当前位置:文档之家› 浅析水轮发电机组稳定性

浅析水轮发电机组稳定性

浅析水轮发电机组稳定性
浅析水轮发电机组稳定性

浅析水轮发电机组稳定性

摘要:本文分析了影响水轮发电机组稳定性的几方面因素,引起机组振动的原因,以及如何增强器稳定性。

关键词:水轮发电机振动稳定性

一、影响机组稳定性的因素

1、机械方面振动

影响因素:动不平衡,轴系失稳,部件或支撑松动,导轴承憋劲,轴弯曲,定转子碰磨等。判断方法:变转速、模态试验,根据频谱图、时域图、轴承温度等判断。解决方法有配重、加固、盘车等。

2、电气方面振动

影响因素:转子磁极短路,转子(定子)圆度超标,定子鉄芯松动,定子机座松动等。判断方法:变励磁试验,根据频谱图、时域图判断。解决方法有消除电气缺陷,重新整圆,拉紧螺杆,加固等。

3、水力方面振动

影响因素:水力失衡,低频蜗带,汽蚀,流道水体共振,叶道涡,卡门涡等。判断方法如变负荷试验,根据振动和水压脉动频谱分析。其解决方法常可以采用诸如补气、避振、改变补气方式、改变转轮或导水机构设计、叶片修型等。

二、引起水力发电机组振动的原因

1.空载无劢

通常表现为振动强度随转速增高而增大;在低速时也有振动,其可能原因主要有以下几方面:1)发电机转子或水轮机转轮动不平衡;2)轴线不直;中心不对;推力轴承轴瓦调整不当;主轴联接法兰连接不紧;3)与发电机同轴的励磁机转子中心未调好;4)水斗式水轮机喷咀射流与水斗的组合关系不当;5)转轮叶片数与导叶数组合不当。针对以上问题,我们可以采取以下措施来处理:1)动平衡试验,加平衡块,消除不平衡;2)调整轴线和中心,调整推力轴瓦;3)调整励磁机转子中心;4)改善组合关系;5)改善组合关系。

2.空载带励

主要表现为:1)振动强度随励磁电流增加而增大;2)逐渐降低定子端电压,振动强度也随之减小;3)在转子回路中自动灭磁,振动突然消失。其原因有1)

浅析水轮发电机组的常见故障及检修对策 于铎

浅析水轮发电机组的常见故障及检修对策于铎 发表时间:2019-12-16T16:45:52.477Z 来源:《电力设备》2019年第17期作者:于铎赵丛新[导读] 摘要:随着社会生产、生活的发展对电力需求的扩大,水力发电成为人们关注的话题。 (嫩江尼尔基水利水电有限责任公司黑龙江齐齐哈尔 161005)摘要:随着社会生产、生活的发展对电力需求的扩大,水力发电成为人们关注的话题。水力发电事业的良好发展不仅有利于降低人民生产生活的成本,更有利于推进我国能源结构的改善和国民经济的发展。因此,文章针对水轮发电机组的常见问题进行分析,并探讨了其检修的对策。 关键词:水轮发电机组;常见故障;检修对策我国经济发展带来了持续的供电需求,水力发电作为一种低污染、低成本的发电方式,与我国可持续发展的国策相吻合,因此,在发电事业中应大力支持。为了更好地促进水力发电工作的开展,运行管理人员对发电机组的运行状态要进行定期的检修和维护,及时排除水力发电机组出现的常见故障,保证机组的运行正常,通过高效率的检修,减少维修费用,实现机组的高效运行。 1水轮发电机组的常见问题 1.1温度异常 水轮发电机组在运行过程中,其内部的各个构件会在不同程度上发生摩擦,而摩擦部位则会因高频摩擦产生较大热量,若是长期运转下去将会导致这些摩擦部位出现热量过高的现象,而机械设备会在高温状态下产生损耗,如电损耗、磁损耗等,这些损耗会在不同程度上影响到水轮发电机组的正常运行,为其工作造成一定损失[1]。其中,水轮发电机组的轴承部位是最容易出现损耗的部位。若是在实际运行过程中,水轮发电机组出现温度异常故障,常规检测方式无法根治之一故障,只有通过全面细致的检修才可以找出水轮发电机组故障的具体部位,进而根据这一部位的具体特点采取针对性措施,从而有效排除故障。因此,相关工作人员应定期对水轮发电机组进行检修,以防止水轮发电机组出现温度异常故障影响机械设备的正常运行,以保证水电站的经济效益。 1.2甩油故障 这一故障产生的主要原因为以下三点:(1)水轮发电机组油箱装的过满。水轮发电机组在正常运行过程中需要具备充足的油,若是油箱中油量较大溢出,将会导致油在机械运转过程中超出规定界限,出现上下摆动的现象,进而导致油箱中的油受惯性因素影响出现甩出现象。(2)水轮发电机组摆幅较大。针对水轮发电机组运行过程中产生的摆动幅度,相关规程中有明确规定。然而水轮发电机组在实际运行过程中,机械设备会受到水压作用的影响,出现摆幅增大的现象,这就导致油箱内的油在摆幅的带动下出现甩出,进而引起故障现象。(3)油箱顶部密实度不足。通常情况下,油箱顶部会处于一种长期摆动的状态,在设备长期摆动过程中出现松动现象,而油箱中的油则会在摆幅作用下从松动部位甩出。虽然这种现象较为常见,但是在机械正常运转的过程中会因油体甩出加大水轮发电机组工作负担,因此相关工作人员应注意日常维护与检修,以防止出现上述问题影响水轮发电机组的正常运行。 2水轮发电机组的检修养护措施 2.1水轮发电机组的检修养护技术措施 (1)水轮发电机组的检修注意事项 对水轮发电机进行检修时,有以下几方面的内容需要注意:①要能够充分掌握设备相关状况信息。设备的相关信息除了指设备的当下状况之外,还指设备之前的使用情况信息、设备的检修历史、是否存在反复检修部位等,整合好这些消息将有助于提升检修效率效果。②尽可能不要拆卸设备。因为设备在拆卸检修之后进行安装,势必会造成设备的牢固程度下降,导致设备在今后的使用中出现一些不可避免的磨损,这就在一定程度上加快了设备的耗损速度,所以检修中能不拆卸设备尽量不要拆卸。如果一定要拆卸,那么要尽可能进行相关的局部拆卸,要将需要拆卸的部位标注出来,避免拆到不需要拆卸的部位。③可以将计划检修周期适当予以延长。如果水轮发电机运行正常、状态较好,而且临时检修没有发现存在异常情况或是故障情况,那么水电站可以适当延长计划检修周期,这在一定程度上降低了检修成本,保障了正常生产。④检修过程要严格依据检修方案的相关要求进行。检修过程中,一切操作都要严格遵照相关规定的具体要求来进行,如果确实需要临时改变方案或是调整方案,需要向上级提出申请,在获得上级的同意之后,再具体实施。⑤检修后做好相关的后续工作。检修完成后,要配合开展相关的设备测试,确定检修成果符合标准之后才能将设备投入使用。 (2)对机组运行状态的实时监测 立体化的跟踪处理方法的应用,不仅能在一定程度上提升对发电机组的运行状态的监控,还可以对一些发电机组出现的故障问题做出判断,并做出一系列的应对措施。这种立体化的跟踪处理方法多适用于水电厂的机组。它能有效获取机组的瞬时状态,再与实际的状态进行比较,很好地为诊断故障提供信息支持。通过对网络系统的测控,能很好地串联子系统与测控网络系统,有效地把信号统一上传至主控系统内,大大提升信号总体管理的效率。这样,还能预测与分析水轮发电机组的运行状态。系统主要部分组成:①振动监测系统具有实时数据采集、数据记录、趋势分析、事故追忆等功能;②定子绝缘控制需要监测发电机定子绝缘、温升、冷却介质的温度与湿度等;③以机组轴瓦为主体的轴承监测系统,其安全性主要由瓦温决定,因此监测瓦温就显得十分重要;④发电机工况监测系统的检测量包括定子电流、电压;厂用电电压以及定子、转子温升,励磁电流、电压和主变高压侧电流、电压等。 (3)对机组进行状态检修 状态检修也是改进检修工作的一个重要的方向和入手点,随着技术水平的提升,计算机自动化监控已经成为水轮发电机组检修的一个重要的方式。通过相关相关的自动化检修系统,其本身对于水轮发电机组的运行情况和参数进行了充分的记录和监视,通过对于相关参数的分析,可以及时地对于设备运行中的异常与问题进行发现。用在线监测、检查或巡视的方法来反映水轮发电机设备的运行状态,检修人员需要对反馈的数据进行分析,及时的对维修方法进行适当的调整。应用状态检修方式能够从根本上解决故障检修不及时的问题,显著提升了水轮发电机检修与维护的效率,确保运行的稳定性。状态检修时目前较为合理的检修与维护方式,是未来水轮发电机组检修的发展方向。为了提高水轮发电机组检修与维护的工作效率,就需要创建完善的状态数据库。在这个过程中,工作人员需要做好设备运行状态的记录,并将这些状态与数据输入到数据库中,在出现故障时,我们可以根据数据库中的相关信息来对其进行快速的判断,为检修方案的制定提供有价值的参考。 2.2水轮发电机组的检修养护管理措施

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

三峡工程实现特大型水轮发电机组国产化

三峡工程实现特大型水轮发电机组国产化 一、国家决策:对三峡工程实行重大技术装备国产化 国家高瞻远瞩的重大装备设备国产化,早在三峡工程论证阶段已有安排。依托重点工程实现重大装备国产化是我国政府导向行为。在三峡工程开工前,围绕三峡机电设备国产化、国家对民族工业的扶持政策,组织开展了一系列科研攻关,制定了切实可行的支持鼓励的政策及措施,收到良好的效果。 三峡工程的重大装备科研攻关列入从“六五”到“十五”连续5个国家“五年”计划,我国相关科研机构、院校及机电设备制造厂为此作了充分准备。从1983年三峡工程可行性审查会后,到国家正式批准三峡工程开工,在这十余年的论证中,三峡工程的重大装备前期科研攻关,包括工程专用施工设备、通航设备、电站水轮发电机组设备以及三峡工程输变电成套设备等各项攻关工作一直没有停止。 在上个世纪80年代再次进行三峡工程论证时,原国务院重大装备领导小组办公室将三峡工程机电设备列入国家重大技术装备研制项目,组织XX大电机研究所、XX电机厂(哈电)、东方电机厂(东电)、中国水利水电科学研究院、长江水利委员会、东北输变电设备集团公司、XX电力机械设备制造公司、电力部XX自动化院、清华大学、XX大学、河海大学、华中科技大学、XX大学等单位开展科技攻关,先后建立了高水头水力试验台进行水轮机水力设计与模型试验的研究,建立了1000吨级、3000吨级推力轴承试验台,进行6000吨级推力轴承的计算与试验研究,总结了国内设计制造大型水电机组的经验,配合设计部门和论证小组提出了三峡工程的水轮机和水轮发电机的参数方案,为立足于国内自主设计制造做了大量的技术准备。 1993年7月,国务院三峡工程建设委员会批准了《长江三峡水利枢纽初步设计报告(枢纽工程)》,同年11月起先后邀请国外有设计制造大型水轮发电机组业绩的厂家来华技术交流,中方也曾派出各个代表团到国外考察。通过考察,了解掌握了国外大机组的技术水平

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

浅谈经典系杆拱桥的设计与应用

浅谈经典系杆拱桥的设计与应用 摘要:本文结合经典系杆拱桥发展的现状,通过简要介绍,总结出经典系杆拱桥的结构受力特点、分类方法和计算思路,并且对新的应用技术进行展望,希望对今后的系杆拱桥设计和分析具有参考价值。 关键词:经典系杆拱桥;静动力计算;设计分析 引言 随着科研水平的持续进步和土建材料的不断发展,混凝土和钢结构逐步应用到拱桥结构中。优化材料的应用使拱桥的结构形式变得更为多元[1]。最突出的特点是拱桥突破了上承式结构的限制,将拱圈形式分离成拱肋式,桥面发展为板梁式的结构。伴随着人们对桥梁认识的逐步加深和实践经验的日益积累,拱桥的多种优化形式相继出现,梁拱组合体系就是其中的一种优化形式。梁拱组合体系,是梁与拱的有机结合,车辆荷载直接作用于主梁,梁结构主要承受弯矩,拱结构的刚度较大,主要承受轴向压力,因此材料特性得以充分利用[2]。 1 概述 经典系杆拱桥是指由系杆、桥面系梁(板)、拱结构和吊杆等所组成的组合结构体系。体系中设置系杆来平衡拱脚处对地基产生的水平推力。结构通过系杆承受的拉力来平衡拱脚处的推力,以形成无推力结构。因此在地质条件不好的地区,这种桥型极具竞争力[3]。 经典系杆拱桥的布置形式多样,与桥位所处的环境相搭配时,可设计出既满足承载需要又具有美学价值的样式[4]。 2 经典系杆拱桥受力特点 经典系杆拱桥具有如下特点[5-7]: (1) 经典系杆拱桥作为一种无推力结构,能够有效地降低结构对地基和基础的承载要求。经典系杆拱桥可以修建于地质条件不佳的地区,如软土及深水地基,基础的构造可以设计得相应的简单,从而降低修筑基础的成本。 (2) 经典系杆拱桥的桥面系主要承受弯矩,并将作用在桥面上的荷载通过吊杆传递到拱助上。吊杆材料一般使用合金钢、钢绞线或平行钢丝束。吊杆不仅传递荷载,还具有非保向力作用,有效地提高拱结构的横向稳定性。基于这种特点,吊杆可取代横撑用于敞开式和单拱面拱桥。 (3) 经典系杆拱桥的横向稳定性,通常是由拱助间的横向联结系来提供。横撑的设计形式有多种,其中较为常见的有一字撑、K形撑和X形撑。结构的横向稳定性与横撑的布设形式和数量均有关,合理的横向联结系对经典系杆拱桥的

斜靠式拱桥稳定性分析

斜靠式拱桥稳定性分析 摘要:本文以一座跨径100米的斜靠式拱桥作为工程实例,采用通用程序ANSYS建立空间有限元模型,分别应用线弹性分析方法和考虑几何非线性的方法对该桥进行了成桥阶段的稳定分析。 关键词:斜靠式拱桥、稳定性、线弹性、几何非线性 斜靠式拱桥是由两片竖直拱肋与两片斜靠拱肋两两形成组合拱肋,并与吊杆、桥面系形成的空间结构体系。中间两片竖直拱肋为桥梁的主要承重结构,桥面开阔、畅通,每侧斜靠拱肋与相邻竖直拱肋构成人行桥的空间。这种桥外形独特新颖,富有曲线美和力度感,在桥面宽度大于35m、跨径在40~150m之间的城市景观桥中,是一种颇有竞争力的结构形式。[1] 由于两竖直主拱之间不设横向支撑,桥梁的横向刚度减弱会影响结构的整体稳定性,稳定性问题就成为斜靠式拱桥设计中的关键性问题。 本文的计算模型为一座跨径100m的斜靠式拱桥。该桥在横桥向两主拱肋之间布置21.4m机动车道,主斜拱之间布置非机动车道和人行道,另外还设有弧形的观景平台,桥面宽度从主墩处50.4m变化至跨中处56.4m;桥梁全长111.16m,主拱肋截面为哑铃型,高度为2.7m,斜拱肋截面为圆形,直径1.2m,拱轴线均采用二次抛物线,矢跨比为1/4.5,斜拱倾角为25度,拱肋钢管采用厚14mm的A3钢板,钢管内灌注C40混凝土,主拱与斜拱之间各设11道一字型横撑,横撑顺桥向间隔6m,采用壁厚20mm矩形钢箱截面,主拱和斜拱吊索的纵桥向间距均为3m;梁体为混凝土结构,由系梁、横梁、纵梁、挑梁和桥面板组成。 1有限元模型 该桥有限元模型的主拱肋、斜拱肋、横撑、系梁、横梁、纵梁均采用三维空间梁单元Beam188单元模拟,吊杆和桥面板分别采用linkl0单元和shell63单元来模拟。[2]主拱支座由一个固定支座、一个双向滑动支座和两个单向滑动支座组成,斜拱拱脚处均设双向滑动支座。[3]全桥共有节点1225个,单元2394个。 在考虑材料的非线性效应时,同时计入了主拱肋、斜拱肋和横撑的材料非线性。钢管混凝土材料的本构关系按统一理论取用,钢材采用理想弹塑性应力-应变关系。[4,5] 为方便加载,汽车荷载和人群荷载均用3.5kN/m2的均布荷载来模拟,计算横桥向静风作用时由于缺乏资料,偏与安全风压取900Pa。结构自重由程序自动计入。 本文共分析3种工况,每种工况下分别进行特征值屈曲分析和几何非线性分

浅析水轮发电机组的常见故障及检修对策

浅析水轮发电机组的常见故障及检修对策 随着改革开放进程的进一步推进,我国社会经济飞速发展,科学技术不断完善和创新,人们的生活水平不断提高,在这种背景下,促进了我国各行各业的迅猛发展,其中,电力行业作为人们正常生产生活的前提基础,具有不可替代的作用和地位。近年来,社会各界对电力的需求急剧增加,在极大程度上带动了电力行业的快速发展。就目前而言,我国是通过水轮发电机组进行发电的,具有成本低、污染小的优势,对实现可持续发展的目标具有促进作用。因此,必须要确保水轮发电机组的正常运转,定期对其进行养护和维修,否则一旦发生故障,就会造成不可估量的损失。文章主要基于水轮发电机组的常见故障进行分析,并提出了检修对策,希望可以为相关技术人员提供理论帮助和基础,仅供参考。 标签:水轮发电机组;常见故障;检修对策;分析 引言 随着经济全球化的普及和应用,我国市场经济也有了显著提升,大大促进了各项事业的飞速发展,电力行业也是如此,经济的发展促使人们对电力的需求量持续增长,且要求也越来越高,在极大程度上促进了我国电力的发展。我国主要是依靠水轮发电机组进行发电的,相比于其他的发电方式具有一定的优势,比较符合国家可持续发展战略的实施。基于此,为了保障水力发电能够更加健康的发展,首先要做的就是定期对水轮发电机组进行维护,及时排除机组的常见故障,提高水轮发电机组的运行效率,进而为水轮发电机组提供健康、稳定的发电环境。 1 水轮发电机组的发展现状 近年来,随着经济的快速发展,人们生产生活水平与日俱增,日常生活愈加丰富多彩,对电力的需求也相对增加,因此,为了在实现可持续发展目标的基础上满足社会各界对电力的需求,就需要确保发电的稳定可靠。我国所使用的电力主要是通过水力发电产生的,由于其特有的优势具有广阔的发展前景。目前,我国水力发电主要来自于水轮发电机组,只有保证水轮发电机组的稳定持续,才能满足人们对电力日益增长的需求,进而更好地服务于社会和人民。然而,就目前而言,我国的水轮发电机组由于没有定期进行维修和养护,导致其中常常存在一些故障,严重影响着水轮发电机组的运行效率。另外,针对水轮发电机组而言,没有完善健全的检修标准,也是导致水轮发电机组故障检修比较困难的主要因素。 2 水轮发电机组常见故障 就目前我国的水轮发电机组而言,在运行时常常出现一些故障,部分功能或者全部功能发挥失效,达不到水轮发电机组的参数标准,从而降低了发电机组的工作效率。通常情况下,水轮发电机组的常见故障主要分为两种,一种是突发性故障,另一种是渐变式故障。突发性故障顾名思义,具有很大的突发性,主要是

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

大中型水水轮发电机组

大中型水水轮发电机组的 磁场断路器与非线性灭磁电阻灭磁綜述 朱仲彦 大中型同步水轮发电机组,特别是采用具有高顶值自励可控硅励磁系统,对灭磁及转子过电压保护的技术要求已提到了一定的高度。用常规的磁场断路器及非线性电阻相结合的方式已不能满足同步发电机组正常可靠灭磁的要求。我国水电机组在实际运行的过程中,由于灭磁失败,引起磁场断路器烧毁以及因灭磁不力而造成转子过压击穿励磁设备的事故屡见不鲜。从1981年葛洲坝第一台机组发生灭磁事故以来,以大型水轮发电机组的灭磁及转子过电压保护作为攻关课题,我国的励磁工作者在长达20余年的时间中,在引进、消化、吸收国外的磁场断路器及SiC非线性电阻的基础上,不懈地进行了设计,开发,研制及制造工作,取得了不少宝贵的经验与成果,尤其在高能ZnO非线性电阻与高断口弧压磁场断路器的研发与试制,获取了重大的突破。下面就大中型同步发电机的灭磁系统的设计,磁场断路器及非线性灭磁电阻的选型等技术进行分别阐述。 一.灭磁系统的设计 优良的灭磁系统设计是可靠灭磁的基础,大中型同步发电机的灭磁系统,通常应满足以下基本的技术要求: 1、灭磁容量必须满足各种运行状况下可靠灭磁的要求。

大中型机组的灭磁装置必须有足够大的灭磁容量,除了在正常及机端短路等强励状况下能可靠灭磁外,特别是对于具有高强励倍数的自励系统,还必须满足在空载误强励等极限状况下可靠灭磁的要求。 2、满足快速灭磁的要求,最大灭磁电压尽可能接近理想灭磁时间。 大型发电机组虽然采用了现代快速灵敏的继电保护装置,但这种保护装置的作用仅是当发电机出现故障时,能尽快地将机组解列,但即使机组已经解列,可故障电流依然存在,不论发电机的故障是一相短路还是部分绕组短路,在故障电流期间,损坏的程度是随绝缘燃烧和铜线熔化的时间而增加,所以只有在发电机解列的同时,采用快速灭磁才是限制故障电流和使绕组免于全部烧毁最充分有效的措施。 3、灭磁应更加彻底。 大型机组的出口母线电压很高,在这种高压机组中,哪怕只要有维持发电机母线电压10%的励磁残压,这种残压也足以维持故障处的电弧,为此大型机组的灭磁应更加彻底。 4、磁场断路器需足够高的断口弧压。 5、有效的转子过电压限制措施。 大型机组在灭磁的过程中,由于励磁电流的突然中断会产生过电压,这种灭磁过电压的能量很大,若没有有效的限压措施以及足够容量的消能装置,它将直接危及发电机转子绝缘及励磁装置的安全。 二、非线性电阻灭磁 要满足快速灭磁的需要,就必须采用非线性灭磁电阻,这是众所周知的事实,用於灭磁的非线性电阻有SiC和ZnO两种:

大跨度公路隧道长期稳定性分析.

大跨度公路隧道长期稳定性分析 6.1 引言 前面的分析都是基于岩体的弹塑性本构关系进行的,未考虑时间效应和长期蠕变的影响。前人研究发现,地下工程开挖后一段很长时间内,支护或衬砌上的压力一直在变化,可见岩石的蠕变对于隧道特别是深埋隧道围岩的变形和长期稳定性,具有重要影响[78]。为保证现场隧道的长期稳定运行,必须考虑到长期蠕变效应。 蠕变是当应力不变时,应力随时间增加而增长的现象,是流变效应的最重要表现特征。岩石的蠕变曲线有三种主要类型[88],见图6-1。 图6-1 岩石蠕变曲线 图中三条蠕变曲线是在不同应力下得到的,C B A σσσ>>,蠕变试验表明,当岩石在较小荷载σC 持续作用下,变形量虽然随时间增长有所增加,但变形速率逐渐减小,最后变形趋于一个稳定的极限值,这种蠕变称为稳定蠕变;当荷载σA 很大时,变形速率逐渐增加,变形量一直加速增长,直到破坏,蠕变为不稳定蠕变;当荷载较大时,如图中的abcd 曲线所示,此时根据应变速率不同,蠕变过程可分为3个阶段:第一阶段,如曲线中ab 所示,应变速率随时间增加而减小,故又称为减速蠕变阶段或初始蠕变阶段;第二阶段,如曲线中bc 所示,应变速率保持不变,故又称为等速蠕变阶段;第三阶段,如曲线中cd 所示,应变速率迅速增加直到岩石破坏,故又称为加速蠕变阶段。 一种岩石既可发生稳定蠕变也可发生不稳定蠕变,这取决于岩石应力的大小。超过某一临界应力时,蠕变向不稳定蠕变发展。小于此临界应力时,蠕变按稳定蠕变发展,通常称此临界应力为岩石的长期强度。对岩石隧道来讲,由于开挖和支护导致应力重分布,围岩产生不同的应力分布状态,在进行长期蠕变效应分析时,应计算相应监测点的应力和变形状态,判断其蠕变效应。 众所周知,固体本构关系有三种:弹性、塑性和粘性。文献中,通常将围岩应力小于屈服极限时应力应变与时间的关系称为粘弹性问题,将围岩应力大于屈服极限时应力应变与时间的关系称为粘塑性问题。研究表明,在隧道开挖完毕后的长期运营过程中,大多数岩石都表现出瞬时变形(弹性变形)和随着时间而增长的变形(粘性变形),即岩石是粘弹性的[80];为使巷道维持稳定状态,人们也总是力图使围岩应力小于屈服极限。 下面采用FLAC 软件进行数值分析,版本为FLAC2D 5.00.355。 6.3 弹塑性数值分析 ε

钢管混凝土系杆拱桥特点及稳定性探讨

钢管混凝土系杆拱桥特点及稳定性探讨 摘要:对钢管混凝土系杆拱桥的特点进行了描述,对钢管混凝土系杆拱桥的设计和施工过程中不可忽略的因素——稳定性进行了归纳和总结,并且进一步对稳定性的影响因素进行了探讨。 关键词:钢管混凝土,系杆拱桥,稳定性 1 引言 钢管混凝土拱桥具有跨越能力强的特点,我国已建成的钢管混凝土拱桥有四川旺苍东河大桥、广东高明大桥、广州丫髻沙大桥等。其中跨径110m的四川旺苍东河大桥是我国第一座钢管混凝土拱桥,其结构形式为的下承式预应力钢管混凝土系杆拱桥[1];跨径112.8m、全宽26m的佛陈大桥是我国同类结构中在跨度和宽度上均具有代表性的一座下承式预应力钢管混凝土系杆拱桥。 2 钢管混凝土系杆拱桥特点 钢管混凝土系杆拱桥兼有钢管混凝土结构和系杆拱桥的特点:作为钢管混凝土结构,因钢管内填充了混凝土,增加了钢管壁受压时的稳定性,而且钢管壁对混凝土起套箍作用,使管内混凝土处于三向受压状态,充分发挥了混凝土的抗压强度、提高了混凝土的延性;作为系杆拱桥,系杆拱组合体系将拱肋的推力传给系杆,使体系成为外部静定、内部超静定的结构,系杆和拱肋均有一定的刚度,荷载引起的弯矩在系杆与拱肋之间按刚度分配,它们共同承担体系的轴力和弯矩。 系杆拱桥主要分为有推力和无推力组合体系,无推力系杆拱桥能够较好地适应不良地层和具有较小的建筑高度,主要由拱助、吊杆、系杆(梁)三部份组成。根据上下部分结构的联接方式,系杆拱又可分为两种,一种是上下部之间刚接,一种是简支,如图1所示[2]。 (a )简支形式 (b) 刚接形式 图1 系杆拱形式 3 稳定分析 由结构力学知识可知,拱桥以承受压力为主,拱肋的受力情况为承受一定的弯矩、扭矩和剪力。在对拱桥进行施工和运营时,若拱结构本身的刚度不足会发

浅析水轮发电机组稳定性

浅析水轮发电机组稳定性 摘要:本文分析了影响水轮发电机组稳定性的几方面因素,引起机组振动的原因,以及如何增强器稳定性。 关键词:水轮发电机振动稳定性 一、影响机组稳定性的因素 1、机械方面振动 影响因素:动不平衡,轴系失稳,部件或支撑松动,导轴承憋劲,轴弯曲,定转子碰磨等。判断方法:变转速、模态试验,根据频谱图、时域图、轴承温度等判断。解决方法有配重、加固、盘车等。 2、电气方面振动 影响因素:转子磁极短路,转子(定子)圆度超标,定子鉄芯松动,定子机座松动等。判断方法:变励磁试验,根据频谱图、时域图判断。解决方法有消除电气缺陷,重新整圆,拉紧螺杆,加固等。 3、水力方面振动 影响因素:水力失衡,低频蜗带,汽蚀,流道水体共振,叶道涡,卡门涡等。判断方法如变负荷试验,根据振动和水压脉动频谱分析。其解决方法常可以采用诸如补气、避振、改变补气方式、改变转轮或导水机构设计、叶片修型等。 二、引起水力发电机组振动的原因 1.空载无劢 通常表现为振动强度随转速增高而增大;在低速时也有振动,其可能原因主要有以下几方面:1)发电机转子或水轮机转轮动不平衡;2)轴线不直;中心不对;推力轴承轴瓦调整不当;主轴联接法兰连接不紧;3)与发电机同轴的励磁机转子中心未调好;4)水斗式水轮机喷咀射流与水斗的组合关系不当;5)转轮叶片数与导叶数组合不当。针对以上问题,我们可以采取以下措施来处理:1)动平衡试验,加平衡块,消除不平衡;2)调整轴线和中心,调整推力轴瓦;3)调整励磁机转子中心;4)改善组合关系;5)改善组合关系。 2.空载带励 主要表现为:1)振动强度随励磁电流增加而增大;2)逐渐降低定子端电压,振动强度也随之减小;3)在转子回路中自动灭磁,振动突然消失。其原因有1)

药物稳定性试验统计分析方法

药物稳定性试验统计分析方法 在确定有效期的统计分析过程中,一般选择可以定量的指标进行处理,通常根据药物含量变化计算,按照长期试验测定数值,以标示量%对时间进行直线回归,获得回归方程,求出各时间点标示量的计算值(y'),然后计算标示量(y')95%单侧可信限的置信区间为y'±z ,其中: 2 2 02)()(1X Xi X X N S t z N -∑-+ ??=- (12-21) 式中,t N -2—概率0.05,自由度N-2的t 单侧分布值(见表12-4),N 为数组;X 0—给定自变量;X —自变量X 的平均值; 2 -= N Q S (12-22) 式中,xy yy bL L Q -=;L yy —y 的离差平方和,N y y L yy /)(2 2∑-∑=;L xy —xy 的离差乘 积之和N y x xy L xy /))((∑∑-∑=;b —直线斜率。 将有关点连接可得出分布于回归线两侧的曲线。取质量标准中规定的含量低限(根据各品种实际规定限度确定)与置信区间下界线相交点对应的时间,即为药物的有效期。根据情况也可拟合为二次或三次方程或对数函数方程。 此种方式确定的药物有效期,在药物标签及说明书中均指明什么温度下保存,不得使用“室温”之类的名词。 例:某药物在温度25±2℃,相对温度60±10%的条件下进行长期实验,得各时间的标示量如表12-4。 表12-4 供试品各时间的标示量 时间/月 0 3 6 9 12 18 标示量/% 99.3 97.6 97.3 98.4 96.0 94.0 以时间为自变量(x ),标示量%(y )为因变量进行回归,得回归方程 y= 99.18-0.26x ,r=0.8970,查T 单侧分布表,当自由度为4,P=0.05得 t N -2=2.132 9279.04 444 .32==-= N Q S 210)(2=-∑X X i

水轮发电机组振动原因分析

水轮发电机组振动原因分析 水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体一机械一电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害: 务)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂;

C )尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的白振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a )20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022m m,水导轴承处振幅达020m m。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。 b )1997年2月天桥水电站4号机尾水管锥管段不锈钢衬板与普通钢衬板衔接处(高程8087m )以下约有23m 2普通钢板沿环向脱落。其主要原因是由于叶片翼端间隙射流及尾水管涡带产生的低频水压脉动相互作用,引起锥管段钢板振动,焊缝疲劳破坏后被撕裂或脱落。 c )2000年11月天桥水电站1号机大修后,发生发电机推力瓦12 块被烧毁的严重事故,因推力瓦水平调整不好,轴系中心不正及调速系统失调所致。 d )2002年5月天桥水电站3号机大修检查发现尾水管弯管段垂直

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

大型水轮发电机的低成本设计研究

大型水轮发电机的低成本设计研究 摘要:目前,随着中国的不断发展壮大,在大型水电产品的发展中也取得了优 异的成绩,并在世界各地中占据领先的地位,拥有一定的技术水平。大型水轮发 电机产品在我国乃至世界各地的应用都是非常重要的,尤其是在水资源非常丰富 的国家,其发挥着巨大的作用。但是,我们也要考虑到与经济问题,使得大型水 轮发电机的设计符合经济发展的要求。因此,本文主要研究大型水轮发电机系统 的低成本结构设计方案,阐述相关的设计步骤以及实际中的过程等,从而可以设 计出低成本,高效率的结构方案,并不断的优化设计,使得大型水轮发电机的结 构设计的质量和效率得到充分的保障。 关键词:大型水轮发电机;低成本;设计方案;研究分析 1、前言 中国在各个地区都有丰富的水资源,这对水电行业的快速发展是非常重要的,发挥着决定性的作用,以此为基础,才能使得大型水轮发动机的效率得到保证。 随着一大批一大批的大型水利工程的完成,其在中国水电开发的发展中的意义可 想而知,有效地提高了大型水利工程的工作效率,促进我国水利工程事业的不断 进步与发展。同时,相应的水电单位也在不断的面临大型和超大型的发展。但是 目前,根据国内水利工程协会的统计,在中国,大型水轮发电机的成本过高,需 要对其进行低成本的设计,从而使得其的发展符合当今经济的发展状况,创造出 更加优秀的工程项目。 2、大型水轮发电机低成本设计的技术问题分析 2.1定子铁芯的热膨胀 随着我国的科学技术的不断发展壮大,大型水轮发电机的容量也随之被不断 的改善,逐渐扩大,相应定子铁心的直径也在增大,这就会涉及到成本问题。并 且相应的定子铁心的数量已经从之前的几米增长到了十多米,这样不断的增加很 有可能超过20m。相对直径成倍增加,势必会造成成本的增加,我们在设计时一 定要考虑到成本问题,与实际相结合,制定有效合理的设计方案。大型水轮发电 机的定子铁芯,铁芯温度一般会上升至50度,然后核心径向膨胀将达到11mm,所以干扰的半径方向的核心和基础是2mm,我们一定要按照一定的标准进行设计,促使定子铁芯在其中充分发挥自身的作用,达到良好的作用效果。 2.2定子铁芯的压缩质量 在实际的大型水利发电机的运行过程中,定子铁芯的压缩质量是非常重要, 我们在对其进行设计时,一定既要保证其的质量又要节约成本,使得大型水利发 动机可以正常工作,既达到理想的效果又能节约成本。虽然大型水轮发电机可以 自由膨胀,但随着不断的使用,相应的轴向铁心面积的压力会大幅度的下降,相 应的定子铁心会发生翘曲,所以在设计中我们要充分考虑到这方面的问题,避免 长时间使用出现问题。 2.3定子铁芯的开裂的 定子铁芯的结构是装配在襟翼上的,所以在低成本的大型水轮发动机的设计中,我们一定要注意定子铁心的核心位置,避免将相应的环节分布不均匀,从而 导致难以预测的挤压压力,使得定子铁芯受到的压力对大型水轮发动机的设计产 生不利的影响,如在很大程度上加剧了翘曲的情况等等。 2.4转子支架的刚度与轮盘结构的设计 大型水轮发电机的转子支架的结构设计在整个设计过程中也是非常重要的,

相关主题
文本预览
相关文档 最新文档