 是确定量,Y 是未知的,因此即使给定了Θ,也无法求得(,|)p x y Θ的值,因此我们只能退一步求: arg max (|)p x Θ=Θ (4) 其中 (|)(,|)[(|),(|,)]y Y y Y p x p x y p y p x y ∈∈Θ=Θ=ΘΘ∑∑ (5) 表示考虑了未知数据y 的所有可能的取值Y 后对(|,)p x y Θ求平均值。 最后根据log 函数的单调性得到(4)的等效形式: arg max log (|)p x Θ=Θ (6) 对于(6)给出的最优化问题,考虑用下面的递推算法解决,即:先给定一个估值k Θ并计算(|)k p x Θ,然后更新k Θ得到1k +Θ并且有 1log (|)log (|)k k p x p x +Θ>Θ (7) ()log (|)log [(|)(|,)] |(|,)log (|,)(|,)(|)(|,)(|,)log (|,)(,) y Y k k y Y k k y Y k p x p y p x y p y p x y p y x p y x p y p x y p y x p y x B ∈∈∈Θ=ΘΘΘΘ? ?=Θ??Θ???? ??ΘΘ≥Θ????Θ??? ?=ΘΘ∑∑∑ (8) 其中,等号在(,)k k B ΘΘ时成立,即: (,)log (|)k k k B p x ΘΘ=Θ (9)

相关主题
文本预览
相关文档 最新文档